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Two Linear Programming Algorithms

for the Linear Discrete L{ Norm Problem

By Ronald D. Armstrong and James P. Godfrey

Abstract. Computational studies by several authors have indicated that linear program-

ming is currently the most efficient procedure for obtaining L, norm estimates for a

discrete linear problem. However, there are several linear programming algorithms, and

the "best" approach may depend on the problem's structure (e.g., sparsity, triangular-

ity, stability). In this paper we shall compare two published simplex algorithms, one

referred to as primal and the other referred to as dual, and show that they are con-

ceptually equivalent.

1. Introduction. The linear discrete approximation problem in the L x norm can be

stated as follows:   Given points (f¡, cix, ci2, . . . , cim), i — 1, 2, . . . , n, in m + 1

Euclidean space, determine a value for a = (ax, a2, . . . , am) which will

n

(1) minimize g   |/. - cixax - ci2a2-cimam |.

It is a well-known result that (1) can be written as the following linear programming

problem.
n

(2) Minimize £   (P. + N¡),
i'=i

subject to

cixax + ci2a2 +••• + cimam + P¡ -Nt = ft,

Pi > 0 and A,. > 0, i = 1, 2, . . . , «,

where P¡ and N¡ axe the positive and negative deviations of the ith observation, respec-

tively.   Since this relationship between (1) and (2) was demonstrated by Chames,

Cooper and Ferguson [8], it has generally been agreed that linear programming is

computationally the most efficient method for obtaining an optimal a value.  Wagner

[15] showed that the linear programming dual of (2) can be solved with simple upper

bounding techniques which requires a working basis of size m by m.   This would be

as opposed to the « by « basis if (1) were to be solved with a standard primal simplex

algorithm.  Generally, m is substantially less than « and, thus, Wagner's approach was con-

sidered the most efficient for some time.  However, Barrodale and Roberts [5]  dem-

onstrated how the structure of (2) could be utilized to solve it directly with a special

purpose primal algorithm.  This algorithm maintains a basis of size mhy m (or the
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rank of (cJ) and also combines several standard pivots into one.   In other words, in-

stead of passing from an extreme point to an adjacent extreme point, an iteration may

pass through several extreme points.  This approach has been shown [5],   [9]   to be

computationally superior to solving the dual directly.

Abdelmalek [2] also presents a special purpose linear programming algorithm to

solve (1).   He employs a transformation on the dual of (2) and solves it with a modifi-

cation of the dual simplex algorithm for bounded variables [14].

The dual linear program of (2) is:

n

(3) Maximize £ fkvk
k = l

subject to
n

X   vkckj = °>     j = 1,2, . . . ,m, - I < vk <l, k = I, . . . ,n.
k=l

The dual problem that is considered by Abdelmalek is the bounded variable linear pro-

gram determined by the transformation bk = vk + 1 :

(4) Maximize ¿ fk(bk - 1) = ¿  (fkbk - fk)
k-l k=l

subject to

n n

Z Vfc/ = Z c*/.     j= 1,2,. . . ,m, 0<bk<2, k = 1,2.n.
k= 1 k=1

It is the special structure of the problem that enables a modification to the dual

simplex method to perform a pivot through several bases in one iteration as was done

by the algorithm of Barrodale and Roberts.   However, solving the dual with the dual

simplex algorithm is identical to solving the primal with the primal simplex algorithm.

What we shall demonstrate in this paper is that Abdelmalek's algorithm is equivalent

to the Barrodale and Roberts'algorithm. By equivalence, we mean that, given an initial

basis for the dual problem and the corresponding basis for the primal problem, the

two algorithms will generate corresponding bases at each iteration.  The only real dif-

ference is in the formations of the simplex tableaus.

The first step will be to explicitly develop the algorithms and the manipulations

that are performed on the tableaus.  We shall then demonstrate the truth of the hy-

pothesis from an algorithmic and geometrical viewpoint.  An underlying assumption of

the hypothesis is that the same pivot selection criteria are used and also that in case of

degeneracy corresponding perturbations [6] will be employed.  We shall also present a

numerical example to further illuminate our presentation.

2.   Development of Primal Algorithm (Barrodale and Roberts).    Using matrix

notation, LP(2) can be rewritten as follows:

(5) Minimize eTP + eTN = eT(P + N)

subject to

Ca + IP - IN = f      P, N> 0,

where e is a vector of conforming dimension whose components are 1 's, aT=
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(ax, .    . , am), P> =(/»,,... , Pn), NT = (NX,..., Nn), f=(fx./„), and

C is an « by m matrix with « > m.

