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Analysis of Optimal Finite-Element Meshes in Rl
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Dedicated to Professor H. GOERTLER on his seventieth birthday

Abstract.   A theory of a posteriori estimates for the finite-element method was de-

veloped earlier by the authors.     Based on this theory, for a two-point boundary

value problem the existence of a unique optimal mesh distribution is proved and its

properties analyzed.  This mesh is characterized in terms of certain, easily comput-

able local error indicators which in turn allow for a simple adaptive construction of

the mesh and also permit the computation of a very effective a posteriori error

bound.  While the error estimates are asymptotic in nature, numerical experiments

show the results to be excellent already for 10% accuracy.   The approaches are not

restricted to the model problem considered here only for clarity; in fact, they allow

for rather straightforward extensions to more general problems in one dimension, as

well as to higher-order elements.

1.  Introduction.  For the numerical solution of boundary value problems by

finite-element techniques, the construction of optimal, or near-optimal meshes is of

considerable practical importance.  The same can be said when finite-difference or

collocation methods are used.  Many articles in the literature deal with questions that

bear a relation to this problem, yet, as observed in [15], even for two-point boundary

value problems relatively few address it directly. We shall not attempt to survey this

literature.

There are various analyses of the approximation error of a given function by

piecewise polynomials with a fixed number of pieces of fixed order (see, e.g., [7], [8],

[10], [12], [21] and the references cited there).   In principle, such studies may re-

late to the finite-element method since that method leads to optimal approximations

under the energy norm.  The mentioned error estimates involve higher derivatives of

the given function.  With these results as a basis, a number of authors developed

methods for the construction of optimal meshes for collocation and finite-difference

methods ([11], [13], [14], [17], [22], [23]).  For this the needed information about

the derivatives of the solution is obtained from the approximate solution, for instance,

by means of difference formulas.  This procedure can be theoretically justified in the

case of regular meshes (see, e.g., [20]).   However, when there are abrupt changes in

the mesh-as they arise with refinement techniques-then "internal boundary layers"
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appear in the error function (see, e.g., [2], [6]); and hence, the difference formulas

caese to approximate well the desired derivatives.

Various results on optimizing finite-element meshes have appeared in the

engineering literature. Without entering into any details, we mention, for instance, the

articles [9], [18], [19], [25], [26] and [27].

In recent years, for initial value problems for ordinary differential equations,

very effective procedures have been designed and analyzed for adapting the stepsizes

and the order of the numerical methods (see, e.g., the survey [15]).  The principal

tool is the availability of an error analysis with a local, a posteriori character.  These

estimates are asymptotic in nature; yet practical experience has proved their reliability

for reasonable tolerances.

In this paper we use a new approach to the construction of optimal finite-ele-

ment meshes.   It is based on a theory of a posteriori estimates for the finite-element

method developed in [3], [4] (see also [5]).  As in the case of the initial value prob-

lems, the estimates are asymptotic in character.  More specifically, higher-order terms

in the maximal meshsize h are neglected; that is, asymptotic expressions of the form

1 + o(l) as h —► 0 are considered to be approximately equal to one.  At the same

time, all constant factors of these (1 + o(l))-terms can be evaluated computationally.

For clarity of presentation, we restrict the discussion to a simple two-point

boundary value problem involving a linear, selfadjoint operator of second order.  More-

over, for simplicity, we employ only piecewise linear elements.  The approaches allow

for rather straightforward extensions to a variety of more general problems in one

dimension, and there are no essential limitations to the use of higher-order elements.

In fact, analogous techniques even permit consideration of elements of different order

in different parts of the mesh.

Continuous mesh distribution functions are used to prove the existence of a

unique, optimal mesh distribution and to analyze its properties.  In particular, it is

shown that the value of the optimal error is rather stable under perturbations of the

optimal mesh.  Hence, it is indeed unnecessary to compute this mesh with excessive

accuracy.  The optimal mesh is characterized in terms of certain easily computable

local error indicators.  This allows for a simple adaptive method to construct that mesh

(see [4] ) and, at the same time, to compute very effective a posteriori error bounds.

Although, as mentioned, the error estimates have only asymptotic character, numerical

experience shows that, as in the case of initial value problems, the results are excellent

already for accuracies of the order of ten percent.

2. Notation. Let / = l(a, ß), a < ß, be the open interval {x eR1; a <x < ß}

and / = I(a, ß) its closure.   As usual, H°(I) denotes the space of square-integrable

functions on / and C°(I) C H°(I) the subspace of continuous functions on /.   The

norms on H°(I) and C°(I) will be written as ^||« ||0 and /||> ||c, respectively.

Define E(I) as the space of real, infinitely differentiable functions on / for which

all derivatives have continuous extensions on /.   Moreover, let Q(I) C E(/) be the sub-

space of all functions with compact support in /.  For any integer k > 1, the spaces
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Hk(I) and Ck(I) are the completions of E(I) under the norms

2

(2.1)

and

(2.2)

/ll«llí = £
1=0 /I

d'u

/»«lie.»

fc

i=0/

dxl

d'u

dx'

respectively.   Analogously, the completions of Q(I) under these two norms are the

spaces Hk(I) and Ck(I).

Let a, b G C°(/) be given such that a(x) >a>0, b(x) >0, VxG/.   Then

E(I) and E0(I) shall be the spaces Hl(I) and Hq(I), respectively, with their norm re-

placed by

(2-3) jWuWl =   [¡(au'2 + bu2) dbe] ,      (V = g j.

If /j = 0 on /, then (2.3) is only a seminorm on E(I).  On the other hand, on E0(I),

(2.3) is always a norm which, moreover, is equivalent to /||-1|..  Obviously, EQ(I) is a

Hilbert space and for b ^ 0 the same is true for E(I).  We denote the inner product

in either space by ,(• , • )E.  For /b = 0 on /, E(I) is a Hilbert space modulo the con-

stant functions.

On 7 = I(ct, ß) we consider partitions

A(7): a = x% < xf <(2.4)

and introduce the notations

- r/"v¿/,.(A) = /(,*.,**)

(2.5) A/(A)
A A

=   V.       —   V.

<*™-i<*m=f3.      m = '«(A)>l,

/= 1,2, . . . ,m,

*/--

h(A) =    max     A, (A),      A (A)
/=l,...,m

min     A,-(A).
;'=1.m    '

AU partitions A which for fixed X > 0, k > 1 satisfy

(2.6) A(A)>XA(A)K

are said to be (X, K)-regular.

For given A = A(I), we denote by S(I, A) C ^(7) and S0(I, A) C /Y0(7) the sub-

spaces of all functions for which the restriction to any /-(A), / = 1, . . . , m, is linear.

Analogously, ¿*(7, A) C /^(T) and 7* (7, A) C 77¿(7), k>0, shall consist of the func-

tions for which the restrictions to I ¡(A), j — 1, . . . , m, belong to C*(7;).

For later use we note the following well-known lemma (see, e.g., [24]):

Lemma 2.1.   For given I = I(a, ß), a < ß, and A = A(I) there exists a positive

constant K such that

(2.7)
inf

wesn(/,A
/H« - w\\E < ATACA),!!«!!,   Vm g h2(I) n //¿(Z).
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3.   A Boundary Value Problem.

