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Convergence of a Finite Element Method for the

Approximation of Normal Modes of the Oceans

By Mitchell Luskin

Abstract. This paper gives optimal order error estimates for the approximation of the

spectral properties of a variant of the shallow water equations by a finite element pro-

cedure recently proposed by Platzman. General results on the spectral approximation

of unbounded, selfadjoint operators are also given in this paper.

I.  Introduction.  We analyze in this paper an approximation procedure to com-

pute the normal modes of the oceans.  The procedure that we analyze is a finite ele-

ment method proposed by Platzman [16].

Our procedure gives a finite dimensional operator whose properties are shown to

approximate those of the unbounded selfadjoint operator associated with the differential

equations modeling the physical problem.  The error estimates given here are optimal

for the procedure considered.  The theoretical results on spectral approximation given

in this  paper generalize the error estimates of Bramble and Osbom [1] and Osborn

[14] for compact operators and of Descloux, Nassif, and Rappaz [5], [6] for bounded

operators.   Results of Descloux, Rappaz, and the author on the spectral convergence of

unbounded, closed (not necessarily selfadjoint)operators will appear in a later paper [4].

We model the time dependent behavior of the oceans by Laplace's tidal equations,

a variant of the shallow water equations, as discussed by Platzman in [15] where nor-

mal modes of the Atlantic and Indian Oceans calculated by a finite difference proced-

ure are presented.  A Lanczos method used to solve the resulting matrix eigenproblem

is discussed in [3].   The frequencies of the normal modes have limit points at 0 and °°.

The spectral properties of the associated unbounded, selfadjoint operator have been

studied by Veltkamp [18].

Platzman [16], Dupont [7] and Scott [17] have found that the standard Galer-

kin method for hyperbolic systems [7], [8] can cause modes with high wavenumber

to have low or zero frequency in time even though corresponding eigenfunctions of

the differential equations with high wavenumber have a high frequency in time.  This

behavior is clearly unacceptable in an approximate procedure for finding eigenvalues

and eigenvectors.

In Section 2, we study a hyperbolic system for which both the differential and

Galerkin spectral properties can be computed analytically.  The above-mentioned

phenomenon is clearly evident in this example.  This example is due to Platzman [16].
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We also study the properties of Platzman's alternative Galerkin method when

applied to the example of Section 2.  We find that eigenfunctions of this Galerkin

method with high wavenumber have a high frequency in time.  This agrees with what

is to be expected from the differential problem.

In Section 3, we construct the operator, T, associated with Laplace's  tidal equa-

tions. We also define the finite dimensional operators, {Th\, associated with our

finite element method.

We prove in Section 5 two properties concerning the convergence of Th to T.

In Section 4, error estimates for the appproximation of the spectral properties of T by

Th are derived from these two properties.

In Section 6, we improve the eigenvalue estimate given in Section 4.    It can be

seen by inspecting the example in Section 2 that the results on the convergence of the

eigenspaces in Theorem 1 and the result on the convergence of the eigenvalues in

Theorem 4 are optimal.

The procedure discussed here for the computation of eigenvalues and eigenfunc-

tions of hyperbolic systems has many applications to time dependent problems. This

is discussed in a later paper by the author [12].

II.  An Example.  In this section we study the approximation properties of two

Galerkin methods when applied to the solution of a simple hyperbolic system with

two dependent variables defined in one space dimension.  This system models a one-

dimensional channel.

We denote by CXI) the space of continuous complex-valued functions on 7 and

by Px, the space of complex-valued, linear functions.  Also, for f, g G L2(I), we set

(f> g) = Slfgdx.  We denote by Hl(I) the Sobolev space of functions with one weak

derivative in L2(I) and norm

ll/ll¿l(/) = H/lll2(/) + ll/'llÍ2(/).

We also set

Hç)(I) = {fe H1 (I) \f(0) = /(l) = 0}.

We consider the hyperbolic system

^ + ^ = 0,      (x,t)G (0, 1) x (0, T),
dt       dx

nu ïr + bJT = 0'      (x,t)G(0,l)x(0,T),
(2.1) dt      ox

v(0,t) = v(l,t) = 0,      te(0,T),

u(x, 0) = u0(x),   v(x, 0) = v0(x),      x G (0, 1).