For convenience we shall assume that the matrix C has full column rank; i.e.,

rank C = m.   However, we should note that rank deficiencies are easily treated within

the linear programming framework (see Chames and Cooper [7]).  Because of the rank

assumption, it follows directly that an optimal basis must contain all « columns of the

matrix X and also « - m columns from the matrices / and -/ associated with the 2«

variables, P, and N-.

If we use the revised simplex approach to generate the tableau, then the basis

matrices will be of the form (after row interchanges)

"-C3-
where (^ ) = C after row interchanges, B is an m by m matrix, R is an (« - m) by m

matrix, 0 is an m by (« - m) zero matrix, (CB) = f after row interchanges, and D is

an (n - m) by (n - m) matrix whose diagonal elements are either +1 or -1 and non-

diagonal elements are zeros.  Due to the format of the basis matrix, the initial tableau

will also require the appropriate adjustments.

a

11

R

0

NB

I     0     -/

0/0

e     e      e

I    0     -/

0     /     0

eDRB~'       - D

'B

¿r1

-DRB-

e     e     e

A",B

-B-1

DRB-

NB

-D

4

ÎR

0

ÍB

4

B~lfB

D(fR-RB~lfB)

e+eDRB~ eD eDRB' e + eD eD(fR -RB~lfB)

The marginal cost for (n - m) nonbasic N¡ (P¡) with the corresponding P. (N¡) in the

basis is 2.  For the case where both N¡ and Pp m of each, are nonbasic, the marginal

cost for P¡  is 1 + eDRBk 1, and for N¡ it is 1 - eDRBk l, where Bk 1 is the kth

column of B~l, and c¡ = Bk = (cix, ci2, . . . , c¡n) is the kth row of B.   At optimality,

the row of the marginal cost terms will be nonnegative, or this can be replaced by the

equivalent statement

(6) -KeDRBkl <l,      k=l,2,...,m.
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To assist in demonstrating the equivalence of the two algorithms under consider-

ation here, two index sets are defined as follows:

U = {i \P¡ is basic},      L = {i \N¡ is basic}.

Condition (6) can now be restated as

-1</2>|-E e,W!<1'      k=l,2,...,m,
\i&u        íe¿    J

or defining

wk = (Z c¡- Z cSb^1,      -l<wk<l, k= 1,2, ...,m.

Once it has been ascertained that the optimality conditions are not satisfied for

some /' (say / = /), then either Nt or P¡ is to enter the basis and the primal algorithm

proceeds to determine the LP variable to leave the basis.  The standard procedure at

this stage is to take the minimum of the ratios

fk-CkB-% _

^kB~ql

(7)
fk-CkB-lfi

pckB~' > 0,  kEU,   and

B
pc^-^0,  kEL,

WkBo

where q is the row of B associated with the index / (c¡ = B ) and

(-1    if P¡ enters the basis,

P = \

1  1    if A, enters the basis.

The standard primal algorithm would now perform a pivot to remove the vector

chosen by the minimum ratio test from the basis and to enter either N¡ or P¡ into the

basis.   However, the special purpose algorithms may perform several interchanges of

basis vectors before executing the pivot to bring either N¡ ox P¡ into the basis.   Let t

be the value of k when the minimum ratio occurs in (7).  Then the linear program-

ming variable to be removed from the basis will be either Nt or Pt, whichever is in the

basis.   In order to clarify this process, suppose P¡ is to enter the basis, and Nt is to

leave the basis.  If 1 + w   + 2 \cfi~1 I > 0, then the standard pivoting procedure of

the simplex algorithm is carried out.  If 1 + w   + 2 \CfB~1 I < 0, then Pt will re-

place Nt in the basis, and the row of marginal costs are updated.  This calculation is

achieved by adding twice the rth row of the current tableau to the row of the reduced

cost factors.  The algorithm now returns to the minimum ratio test and finds the ratio

which is next to the smallest.  The basic variable associated with this ratio is then

tested, as above, for removal by the standard pivoting technique or for interchange in

the basis with its corresponding dependent deviation variable.  This procedure will

continue until P, is brought into the basis by the usual pivoting method, and then a new

vector will be sought to enter the basis by observing the values of the marginal cost

row, and the steps are repeated until optimality is reached.
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3.  Development of Dual Algorithm (Abdelmalek).   In this section, we shall

briefly develop the dual simplex method which Abdelmalek applies to LP (4).   Re-

writing LP (4) in matrix notation and condensing the constant term in the objective

function, we obtain the following.