3.1. Basic Formulation.  As mentioned in the introduction, we restrict the dis-

cussion to a simple model problem.  For ease of notation, the unit interval 7 = 7(0, 1)

is used from now on throughout the remainder of the paper.  On 7 we consider the

equation

(3.1) L[u] = - -f a(x) j- + b(x)u = f(x),      x G 7(0, 1),
dx dx

together with the boundary conditions

(3.2) «(0) = «(1) = 0.

We assume that a G C2(7), b, /G C\l), and, as before, that a(x) > a > 0, b(x) > 0,

V*G7.

The weak solution of the problem is the unique u0 G 7í0(7) with

(3.3) /K, v)E = Ff(")    Vv G EQ(I),

where

(3.4) Ffiv) = J fv dx.

Note that under our differentiability assumptions about a, b, f the solution u0 of

(3.3) belongs to C3(7) and also satisfies (3.1/2).

With the partition A and the space 50(7, A) C 77¿(7) specified as in Section 2,

we consider the finite-element solution uA G S0(I, A) defined by

(3.5) ¡(uA, v)E = Ff(v)    V v G 50(7, A).

Since u0 G H2(I) n H¿(I), it then follows from Lemma 2.1 that

(3.6) I\\uA-uJE<Kh(A)I\\u0\\2.

3.2. A Posteriori Error Analysis.   We consider the residual r = L(uA) -/on

the intervals 7;-, that is,

(3.7) rf(x) = (L(uA) - f)(x)    V* G 7;., / = 1, . . . , m.

Let Zj G EQ(Ij) he the solutions of

(3.8) fo, v)E = Fr,(v)     Vu G E0(I¡), f . 1, . . . , m,

and set

m

(3.9) Z(A)2 = £ Ml

The following result was proved in [3] :

Theorem 3.1.    77ie error e = uA - u0 satisfies

(3.10) jUelll = Z(A)2(1 + 0(h(A)))   as h(A) ->0,

where the constant in the bound of the O-term depends on a and b but not on fand A.
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We analyze the quantity Z(A) of (3.9) in some more detail.  Because uA is

linear on any 7-, we may write

(3.11) r, = L(uA) -f=- a'u'A +buA-f= p. + Tj,

where

(3-12) p.(x) = a(x)u'¿(x),      Tj(x) = -a'(x)e'(x)+b(x)e(x)    \/xGIr

Let ft, i//- G E0(Ij) be such that

(a) I(fii,v)E=F   (v)     \/vGE0(I),

(3.13) ' '
(b) Ij(i,j,v)E=FTj(v)    VuGTJ^.)

and, therefore, z, = ¡p. + \p-.

The smallest eigenvalue of the differential operator L on 7, with zero boundary

conditions is bounded below by the smallest eigenvalue a rr2/A2 of the operator

ad2/dx2 onIr   Hence.it follows from (3.13(b)) that jJI^H,, < Cñj j fir}\\0', andi2/dx2

therefore,

(3.14) iMj\\¿E=FT.Wj)<Ij\\Tf\\0 IíW,\\o<Ch]IjWr$).

Here as in subsequent estimates C denotes a generic constant which has different

values in each instance but is independent of the other essential variables in the same

expression.  Now note that

(3.15) M2 = f (-a'e' + be)2 dx<cf  [(aV)2 + (be)2] dx<C Ml,
i, ij i

which together with (3.14) gives

(3.16) ifHjh<ChfIjM\E-

We introduce the quantities

1     I"  m I1/2

^-.¡-cfë*"*]
and

(3.17) (2(A)2 = £ 7.llalli.

From Theorem 3.1 we obtain—with some |a| < 1 —
m

,1kl!2   = Z2(A)(1 + 0(A)) = £ jiip + fy, ip + iP)E(l + 0(h))
/=-  '

(3.18) = [Q(A)2 + 2aQ(A)j\\e\\ER(A) + /||e|[|.Ä(A)2] (1 + 0(A))

= (Q(A) + ai\\e\\ER(A))2(l + 0(h)) + (1 - a^Wef^A)2^ + 0(h)).

But by (3.16) we have R(A) = 0(h); and thus

(3.19) .Hell2 = (ß(A) + a/||e||£JR(A))2(l + 0(h)),
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which in turn implies that

(3.20) Me = ß(A)(l + 0(h)).

Therefore, in view of (3.10), we have proved the following result:

Theorem 3.2.   Let Z(A) and Q(A) be defined by (3.9) and (3.19), respectively.

Then

(3.21) (2(A)2 = Z(A)2(1 + 0(h))   as h(A) — 0,

where the constant in the bound of the O-term depends on a and b but not on fand A.

While approximations of Z(A) can be computed and 0(A) is not readily accessible,

the quantity Q is better suited than Z for our theoretical studies of optimal partitions A.

4.   Optimal Partitions—Part I.   In this section we restrict ourselves to the case

when Uq #0on 7.   This condition will be removed in Section 5.

4.1. Representations of Q(A).  Recall that under our assumptions about a, b, f

we have u0 G C3(7) and, hence, p = au'¡, G Cl(I).

Lemma 4.1.   Suppose that u'^x)^ 0 for all x G 7 and set *._. ¡2 =

(*/ + Xj_ ,)/2, af_. /2 = a(Xj_. /2), pf = p(%¡), where |p(?;.)| = max{|p(x)|, x G I.}.

Then

,   f m       p.2       "1 _ _
(4.1) 0(A)2 = rV    Z T"2" hf    (1 + 0(A(A)))     as h(A) -+ 0,

vvAere the constant in the bound of the O-term depends on a, b and ¡\\f\\c x-

Proof.   Set

(4.2) (¡¡(x) = p(x)-pj    y* €If,f - 1,.. . , m,

and define i¿>.   -, ip2 • G E0(L) as the solutions of

IfdPl ,i> u)-? = ^p/f)     V w G £-„(7^

(4.3)
/= 1.OT,

respectively.  Then we have yj- = <p.. + <¿>2-.

By assumption there exists a constant p0 > 0 such that |p(x)| > p0 for all * G 7

and, hence, that for all sufficiently small A

IP/I
(4.4) lOjWKC- A,.     V*G/..

Note also- that for all j. G 7

(4.5) £/ = min{a(x); x G 7;} = aj_1/J(l + 0(h¡))     as fy —*■ 0.

Since for any v G EQ(L)

j. II u||| -1" £ a(x)i/(;<)2 ».xi (1 + 0(A2))     as h} -+ 0,
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it follows from (4.3) and (4.5) that

/,.K/in = r sup -¿-if-o,)ij;

$1 Sir   A2I(<>
~ a~\      SUP       1 \\    v dx \ /      (u

*. L^0(/;.) (|J//   '/ >h

= %-lfi(v')2dx~\(l+0(hj)),

(1 + 0(A;.))

where iTg E0(I) is the solution of -v" = 1,  TT(jc-_ j) = uYx.-) = 0.  This implies that

i n
(4.6) 7/H*>i,/III = 7¿ ¿7— &/30 + Oih;))    as A;. — 0, / = 1, . . . , m.