The associated eigenvalue problem is to find À G C, u G H1 (I), and v G Hq(I) such

that

(2.2) Xm + vx   = 0,    Xv + ux   = 0.
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If we eliminate u from (2.2), we find that X, u must satisfy

(2-3) *2v = vxx,      w(0) = iXl) = 0.

The solutions to (2.3) are well known to be

(2.4) \k = ikir,   vk = sin knx,      k = 0, ±1,±2.

Thus, a complete set of eigenvalues-eigenvectors for (2.2) is

(2.5) Xk = ikn,   uk = i cos kirx,    vk = sin knx

fork = 0, ±1,±2.

We now consider two approximation procedures for (2.2).  Let TV > 0 be a

positive integer, A = l/N, x¡ = ih, 7 = [0, 1], and I¡ = [x¡_x, x¡]. Then set

M„ = {v G C(I) luk G P. for i = 1, . . . , N},
(2.6)

M2 = M,n770(7).

Let the interpolation operator P:   C(l) —► Mft be defined by the relations

(2.7) Puf*,.) = v(x¡)    for  í = 0.N.

A standard Galerkin method to approximately solve (2.1) is to determine U:

[0, T] -* M„, V:  [0, 7] -* M£ such that

(Ut, W) + (VX, W) =0,      WGMh,

(Vt, W) + (UX, W)  =0,      WGM°h.

The associated eigenproblem is to find (r, U, V) G C x Mh x M° such that

r(U, V) + (VX,W)  =0,      WGMh,
(¿.a)

r(v, w) + (ux, w) = o,     w g ut-

A complete set of eigenvalues-eigenvectors for (2.8) is given by

.3 sin khn tT
Tk = , ,n  ,-r:^ »    Uk = Y(i cos knx),(2 9, k     A(2 + cos Ä:A7t)        k        v 7'

Kfc = P(sin ytirx)     for  fc = 0, ±1.±/V.

Note that FN = 0, whereas XN = iNn.  Clearly, this Galerkin method causes eigen-

functions with high wavenumber to have low or zero frequency in time, even though

eigenfunctions of the differential problem with high wavenumber have a high frequency

in time.

Suppose we examine the graphs of A Im TK¡ir and A Im Xkln as functions of

kh, 0 < kh < 1. It is clear that if this procedure is used to compute modes whose

frequencies are in a given interval of interest, one will also compute spurious modes

due to the spectrum bending.
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Graph 1    (from Platzman, [16])

In the simple context of (2.1), we can describe our proposed method as follows:

Find U:   [0, T] -* M„, V-   [0, T] -* M„ such that

(Í7í,lf0-(^^) = 0,        WGUh,

(*xPWx)+(Ux,Wx) = 0,    WGMh,

f^dx = 0.

Then (U, <px) is an approximation to (u, v).  The associated eigenproblem is to deter-

mine (r, U, y) G C x Mft x Mh such that

(2-lOa) r(U,W)-(<&, Wx) = 0, WS M„,

(2.10b) r%, Wx) + («7^, IVX) = 0,     WG M„,

(2.10c) JI ipdx = 0.

Then we approximate an eigenvalue-eigenvector of (2.2) by (r, U, ipx).  Note that we

have imposed the boundary values for v implicitly in the equations (2.10) rather than

in the trial space as in (2.8). A complete set of eigenvalues-eigenvectors for (2.10) is

f k = I 2 sin(knh/2) (l - \ sin2^ ) "' '2,    Uk = ?(i cos for*),

Í2-1 !) ipk = (rk)~i uk = (f ky ' P(. cos for*)    for * - ±1.±/V,

r0 = o,   C/0 = 1,   ^ = 0.
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Recall that vk is approximated by yk .

We see from Graph 1 that the spectrum, {Im Yk} does not "bend" as does the

graph of {Im Tk}.  In fact, it can be seen that |Im Tk| > |Im \k\ for all k > 0.  If

we add V times (2.10a) to (2.10b), we obtain

(2.12) V2(U, W) + (Ux, Wx) = 0,       WG M„.