(8) Maximize fTb - fTe

subject to

CTb = CTe,      0<bt<2, i = 1, 2, . . . , n,

where bT = (bx, b2, . . . , bn) is the vector of the variables for this dual problem.

We shall now present the simplex tableau formulation that is employed by Abdel-

malek in solving LP (8).  The notation is the same as in the preceding section.

[

BT on-

fl  l.

B1 R1

-fTJB -fTJR

CTe

~eTf

iB-lfBy
(B-1)

l\T

(B~ifBy   i

B R1

-fT     _fTJB JR

CTe

-eTf

I

0

(RB~l)T

fT(RB-l)T-fl

(CB-l)Te

(BL%fCT'e'-eTf

However, since some of the nonbasic elements associated with the columns of

(RB~l)T may be at their upper bound, we must modify the right-hand side to account

for this fact.  Thus, the values of the kth basic variable bB,k) will be given by

**<*> = (BkV[cTe-2 J^j  = (BkY [Be + Re - £ cl

=i+(V)rrz ci-zci
L/ez, /er/    J

where U and L axe the index set of the nonbasic variables which are at their upper and

lower bound, respectively.  (Further details on this can be found in Hadley [10].)

Nonbasic variables which are at their upper bound are recognized by the fact that the

associated entry in f^(RB~l)T -/J^will be negative.  These variables will have anx

placed above their associated column in the tableau.  Therefore, the tableau may have

the following form:

/       (RB~l)T

cT(Db-UT _ fT f!ibB0      f¿(RB-y-fT

At this point a brief description of the steps from Abdelmalek's algorithm is

0 + 1 ff-I.fr
jeu jGL

given.

1.  Select a variable to become primal feasible (vector to leave the basis) by the

rule
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bB(q) =iran{*i. b2},

where

bx =mm{bB(i),bBt¡)<0}

and
b2 = min{2 - bB(i), bB>i) > 2}.

If no minimum exists, the algorithm terminates as the optimal solution has been ob-

tained.

Let b¡ indicate the variable to become primal feasible.

Case 1. bB, <. < 0.

2.1. Determine the index t by the following ratio test:

(ft - zt)lyqt = mül Ofk - zk)lyqk> kEU, yik > 0

and (fk - zk)/yqk, k E L, yik < 0},

where y k is the ¿7th component of

yl = ckB~l   and   zk=fSyk-

2.2. If y t < 0, do not change bB , go to 3.

2.3. If y t > 0, add 2yt to bB, remove the upper bound flag on bt, and go to 3.

Case 2. bB(q) > 2.

2.4. Determine the index t by the following ratio test:

(zt-ft)lyqt = min{(zk -fk)lyqk, kEU, yik < 0

and (zk ~fk)/yqk, k E L, yik > 0}.

2.5. lfyqr > 0, subtract 2y, from bB and flag b, to indicate that it is at the

upper bound.   Go to 3.

2.6. If y t < 0, add 2yt to and subtract 2y¡ from bB.   Remove the upper bound

flag on bt and place the upper bound flag on b¡.

3. Determine if a standard update of bB, -, will produce a value in [0, 2]. If

not, replace c¡ by ct and go to either Case 1 or Case 2. If 0 < bB, % < 2, update in

the standard manner and go to step 1.

4. Comparison of the Algorithms.   The purpose of this section is to demonstrate

that the algorithms are equivalent.  We base this conclusion on the fact that the primal

algorithm maintains primal feasibility and complementary slackness, while seeking to

obtain dual feasibility.  The dual algorithm maintains dual feasibility and complemen-

tary slackness while seeking primal feasibility.  Hence, when the dual algorithm is

applied to the dual problem, it is equivalent to the primal algorithm applied to the

primal problem (see, for example, Chames and Cooper [7, p. 477], Wagner [14],

Simonnard [13, p. 116]).

However, the basic question here is whether the two algorithms will proceed

through the same sequence of bases or extreme points since the algorithms utilize

techniques which will enable them to pass through a selected sequence of extreme

points before performing a simplex iteration.   For the purpose of simplicity in our
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development, we shall assume that degeneracy is not present in our problem.