In order to estimate \p2 ■ we proceed as in the proof of (3.14). The smallest

eigenvalue of the operator L on 7- is bounded below by a -rr2/A2.  Hence, by (4.3) it

follows that

(4.7) rfViA-f'MJXiMjh Mo <-L2-/,.H«/ll0.
' III nf,        I

which together with (4.4) implies that

C     "Pi
(4.8) ,^,11' <^5 ~^hfO + 0(A,.))    as A, — 0, / = 1,..

Combining this with (4.6), we obtain-with some |a| < 1-

1^1= /Ji^./iil + ̂ iA/,iftA+//i#»/«

(4-9) 1  tf   ,
A?(l +0(A;.))     asA/->0, 7= l,...,m.

m.

12«,.,
/2

By definition (3.17) of 0(A) this proves the lemma.

A partition A shall be a (£, /?i)-partition if A is a refinement of a fixed partition

A* and

(4.10) &xj)=¡/m,     ; = 0, 1,..., m,

for some function %, independent of m, with

(4.11) % G 7>2(7, A*),\'(x) >8>0\/xei*,j=l,...,m, ?(0) = 0, |(1) = 1.

For example, for given A*, a class of (£, w)-partitions is defined by the piecewise

linear function | G 5(7, A*)

(4.12) ^) = ,-^+-J-(x-xj_x)   V*6Çf/«l,...,m».
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For a (£, m)-partition we have

(4.13) ¿ = / ?'(0 * = */$'(*/-1/2)(1 + (Kh,))   as ft, -> 0,
/

where the constant in the bound of the O-term depends on £ but not on m.

In terms of (£, ^-partitions our Lemma 4.1 can be rewritten as follows:

Theorem 4.2.   For the (£, m)-partition A we have

(4,4) «-*-¿[£^'¿*]a+«*w» .m~o.

where the constant in the bound of the O-term depends on a, b, fand £ but not on m.

Because p G C'(7) and l/£* G 7>1(7, A), the proof follows directly from the fact

that the expression for ß(A)2 in Lemma 4.1 is a Riemann sum of (4.14).

By combining Theorems 3.1, 3.2, and 4.2 we obtain the following result:

Theorem 4.3.   For the (£, m)-partition A the error satisfies

dx\
«"***-!£[/-($)■&

(1 + 0(A(A)))   as A(A) -+ 0,

where the constant in the bound of the O-term depends on a, b, f and \ but not on m.

4.2.  Optimal Partitions.  The error formula of Theorem 4.3 suggests that we

consider minimizing the variational integral

(4.16a) m = S>rm^dx
Jo \Hx)J  a(x)

subject to the boundary conditions

(1.16b) 1(0) = 0,   |(1) =1.

The Euler equation is directly solvable and the functions

(4.17) t(x,7) = yf    ~yn       àt,      xei,cm"3"-
form a field of extremals in 0 < jc, 7 < 1.  A standard application of the E-function

test (see, e.g., [1]) then proves the following result:

Theorem 4.4.   For all functions (4.10) we have

(4-18) J(?)>J(?o)=1^o.

where £0 = £(• . To) w^

Moreover, equality holds in (4.18) exactly when £ = ¿|0.

Note that the function £0 belongs to the class of functions (4.11); in fact, we

have £„ G C2(7) and £0(j») > 5 > 0 for x G 7. because |p(x)| > p0 in that interval.

For the partition AQ given by £0 we obtain from Theorems 4.3 and 4.4 the following

error formula:
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Theorem 4.5.   The (£0, mypartition A0 is asymptotically optimal with

(4.20) 7||e||| m -r-ir-3 (1 + 0(h (A0)))    as h (A) — 0,
12m270'

where the constant in the bound of the O-term depends on £0 but not on m.

By "asymptotic optimality" we mean here that for any other (£, r?i)-partition with

sufficiently small h the error is larger than (4.20).

For any (£, m)-partition A set

(4.21) *,(*, m)2 = -L /  f
12/72        If

2     1

dt,      /= 1, . . . ,m.
a(t)*'(')_

These #■ are related to the functions <¿>- of (3.13) by

(4.22) /.llalli - »ß, m)2(l + Oí*/))   as h, -»• 0, / = 1, • • • , m.

This follows directly from the fact that the expression (4.9) for the norms of y, is—up

to a factor (1 + 0(A))-a Riemann sum of (4.22).

For the optimal partition AQ we have

(4,3, **-U« J
=-rrf   .o(0dí= -~-r,      j=\,...,m.

I2m2yy^ 12/«3703

In other words, for £0 all #. are exactly equal and—by (4.22)—all /.II^.H^ are asymp-

totically equal.

Since the i9• are not readily computable, we turn now to the quantities

(4.24) ^,m) = Ij\\Zj\\E,     /=!,. m.

which can be calculated.   For the optimal partition A0 we obtain from (3.16), (4.13)

and Theorem 4.5 that

(4 25)       /.II*/"! "-TI i1 + O(A(A0)))(O(A(A0)))  as A(A0) — 0,

where the constant in the O-term depends on a, b, f and £0 but not on m.  Thus, it

follows from (4.22), (4.23) and (4.25) that

M,(£o> m? = iM + *,ll| = —-7-7(1 + 0(h))
1 12m 7„To

— (1 + 0(h))0(h1>2)
y/llm^y*'2 y/Urn^y*'2

(1 + o(h))o(h) = —i— (i + oCh1'2)).+:t-t7(1 + w)w =—%
12w370 12w373

We summarize this in the following form:
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Theorem 4.6.   For the optimal partition A0 we have

(4.26)      i-vtto. ™)2 = rrrr ^ + o(h(\)112)) <* ä(a0) -+ o,
12a?i-'70*

vvAere the constant in the bound of the O-term depends on |0 but not on m.

Thus, we see that also the quantities p.(£0, m) are asymptotically equal.

From (4.13) we find for the steps A- of the optimal partition A0 that

asm —► °°

and, hence, that A(AQ)/A(A0) > X0 > 0 with a constant X0 that does not depend on

m but only on the problem and p0. In other words, the optimal partition is (X0, 1)-

regular.

Conversely, it turns out that asymptotically the optimal partition AQ is character-

ized by the asymptotic equality of the /_•.  This is the content of the following theorem:

Theorem 4.7.   For the partition A suppose that

(4.28) ifEtimg = /-(!+ 0(h1'2))   as h(A) -- 0, / = 1.m,

where p does not depend on j.   Then

(4.29) j\\e(A)\\E = j\\e(A0)\\E(l + 0(hl>2))   as h(A) — 0, / - 1,. . . , m,

and

(4.30) \xf -xj"°\ = 0(h l>2)   as ft(A) -+ 0, / = 1,.. ., m.

Proof.  We show first that A is (X, l)-regular.   For ease of notation let

1/2

j = 1, . . . ,m.*>~[»û;] ■

For any/ = I, . . . , m, we have by (4.9), with some |a| < 1,

/,I*/Hl */,»*>,+tf/«l
(4J1) = rj/A/O + 0(h)) + 2aVjhfl2I.Uj\\E(l + 0(h)) + j.UjWl.

Let now h,Q = h.  Then (3.16) and (3.6) show that

/. W,Jh«£ t, He|liî<CA2
<o     ° >o

or

(4.32) j.  HV/nll£=A3/20(/.1/2)    asA~>0.
'o

Hence, we obtain from (4.31) and (4.28) that

M2(l + 0(h1'2)) = T?2oÄ3(l + 0(A)) + Ä30(Ä1/2) + Ä30(Ä)

or

(4.33) p2 = nj0h3(l + 0(h 1 /2))   as h -»■ 0.
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Now let h¡   — A.   Then we have instead of (4.32)

iiiWjxllE = hh1/20(h1'2);

and hence, by (4.31), (4.28), and (4.33)

t??oÄ3(1+ 0(hll2))= Tj2 A3(l + 0(h)) + 2aT};-  hsl2hl'20(hll2)

(4.34)
+ A2AO(A).

In other words, z2 = h/h satisfies the polynomial equation

(4.35) t?2o(1 + 0(hll2))z6 + 0(A>4 + 0(hll2)z - if{\ + 0(h)) = 0.

By comparing (4.35) with the equation

(4.36) tj/o(l + 0(hll2))z6 - t^(l + 0(h)) = 0,

Rouche's theorem shows that for sufficiently small A we have

(4.37) W<2(t?/.i/t?/o)1/3.

This shows that A is indeed (X, l)-regular.

Our assumption about a and p ensure that for any fixed /,   1 </ < m,

m

Z vfh^cvl
r'=l

We represent A by the piecewise linear function % of (4.12).  Then from Theorems

3.1, 3.2, and Lemma 4.1 it follows that

(4.38) Me = ["£ vjhf\ (1 + 0(h)) < Ctj/A2,

and hence, by {3.16) that

(4.39) /.llalli < Ch2 jJMll < Ct>2A?À2 < Ct?2A3Ä,

where in the last inequality the regularity of A was used.  Therefore, we have /.||i//illjff

= rifhf^OCh112), whence by (4.31) '

j.WZjWl = vfhf[(l + 0(h)) + 0(hxl2) + 0(h)] = tj2A3(1 + 0(h1'2));

that is, by (4.28)

(4.40) p2=Vfhf(l +0(h1'2)).

Since

[12*> ' "3ft<'[¿7]' V[(,,&'*](1 + °m "*~°'

(4.40) implies that

(4.41) /,{*F|1/3 * = (12^1/3(1 +0(*1/2))'
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which by (4.19) shows that

(4.42) -1 = f1 feíí]1/3 dt = m(\2p2yl\\ + 0(h1'2)).
To     Jola(t)j

By (4.38) and (4.40) we obtain now j\\e\\2E = mp2(l + 0(A1/2)), which by (4.42) and

Theorem 4.5 gives (4.29).   Finally, from (4.41) it follows by summation over the first

/ intervals that

Jo     L^'ll m,o
On the other hand, we obtain from (4.23)

r'''fe]"!4=l(lt0(i,„»
J o   L a(oJ my0

Thus, we have

|J -„L«(oJ

which implies (4.30).

4.3.   Computational Aspects.   Suppose that the optimal partition function £0 is

changed to some partition function % = £0 + e satisfying (4.11).  By (4.13) the de-

rivatives control the stepsizes; and hence, we assume that /||e'||c is small. For any given

m, let jIMIg and ^11 *?0ll^- be the errors associated with the (£, m)-partition and (£0, m)-

partition, respectively.  Then by Theorem 4.3 and (4.16a) we have

l/lklll -/lk0ll| I = 0(\¡m2)\J(%) -J(%Q)\    as m — -.

Since the variational integral / is stationary at £0, we have J'(%0) = 0; and hence, it

follows from the mean-value theorem that |/(£) -J(%0)\ = 0(7||e'||2).  Therefore, be-

cause (4.15) implies that

Me + Mh ~ 0(l/m)   asm->»

we obtain

\iME - i\\e0\\E\ = (KUmWjWe'Wl)   as j^% -* 0, m -»> ~.

In other words, á change of %'Q by some small 7||e'||c leads to a change of the error

proportional to ylle'll2.  This shows that the value of the optimal error is rather stable

under perturbations of the optimal partition.  On the other hand, the optimal partition

itself is not too stable and, hence, needs to be computed only with relatively low

accuracy.

By Theorem 4.7 the optimal partition is characterized by the asymptotic equality

of the quantities p. = p.(£0, m) of (4.24).   Let r, again denote the residual r =

L(uA) - f on the subinterval L and set

(4.43) vf = J rf(x)2 dx,      j = 1, . . . , m.
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We call the quantities

v}h2

(4.44) et = naff¡2>     /-I.*,---.».

the error indicators for the intervals 7,, . . . , 7m, and set

m . i/2
(4.45) e(A) =

( Z ,(A)>)
All these quantities are directly computable once the finite-element solution is known.

The next theorem shows that e(A) is asymptotically equal to the error ¡\\e\\E.

Theorem 4.8. (a) For any partition A we have

(4.46a) /||e||| = e(A)2(l + 0(h))   as h(A) -»■ 0.

(b) If Ais (X, Kyregular, 1 < k < 2, then

(4.46b) vf = -pfhj(\ + O(P))   4JÄ(A)^0,/=l,...,m,

where e = 1 — rr/2.

Proof, (a) The definition of pj- given in Lemma 4.1 provides that

1-0/1 = max |p;.(jc)| > p0 > 0,
*€/,

and by (4.4), and (3.15) we have

\°/<d\<C±pJkf,     j.UTjW^Cj.UeUE.

Hence, by (3.11) and (4.2) we obtain with some |a.|< 1, /' = 1,2,3, that

vf = f (p) + oy(x) + Tj{x))2 dx
'/

(4.47) = -2hj + J_ -pfhjoih,) + . |r/l5
Po '

+ 2a, i p/ft,^ + 2a2p;.A//2 ^.tyl, + 2a3 ^ p,.A3/2 ̂ ftt^.

With

pfhf-j III       /-*.-   I*: rrt

i¿/=l "7-1/2 7=1    '

it then follows that

e(A)2 = 5(A)2 + \ S(A)20(h2) + T(A)20(h2)
Po

+ 2 -15(A)20(A ) + 2a2S(A) 7YA)0(Ä) + 2a35(A)7tA)0(Ä2).
"o

This proves (4.46a) since by Lemma 4.1 and Theorems 3.1 and 3.2

m

5(A)2 = 7||e|||(l + 0(A)),      7YA)2 < C ¿ /.Nil - C7|M||.
7=1   '
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(b) For (X, K)-regular A with 1 < k < 2 we have by (3.6)

I.\\Tj\\0<CI.\\e\\E<Ch<Chjl2he.

Hence, (4.47) implies that

vf = pfhh +\ 0(h2) + ^OQi2*) + i-O(Ä) + J-O(P) + \0(h2'2Í
Po Po P° po Po j

which is-(4.46b).

It may be noted that in [3] we proved an upper bound for j\\e\\E of the form

(4.46a) with 1/12 in (4.44) replaced by the larger factor 1/rr2.