In general, we shall illustrate how the steps performed on the dual relate to the

primal.  A negative zk —fk in the dual and flagging the kth column (bk = 2) corre-

sponds to having a Pk in the basis of the primal.  Also, when bk is nonbasic with

bk = 0 in the dual problem, Nk is in the basis of the primal.   If bk is basic in the dual,

then Nk and Pk are nonbasic in the primal.  The fk - zks in the dual are the same as

the deviations in the primal.  Therefore, the ranking of the minimum ratios will be in

the same sequence for each of the algorithms so that corresponding vectors will enter

and leave the basis during a pivot.  This can be observed directly by noting that the

same vector (assuming no ties exist in the ratios) must enter the basis in both algo-

rithms, because there is a unique vector whose entry into basis will maintain the dual

feasibility of (8) and force primal feasibility in the pivot row.  Both the rules given by

Abdelmalek and Barrodale and Roberts do this although they are stated in slightly

different forms.

The primal algorithm attempts to place the dual variables in the interval [-1, 1 ].

The dual algorithm works towards placing the primal variables of the dual (which are

the dual variables of the primal) in the interval [0, 2].  The difference in the intervals

has been brought about by the transformation employed by Abdelmalek.  Thus, there

will be a difference between these variables which is created by the transformation.

In addition, the differences in tableaus in terms of the signs of the elements can be

accounted for by the utilization of the D matrix in the primal.  This matrix is not

employed by Abdelmalek in the dual, but he utilizes the x above the columns to flag

the variables at their upper bounds.

Additional aspects such as the value of the objective function being the same at

each extreme point of the sequence is clearly observable from the tableaus which were

developed.  The process of adding (or subtracting) the term 2yt is the same in the al-

gorithms.

5.   Numerical Example.   In this section, we shall solve a linear discrete Lx norm

problem by both the primal and dual methods following the manner in which they

have been developed in the previous sections.  The data is taken from a paper by

Karst [11].  The primal method will utilize the revised simplex tableaus as was done

in the paper by Barrodale and Roberts [5].  The asterisks will denote the sequence of

pivots and the corresponding calculations that are performed on the tableaus.  The

addition of twice the pivot row elements to the z;- - / row is irrelevant for the non-

pivot columns, and this calculation is eliminated from the procedure.

In solving the problem by the dual method, we have employed two preliminary

tables to obtain the table to begin the algorithm.

We shall find the Lx norm estimators for the following system of equations.

ax - 3a2 = -3, a^~ 3a2 = 2, ax + 3a2 = 2,

ax+2a2=-l, ax-2a2=-l, ax+4a2=0,

ax - 5a2 = 0, ax + a2 = 1, ax + 4a2 = 4.

ax + 2a2 = 3,
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The arbitrary starting basis will consist of the first and second equations for both al-

gorithms. This choice will clearly demonstrate the equivalence of the two algorithms

as was presented in Sections 3 and 4.

Table I:  Primal method (Barrodale and Roberts)

BASIS RESIDUAL H N RATIOS

a -9/5 -2/5 3/5

a2 2/5 1/5 -1/5

P3 19/5 7/5 -2/5

P. 25/5 5/5                      0
4

P5 8/5 4/5 1/5                              8

P6 12/5 1/5 4/5                              3

P? 20/5 0 5/5                              4

P0 13/5 -1/5 6/5**                          13/6*

P9 1/5 -2/5 7/5*                            1/7*

P10 21/5 -2/5 7/5                              3

119/5 -7/5                -23/5

162/7 -9/5

39/2 3/5

Table II: Primal method

BASIS RESIDUAL M P„ RATIOS1 u

ix -3/6 -3/6                    3/6

a2 5/6                            1/6                    1/6

P3 28/6                            8/6***              2/6                            7/2***

P, 30/6                            6/6                      0                              5
4

P5 7/6                            5/6* -1/6                            7/5*

P6 4/6                            2/6** -4/b                            2**

P7 11/6                            1/6 -5/6                            11

N2 13/6 -1/6                    5/6

Ng 17/6                            1/6                    7/6                            17

P10 7/6 -1/6 -7/6

19!j -15/6 9/6

16 -5/6

15'a -1/6

151, 15/6
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Table HI:  Primal method

BASIS RESIDUAL P, P RATIO
3 8

aj 5/4 3/8                    5/8

a2 1/4 -1/8                      1/8

N 14/4 6/8                      2/8                            14

P. 6/4 -6/8 -2/8
4

N5 7/4 5/8                      3/8                            14/3

fig 2/4 2/8                      6/8*                          2/3*

P? 5/4 -1/8 -7/8

H 11/4 1/8                      7/8                            22/7

Ng 9/4 -1/8                      9/8                            2

P10 7/4 1/8 -9/8

15% 1/8 -1/8

91/6 11/8

Table IV:   Primal method: Optimal

BASIS RESIDUAL P, M,
3 6

a 5/6 1/6       -5/6

2
1/6 -1/6        -1/6

Nj 20/6 4/6 -2/6

P. 10/6 -4/6 2/6
4

N 9/6 3/6 -3/6

P8 4/6 2/6 8/6

P? 11/6 1/6 7/6

N2 13/6 -1/6 -7/6

Ng 9/6 -3/6 -9/6

P1Q 15/6 3/6 9/6

91/6 5/6        7/6

Preliminary Tableau a: Dual method (Abdelmalek)