Theorem 4.8 states that

Me
(4.48) 0(A) =±—f = 1 + 0(A(A))    as A (A) -+ 0.

e(A)

In other words, the effectivity quotient 0 tends to one with A —► 0.    In contrast, the

corresponding estimates in [3] only provided for Ö2 < 12/rr2.

We expect the error indicators to be asymptotically equal to the quantities p. of

(4.24). Theorem 4.9 below shows that this is indeed correct for regular partitions. Hence,

our aim is to construct such partitions for which all e- are asymptotically equal. It turns

out that—as before—these partitions are automatically regular.

Theorem 4.9. (a) Let A be a (X, n)-regular partition with 1 < k < 2.  Then

(4-49) ||2.||| = e2(1 + 0(he))   as h(A) — 0,

with e = 1 - k/2.

(b) All partitions A for which

(4.50) e. = ^(l + 0(i))    as /7(A) -+ 0, /«l.M,

with p independent of j, are (X, \)-regular.

Proof,   (a) As in the case of (4.39), it follows from (3.16) and the assumed

regularity of A that /.||i/'/||| < Cr¡fh2 < Crfhfh2e and, thus, ¡ ||fy||Ä =

Vfhf^OCh6) as Ä(A)y—► 0.  Now (4.31) shows that '

..ll^ll2 = tj/A/O + 0(A)) + 2aV2hfO(he) (1 + 0(h)) + Vf hfO(h2e)

= vfhf(l + O(P)).
Since by Theorem 4.8(b)

(4.51) r,2A3 = i-^-=e2(l+0(A£)),
-   '       i¿aj_x/2

this proves (4.49).

(b) Because, generally, /.||t/.||£ <C j,\\e\\E < Ch, it follows from (4.47) that

vf = p/A^l + 0(A;)) + 0(h3>2),

wheçce

p2(l + o(l)) = ef= nfhf + hfhOCh1'2).
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Now suppose that (4.50) holds for A and that A,   = A; then p2(l + o(l)) =

h3(r¡f   +0(A1/2)).   Similarly, for ft.   = h we obtain

p2(l + o(l)) = t?^ A3 + A2ÄO(Ä1/2)

and, hence, z = A/A satisfies

[r?2)-r-0(/.1/2)]z3=7j2i+0(/T1/2)z.

By comparing this with the polynomial for z in which the last term on the right has

been dropped, it follows by Rouche's theorem that |z| < 2(tj. /t?   )2'3 for sufficiently

small h and, therefore, that A is (X, l)-regular.

Theorems 4.9 and 4.7 confirm that, as expected, our aim should be to construct

partitions for which all e are asymptotically equal.  Then the error of the partition will

be close to the asymptotically optimal error (4.20). A natural approach for this con-

struction is the use of an adaptive mesh refinement algorithm of the form discussed,

for instance, in [4].  We shall not repeat the details.

5.  Optimal Partitions—Part II.   In the previous section we assumed that u'q(x)

¥= 0 for x G 7.   Clearly, this represents a severe restriction.  Actually, the results are

largely valid also when u"0 has zeros in 7, but the proofs become more delicate. We

illustrate the approach for the frequent case when u"Q G C'(7) has finitely many simple

roots in 7, say

(5.1) u;ak) = 0,   u"0\%k) #0,      k - 1,. . . , q, 0 < t, < fe < • • • < I, < 1.

Lemma 5.1.    Under the stated assumptions we have for any (X, K)-regular parti-

tion A with 1 < k < 2,

(5.2) 0(A)2 = i \± ¿^ hf\  (1 + O(AW))   as /7(A) - 0,

where e = 1 - k/2 and the constant in the bound of the O-term depends on a, b and f.

Proof.   Because of (5.1), we may choose c2 > c. > 0,  So>0, such that

(5.3) C2\x-tk\>\f0t)\>ci\x-ik\      V\x-Sk\<60,k=l,...,q.

For any 5 > 0 we introduce the sets

75 = {x G 7| |* - %k |< S for some %k},      I¡ = 7\76 ,

(5.4)
J6 - {/ = 1,...,m;If nIs * 0},     J¡ = {1.m}\ J8.

We assume that 60 < (8»7)_1 and, hence, that

Z   A; < 2(60 + h)q < 480q < I     for h < 60.

/eJ„o

Since rrûn{\p(x)\, x G 7£   } = pQ > 0, the estimate (4.9) of the proof of Lemma

4.1 holds for the subintervals 7;- with / G J| ; that is

iMfE = nfh?(i + 0(h))   as A(A) ->o,/e Jsco.
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Hence, for h < 60 we have

(5.5)      ß(A)2> f   £   vf hf\ (1+0(h)) >Cp2\2h2K    Z   hj>Ch2K.

L'eJ¿o   '     -I **.

Now consider the sets (5.4) with 5 = AK'2 <50. Then (5.3) implies that \p~A>

cxA"'2, / G J|, and, hence, (4.8) modifies to

(5-6)    /.llalli < C Z7T?/A/(1 + 0(h)) < ClfhfW*    as A(A) — 0, / e J£.

On the other hand, we have

\aAx)\ < 2 max I p(x)\ < CÄ"/2,     j G Js ,
• vC TX&Ij

whence by (4.7) and (5.5)

(5.7) 7,11*2,7111 < ChfhK(l + 0(h)) < CQ(A)2h2ehf    as /7(A) -* 0, / € J8.

For ease of notation set

m m

S(A)2 = Z nfhf,     R(A)2 = z /.H*>2 /&.
/=! 7=1    '

Then it follows from (5.6) and (5.7) that

(5.8) M        J
<C[5(A)2 +Q(A)2]A"2e.

In the case of Lemma 4.1 the assumption u'¿ = 0 does not enter into the proof

of (4.6); and thus, we have also in the present case

(5-9) /.11^,,-lïl - tj/A3(1 + 0(h))   as A~(A) -* 0, / = 1, . . . , m,

and, therefore,
m

(5.10) Z 7.H*i /Hi = S(A)2(1 + 0(h))   as h -* 0.
7=1   '

Altogether, with some suitable constants a, /3 G [—1, 1] it follows from (5.8)

and (5.10) that

m .    m \l/2/m „X1/2 .,

0(A)2 =  Z hl*xA + 2a( Z   /,l^l./lli)        ( -S  7,H*2,/ll|) + ̂ (A)2
7=1 ' \/=i   ' '        V/-»l  ' /

= 5(A)2(1 + 0(A)) + aC5(A)(l + 0(A~))(5(A)2 + ß(A)2)1/2Ä£

+ ßC(S(A)2 + Q(A)2)h2e.

After separating the middle term on the right and squaring, we obtain the equation

a2C5(A)2(5(A)2 + 0(A)2)A2£

= Ö(A)4(1 + 0(Ä2e)) -2ß(A)25(A)2(l + 0(h2e)) + 5(A)4(1 + 0(h2e)),
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which has the solutions

0(A)2 = 5(A)2(1 + 0(>72e)) ± [5(A)40(A2e)] »'2    as A(A) ->■ 0,

and, hence, proves (5.2).

Now the theory of Section 4 can be carried over to the present case.  As before,

we consider partition functions %, but here we need to weaken (4.11) by requiring in-

stead of %'(x) > 5 > 0 on each 7;. that {■'(-«) and p(x)/%'(x) are Hb'lderian functions on

I.   Moreover, we assume that for given £ and m —► °° the resulting (£, m)-partitions

are (X, x)-regular with 1 < k < 2.

Then as in the case of Theorem 4.2 it follows that

(5.11) ß(A)- = _L_ ¡c1 (m2 J.
*  '       12m2lhV(x))   a(>

dx
x)

(1 +o(h))   as A (A)—>0,

where the constant in the bound of the O-term depends on a, b, f and % but not on

m.  This suggests again consideration of the variational problems (4.16a/b) and, hence,

of the optimal partition function £0 of Theorem 4.4.  Clearly,

Pix) 1 t w 1/3
zrr:=zr(.p(.x)a(x)yi3
?oW     'o

and £0 (x) are Hölderian functions on I.

We show first that the (£0, m)-partitions are (X, 5/3)-regular.  Since

(5.12) \p(x)\>Cmm /1, min | x - £fc|l    Vac G 7,

with some C> 0, it follows that

C.A, > f  ï0(x) dx =±>C2 f p(x)2'3 dx > C3hf'\
1i ll

where again C3 > 0.  This implies that A < Cm-3'5 as well as 1/w < CA; and hence,

the partition is indeed (X, 5/3)-regular.  Now Theorem 4.5 is easily shown to hold with

O(A) replaced by 0(A^6) because by using (5.5) we need to sum (5.2) only over J£

and integrate (5.11) only over Ich, 6 = A"'2.

For any 7;- which intersects Ich with 6 = A 5 /6 we can use (5.6) in the estimates

leading to Theorem 4.6 to obtain

(5.13) IL(£0, m)2 = —L-r- (1 + 0(A1/6))    as Ä -> 0, / G J6C, S = h5'6.
\2m3y^

In other words, for the optimal partition the p. are asymptotically equal for all inter-

vals which are not too close to a root of u"0 . As the numerical examples of Section 6

show, the p.(£0, m) for the intervals close to roots are generally larger; and the ratio

of the largest to the smallest of these values does not tend to one for m —* °°.

The analog of Theorem 4.7 is somewhat more complicated. We formulate it as

the following theorem.

Theorem 5.2. For the partition A suppose that

(5.14) i.\\z,(mE = KO + 0(h e))    as A (A) -♦ 0, / * 1.m,



452 I. BABUSKA AND W. C. RHEINBOLDT

where p does not depend on j and e = 1/12.   Then A is (X, 5¡3)-regular and

(5.15) M^We < /H<A0)||F(1 + 0(he))   as /7(A) -+ 0.

7>oo/.   (1) We show first that

(5.16) Iftofh>Chff2,      /= I,...,/«,

with some C> 0 which depends only on p.  From (3.13) it follows that

!1        f——-   I   p(x)t<x).»-<

Clearly, for given 7, 5 the function

»/(*) - (jTA, + ¿rSA?) (x - x,_.) -±7(* - */_,)2 -|S(X - ^-j)3   V* €//

belongs to E0(I) and a short calculation shows that

C.a^A? < J t/(x)2 cfx < C2afhf,      f  v(x)2 dx < C3afhf,

where a.. = (v* + (Sh.Y-V* and all constants are positive.  Hence, also » llu.-lli <

VuGF0(/,)

Cafhf.  Now with

we obtain

ere a¡ = (72 + (6 A-)2-)1/2 and all constants are positive.  Hence, also /.llalli

Now with

T = p(Vi)>   8 = P'(*,_.),   Pix) = -vj(x) + 'p¡(x)   vxeif,

\pf(x)\ = o(Ay)   as hf -* 0,

f eixMx) dx > £ V'(X)2 dx - (¡g p/W2 dx) 1/2( / üW2 dx) 1/2,

whence-for sufficiently small h—

(5.17) 7.||^ > C-±j-2 [afhf-o^hf2^2] >Cafhf^l - ±o(h^.

By assumption we have

(5.18) w'0(x)2 + u"0\x)2 > C> 0   \/x G7;

and hence, also, with some C> 0

a2 = 72 + (5A,)2 > hf(p(xj_x)2 + p'(xf_x)2) > Ch) > 0,

which together with (5.17) proves (5.16).

(2) Next we show that for sufficiently small A-

(5.19) Me > i\\e\\E > Chf'2,      00.

Obviously, we have

j lk||| > inf /  a(x)[u'0(x) - v'(x)]2 dx,
i v  J ii

where the infimum is taken over all linear functions on 7 . Thus, v'(x) is constant; and
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it follows that

j.lHl > C ft   u'0(x)2 dx - J^£ u0(x)dx) H .

Since

«'„CO = «'0(^7-1) + «4(*/-iX* - */-.) + >*©"fy-i>C* - */)2

+ o(A?)   asA/-*0,

a simple calculation shows that

I.\\e\\2E>C[ul(xj_x)2hf +um0(Xj_x)2hf] -o(l)hf.

Using (5.18), we then obtain (5.19) for sufficiently small A-.

(3) Now we can show that A is a (X, 5/3)-regular partition.  By Theorem 3.1

and (5.14) it follows that

(5.20) /Iklll = mp2(l +(A1/12)),

and, thus, by (5.19) that

(5.21) /T^O^V'5-

On the other hand, we have by (5.9), (4.7) and (3.16)

0(1 + oCh1'12)) = j.w^j + ip2J + ^\\E

(5-22) < C[Vfhf'2 + hf I2 + A, i ME] <C[hf'2+m'l2pA,.].

Let A;.   = A and note that m<l/h, then p < C(A3'2 + A1/2p); and hence, for

sufficiently small A,

(5.23) A > Cp2'3.

On the other hand, (5.16) and (3.16) give

p(i + och1'12)) > Ifi*f + *¡h > 7.11*7"/- - ijWflB> c(-hf'2 - ** *íMe)'

and therefore, by (5.21) and (5.23), for hf   = h,

(5.24) p>C[h5l2-hmll2p] >C[hsl2-hp2'3].

If the term on the right is positive then, with some positive constant (independent of

A), z = A1'2 must satisfy z5 - p?'3z2 = Cp.  By Cauchy's rule this implies that

h1'2 < max((2 Cp)1/5, (2p2'3)1'3) < Cp1'5,

since by (5.23) we have p < 1 for sufficiently small A.   On the other hand, if the

term on the right of (5.24) is nonpositive, then we have immediately A <p4'9 <p2'5.

Thus with (5.23) this gives indeed A~s/3 < CA.

(4) For the proof of (5.15) let now 8 = he.  By (5.12) we have a > Cd for

j G J|  and, hence,

I*.<-{?)*   ./-j;
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Thus, from Lemma 5.1 and Theorems 3.1, 3.2 it follows that

(5.25) I\\e\\2E<C-2r}fh2    V/Gj¿,

and, therefore, (3.16) gives

(5.26) MWe < Cj A,.A~< c| hf'2h2e < Cn¡hfl2he,     j G J¡,

respectively.   Note that in the second inequality the (X, 5/3)-regularity of A was used.