-10 2-113204

i i i i Ï P    "T i Î
~2        3)        ^3 "-Í i 2 3 4 4

10

-7

bl b2        b3        b4 b5        b6        b7        b8        b9        b10
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Preliminary Tableau b: Dual method

-3-102-113204

~i B        775      575        475      T/5        0      -1/5    -2/1      =775 Î775

"5 1      -275        B Í75      475     "575      675      775        7/5 3375

~3 0      =T9/b    -25/5    -8/5    -1275 -20/5    13/5 -1/5      -21/5 119/5

Initial Tableau I : Dual method

xxxxxxxx

-3-10 2-1 1 3 2             0 4             b„         * **         b

1          B      775 575          4/5 175 B ~ï/5~ ~275 "^275 ^775

"Ö          1    -2/5 S            175 T75 5/5 6/5** TTF* 775 -23/5 -9/5 375        Ç

"5          0    -19/5 -25/5    -8/5 -12/5 ^2075 "lTTS -T/5 ^2175 119/5 162/7 39/2

Table II:  Dual method

X X X X X X

-3-102-113204 b3 ****** £

T     1/6    8/6*** 6/6    5/6*    2/6*    1/6        B      ^T/l      ~l7"6 2776 -15/6 ^TT6      rT/6      1575        1575

0    5/6    -2/6      (5        176      471      576        Î        776        776 3376 ^¡78

0    13/6 -28/6 -30/6 -7/6    -4/6    -fi/TT)      1775      "776 3972 3972 Î6        Ï5Ç       155

Table III: Dual method

XXX

^3 ~\ B 2 ~1 Ï 3 2        ~ "B 4~ bn *       b
B

Ö71 178 î 678 5/8 278 178 B "HTS        -1/8 27/8    15/8

173 778 B 278 378 578* 778 I 978 9/8 53/8    17/8    5/8    5/6

772        ÏÏ74 B ^3?2 774 Î72 -5/4 15 974        -7/4 15%      15!.    91/6

Table IV:    Dual method (Optimal)

X XXX

-3-102-113204 b

"475      ^176        i       476      375         o      -"l/l      -276    "371    ^376 7/1 TiTl

2/6          776          B          276        371            Ï          771          876"        976        976 5376 Í/1

2Ô76        13/6          0        -Wß      "9/6            Ö" ~^TÏ '/l        ^4/1        9/1      "ll/l 9Î76 9Ï71
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6.  Conclusions.   Because Abdelmalek's algorithm is essentially equivalent to the

Barrodale and Roberts' algorithm, Abdelmalek's comment that the methods are com-

parable in terms of both speed and number of iterations is not surprising.  A set of

comprehensive tests performed by the National Bureau of Standards   [9]   on four Lx

norm codes clearly demonstrates this fact.  The only differences between the two algo-

rithms involve the choice of an initial basis and the heuristic rules for breaking ties.   Of

course, there are an infinite number of ways any linear programming "algorithm" can

be implemented-e.g., full tableau, revised simplex with product form or explicit in-

verse, multiple pricing, etc.  The unique thing about the Barrodale and Roberts' algo-

rithm is the ability to combine several standard iterations into one.

It does appear that the simplex algorithm of linear programming is the most effi-

cient method to solve the linear discrete Lx norm problem.  A superior nonsimplex

based algorithm would amount to finding a better way to solve a linear programming

problem.  This topic has been studied for many years, and the iterative technique of

passing from extreme point to extreme point common to virtually all linear program-

ming codes remains the most efficient.

Current research on solving the linear discrete Lx norm problem seems to involve

extensions of the Barrodale and Roberts' algorithm.  McCormick and Sposito [12] dem-

onstrate how the L2 norm estimate can be utilized to accelerate the convergence of the

Barrodale and Roberts' algorithm.  Armstrong and Hultz [4] extend the algorithm to

handle additional linear constraints on the parameters.   Finally, Armstrong and Frome

[3] demonstrate how a network structure can be utilized when obtaining Lx norm

estimates for two-way tables.
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