Together with (5.6) and (5.9), (5.26) leads to

tpfa = 7,11*1,7 + *2,7 + */HÎ = »?/A/(l + 0(h2*)),    j G Jf,

and, therefore, by (5.14) to

(5-27) p2=T?2A3(l+0(Äe)),      /ej|.

Hence, analogous to (4.41), we have

(5.28) J
Pit)2

a(t)
3 dt = (12p2yi3(l+0(h*)),     ;6J6C.

Let mx and m2 denote the cardinalities of J§ and J5 , respectively, that is, m =

mx + m2.  We want to show that

(5.29) m2/mx =0(S) = 0(Ae).

For this note first that because of 77. ̂  Co for 7 G Jg we have by (5.22)

(5.30) ß < C(5 7,3/2 + hs 17 + h¡m 1 /2M))      ;- e j61

and, thus,

(5.31) A^Cminiip/S)2/3,^-1/2^2/5),      7 G J6.

Suppose first that

hJ.>C(p/8)2'3, /ej5;

§5/3
(5.32) m2 < 8 ( min Ay)      < C °-— ,     /eJ6.

V/ej5   7 P2/3

Because of tj,- > Cb for 7 G J£, it follows from (5.27) that hj < C(p/6)2/3, 7 G Jf ,

and, hence,

mi > (1 - S)( max ZiA      > c( ---) 2/3.

Together with (5.32) this proves (5.29) in this case.

Now suppose that in (5.31) we have hj > Cp2,s.  Then m2 < C5p_2/S, while

(5.24) implies that mx > Cp~2/S.  Together these estimates show once more that

(5.29) holds.
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Finally, consider the case h-> Cm~1'2, j G J6 .  Then m2 <C8m1'2 =

C8(mx + m2)x/2 or m| - C282m2 < C2S2m..  By applying Rouche's theorem to the

pair of polynomials z2 -az - amx = 0, z2 - amx =0, a = C282 it follows readily

that m2 < C8m\12 < CSm..  Thus (5.29) is valid, and we have

(5.33) mx=m(\ +0(h1/12)).

By definition of £0 it follows now from (5.28) and (5.33) that

> m1(12p2)1/3(l + 0(/7£)) = in(12fi2)1/3(l + 0(he))

/3

or

^2<n^4 0 + <**'))•
70-7-

From (5.20) and Theorem 4.5 (modified to the present case) this implies (5.15).

It may be noted that the analogous relation to (4.30), namely, |x-A - x, °| =

0(he) is easily proved when there is only one root of u'0' in 7.   In general, the situation

appears to be more complicated.

Now we turn to the analog of Theorem 4.8.

Theorem 5.3.   For any (X, iCyregular partition with 1 < k < 2,

(5.34) 7||e||| = f2 \Z —    (1 + 0(Ae)),

where v, is given by (4.44) and e = 1 - n/2.

Proof.   Recall that

e(A)2 = i Z
v}h2

. a,

<l _. i ^   Vv

'7=1 "7-1/2
Using

(5.35)     rf = f{pf + 0j(t) + Tj(t))2 dt,    |a;.(x)| < Ch},   ¡,||Tt ||0 < C ¡.\\e\\E,

we obtain, with certain \C¡\ < C, i = 1, . . . , 5,

m      p. hj m m

12e(A)2 = Z -T-1- + CXZ hf+C2Z  iMlhf
7=1 fl7-i/2 7=1 7=1   7

mm m

Z ¥*; +c4 Z iMEPjhf'2 + c5 z rMBh]'2.
7=i 7=1  ' /=i  '

+ C3

By Lemma 5.1 and Theorems 3.1 and 3.2 the first term is asymptotically equal to

12 j\\e\\E and from (5.5) it follows that j\\e\\E > ChK.  The other terms are then

easily estimated to give—with different constants C¡—
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<A)2 = j\\e\\2E(l + 0(fte)) + C. j\\e\\2Eh 4e + C2 j\\e\\2Eh2

r m     -pfhf

L/=i a/-i/2j

= /ikiiKi + o(he)),

n[h2+I\\e\\Eh1l2] +C4/|k|||Ä2e+1/2

which proves. (5.34).

Finally, we show that also Theorem 4.9 carries over to this case.

Theorem 5.4.  For the partition A suppose that

(5.36) e, = p(l + 0(fte))   as h(A)-^ 0, j = I, . . . ,m,

where p does not depend on j and e = 1/12.   Then A is (X, 5/3)-regular and

(5.37) Ma)We < 7lWA0)||£(l + 0(he))   as m -* «.

Proof.   We show first that A is (X, 5/3)-regular.  For this, note that generally

7 ty ll| < Q e2 (1 + 0(A,.))    u A, -» 0, / * 1,. . . , ft.

This follows from (3.8) in the same manner as (3.14) follows from (3.13b). Thus by

Theorem 3.1 and (5.36) we have /||e||| < Cmp2, whence by (5.19) h < Cw1/Sp2/5.

Now (5.35) gives

(5.38) "/ = /,11p, + °j + r/llo < CTp}^2 + rf* + i^e)

and thus, as in the case of (5.23), for sufficiently small ft,  A > Cp2'3.   By (5.12) we

have

i"   p(x)2 dx > Chf;
Jlf

and thus,

M > C/vG.llpllo - j.llTyllo) > C(hfl2 - hj If\\e\\E)

leads to (5.24).  The remainder of the proof of the regularity of A now proceeds

exactly as part (3) of the proof of Theorem 5.3.

Similarly, the proof of (5.37) follows that of (5.15).  In fact, for / G J| we have

7>M'2
7,11*7 »o = -LJ—0(hj)=pjh}'20(hl-%

,.117,11,, = 0(A) = Pj ft//20(ft2e) = p,ft//20(P),

which as in (4.47) leads to vf = pfhf (I + 0(he)), f G J¡, that is, p2 =
r/2ft3(l + 0(ft£)), / G J£.  Therefore, (5.28) holds again.  Moreover, because of p.

Ctj, we obtain from (5.38) the estimates (5.30) and (5.31) which in turn imply (5.29).

Now the remaining conclusions of the proof of Theorem 5.4 apply verbatim.

<
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6.   Numerical Examples.  We illustrate the theoretical results with some compu-

tational results for the following two sample problems:

Sample Problem A.

(6.1a) -¿Oc+a)P^ + (x+á)"u=f,      0<x<l, a > 0,

(6.1b) w(0) = u(l) = 0,

where / is chosen such that the solution of (6.1a/b) is

(6.1c) «oW - (* + «)' - K(l - x) + (1 + áfx],      xGL

Here the coefficient functions and / are analytic in 7, and we have u'¿(x) =£ 0 for x G 7.

Hence, the theory of Section 4 applies.  Note that for small a and negative r we can

create severe near-singularities.

Sample Problem B.

(6.2a) -«"+».=/,      0<x<l,

(6.2b) „(0) = u(l) = 0,

where / is chosen such that the true solution is

(6.2c)      u0(x) = eax(x - ß) 4- [0(1 - x) - ea(\ - ß)x],      a ± 0, ß = 1/2 + 2/a.

Here /is analytic on 7 and Ug(x) has a simple root at x = 1/2, and hence we can apply

the theory of Section 5.

The tables of computational results given below include the following data:

m number of intervals used in the partition

E = lOOjIlellj-./rllt-oll^ relative error in the energy norm expressed

in percent

En = - asymptotically smallest error achievable with
12m 7

0 meshes of m intervals

0 = j\\e\\Ele(A) effectivity quotient (4.39)

co = (    max   e\ /(    min    e |       ratio between the largest and smallest value
\7=l,...,m  '//   V=l.rn ')

of the error indicators e,-(A) of (4.38a)

x, partition points of the particular mesh

Tables 1 through 6 concern two cases of Sample Problem A.  Each time the left end-

point x = 0 of the interval is near a singularity of u0; and this is reflected in the fact

that the largest and smallest error indicators e(A) always occur on the first and last

subinterval 7. and Im, respectively.  But in the second case the energy expression in-

cludes a weight (x + a)2 which goes strongly down near x = 0.  Thus in this case

the near-singularity of the solution shows up more weakly under the energy norm.

In all cases the effectivity quotient is less than one; and hence, the estimate e(A)

turns out to be an upper bound of /llell^.  Of course, the theory is only asymptotic
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in nature and, thus, e(A) could be smaller than j\\e\\E.  Note that for relative accuracies

better than 10% the estimate never overshoots the true error by more than 10%.  In

fact, for higher accuracies 0 equals one for all practical purposes.  This is in complete

agreement with the theory and shows that the a posteriori error estimate is very re-

liable and not at all pessimistic.

In the presence of the near-singularity, the use of nonuniform meshes is very

advantageous (see, e.g., Table 6), and the approximately optimal meshes produce errors

close to the optimal values which by Theorem 4.5 decrease with \/m.  Here the

"weaker" singularity of the second case is rather noticeable. The nonuniform meshes

are only approximately optimal as the ratio co shows which in each case is reasonably

close to one but certainly not equal to it.  Nevertheless, as expected, the corresponding

errors are clearly not very sensitive to such changes of the mesh except for low accura-

cies.

Tables 7 through 11 contain results for two cases of Sample Problem B.  Essen-

tially, all aspects are the same as for problem A.  However, in all cases the maximal

e, occurs in the neighborhood of the root x0 = 1/2 of u'q(x), and, as expected, the

ratio co does not converge to one.   However, if co is computed only for all intervals

outside a small neighborhood of x0, then we have again the desired convergence of co

to one.

Table 1

Problem A with p = 0, q = \,r = -1/4, a = 1/100

Uniform mesh, j\\u0\\E = 6.09811

m E EQ 0 co

5 85.301 22.613 .1706 8.84(+6)

10 73.768 11.306 .2950 2.34(+7)

20 58.784 5.653 .4702 5.31(+7)

40 41.933 2.827 .6708 l.ll(+8)

80 26.316 1.413 .8419 2.19(+8)

Table 2

Problem A with p = 0, q = l,r = -l/4,a = 1/100

Asymptotically optimal mesh, /llt-oll^ = 6.09811

m E E0 0 co

.6524 5.854

.9025 2.274

.9757 1.372

.9940 1.111

.9984 1.031

*Note here the asymptotic nature of the estimate EQ of the lowest achievable error.

5 22.243 22.613*

10 11.289 11.306

20 5.652 5.653

40 2.826 2.827

80 1.413 1.413
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Table 3

Problem A with p = 2,q = l,r = -l,a = 1/100

Uniform mesh, /||m0||ê = 0.28678

m E_E0 0_u

5 25.215 9.619 .3270 3.227(+3)

10 13.696 4.809 .4467 4.640(+3)

20 7.296 2.404 .5966 8.316(4-3)

40 3.813 1.202 .7610 1.055(+4)

80 1.959 0.601 .8947 1.308(4-4)

Table 4

Problem A with p = 2,q= \,r = -\,a= 1/100

Asymptotically optimal mesh, /||»-0||£ = 0.28678

m        E E0 0 co

5 9.994 9.619 .7679 3.355

10 4.809 4.809 .9331 1.666

20 2.409 2.404 .9828 1.184

40 1.203 1.202 .9956 1.049

80 0.601 0.601 .9989 1.012

Table 5

Problem A:  Asymptotically optimal mesh for m =

Case Al:   p = 0, q = 1, r = -1/4, a = 1/100

CaseA2:  p = 2,q = 1, r = -l,a = 1/100

*/

/   Case Al      Case A2

0 .0000

1 .00207

2 .00487

3 .00877

4 .01443

5 .02308

6 .03732

7 .06318

8 .11781

9 .26831

10 1.00000

.0000

.0127

.0340

.0676

.1170

.1862

.2798

.4025

.5598

.7569

1.0000
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Table 6

Problem A with p = 0, q= \,r=-1/4, a = 1/100

Partitions obtained from the uniform mesh

by successively subdividing the first interval into half

m E E0 0 co

10 73.768 11.306 .2950 2.34(+7)

11 58.853 10.278 .4705 5.85(46)

12 42.286 9.421 .6922 1.45(+6)

13 27.357 8.696 .8457 3.45(45)

14 17.634 8.075 .9340 7.49(+4)

15 13.580 7.530 .9447 1.41(44)

Table 7

Problem B with a = 1, ß = 5/2

Uniform mesh, j\\u0\\E = .071070

m E_/£fj_0_o-1

5 43.462 32.317 .9759 1.126(42)

10 22.080 16.158 .9939 1.757(+2)

20 11.083 8.079 .9984 7.568(+2)

40 5.547 4.039 .99924 3.142(+3)

80 2.774 2.019 .99990 1.281(44)

Table 8

Problem B with a = 1,0 = 5/2

Asymptotically optimal mesh, /llt-oll^ = .071070

m          E               E0              0 co

5     33.869       32.317       .9466 1.577

10     16.519        16.158        .9694 1.676

20       8.153         8.079       .9823 1.755

40       4.049         4.039        .9894 1.788

80       2.018         2.019        .9933 2.437
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Table 9

Problem B with a = 5, ß = 9/10

Uniform mesh

m E E0 0 co

5 49.477 18.174 .9059 4.049(4 3)

10 26.554 9.087 .9742 1.229(+4)

20 13.530 4.543 .9934 4.621Í+4)

40 6.797 2.271 .9983 1.808(4-5)

80 3.403 1.135 .9995 7.173(45)

Table 10

Problem B with a = 5, ß = 9/10

Asymptotically optimal mesh

m E E0 0 co

5 17.021 18.174 .7988 2.617

10 9.181 9.087 .9217 2.822

20 4.521 4.543 .9595 2.324

40 2.254 2.271 .9820 1.661

80 1.138 1.135 .9958 1.614

Table 11

Problem B:   Asymptotically optimal mesh for m = 10

Case Bl:   a = 1,0= 5/2

Case B2:   a = 5, 0 = 9/10

/    Case Bl    Case B2

0 .0000 .0000

1 .0887 .4192

2 .1859 .6918

3 .3001 .7715

4 .5218 .8255

5 .6872 .8673

6 .7754 .9016

7 .8442 .9309

8 .9025 .9565

9 .9538 .9794

10 1.0000 1.0000
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