If we eliminate v from (2.2), we obtain

(2.13) A2« - uxx - 0,      x G I,      ux(0) = ux(\) = 0.

Since (2.12) is the standard Rayleigh-Ritz method for computing the eigenvalues X2

of (2.13), it follows that |Im Tk\ > |Im \k\ for all k since it is well known that the

approximate eigenvalues will be greater in magnitude than their corresponding differen-

tial eigenvalues.

III.  The Problem for the Normal Modes of the Oceans.   We shall introduce

Platzman's procedure [16] to compute the normal modes of a homogeneous ocean

in free motion without friction modeled by Laplace's "tidal" equations.  The time

dependent differential equations are:

(31a) / = - 7 • Û,      (x, t) G £2 x (0, T),
at

(3.1b) D-i^L=. g^-D-^fy\ x«,       (x, t) G £2 x (0, T),
dt

(3.1c) Sa ^dS = 0,

(3.1d) ÏÏ • n = 0,      (x, t) G 3£2 x (0, T),

where £2 is an open set on the sphere in R3, D = D(x) is ocean depth, g = gravity,

/= Coriolis parameter, f = ocean surface elevation above mean level, and u= hori-

zontal velocity. Also, V is the horizontal gradient operator on the sphere, k is the

unit vertical vector, and ft is the horizontal exterior normal to the ocean domain.

For the sake of simplicity in our analysis we shall always assume that D = 1.

We shall also assume that our units are chosen so that g = 1.  The Coriolis parameter,

/, is given by / = 2<-o cos 6 where co is the angular velocity of the earth and 9 is the

geographical co-latitude.  So, /is a smooth function with bounded derivatives of all

orders on £2.

Although £2, the ocean domain, is an open set on the sphere, we wish henceforth

for simplicity to assume that £2 is a simply connected open set in R2 with a smooth

boundary, 9£2.   In this case, we may represent

u(x, t) = (i»,(jc, t), u2(x, t))
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and

k x î7 = (-u2, «.).

Also, n is now the exterior normal to 9£2.   See Section 7 for a discussion of the case

when £2 is not simply connected.

The eigenproblem for (3.1) is to find (X, f, ¡7) such that

Xf - - V • u,      x G £2,

M?=- Vf~/k  x  u,      x££2,

Jnr-ö = o,
« • n = 0,      x G 9.2.

Since u ■ n = 0 on 9£2 and £2 is simply connected, we can represent u as

u = - w + K x V V'»      x €E £2,

9l»5
-^ = 0,      x G 9£2,

(3.3) 9w

/o»»ö-0,

t// = 0,      x e 9£2.

Here, i¿> represents an "irrotational" potential and \p represents a "rotational" potential.

By applying the divergence and the operator V • (k x u) = - du2/dx{ +

aux/dx2 to (3.1b), we can derive equations for the time dependent behavior of the

oceans in terms of the dependent variables (f, <p, \p).

For complex-valued functions y,z G 7,2(£2) we set (y, z) = f^yz dS with the

obvious modification for vector-valued functions.  We also denote by 77m(£2), for m >

0 an integer, the Sobolev space of functions with m weak derivatives in 7_,2(£2) and norm

wa-(0) - z wwLHaY
|a|<m v    '

We also set

77¿(£2)= {j>e7/1(")l»v = 0on9£2}.

To construct equations for the time dependent behavior of (f, ip, i//) in weak

form, we first take the 7L2(£2) inner product of (3.1a) with a smooth function z.

Since V • (k x Vi/0 = 0 and 9^/9« = 0 for x G 9£2, we obtain

(3-4a) \j¡. A - - (V • u, z) = (V • Slip, z) = - (v.?, Vz).

If we take the 7,2(£2)2 inner product of (3.1b) with - Vz where z is a smooth

function, we obtain

(3.4b) (Vl/,f _ k x v^f; Vz) _. (xjlf¡t! Vz) = (7f + /k x - Vz)_

Similarly, if we take the I2(£2)2 inner product of (3.1b) with k x Vz where z is a
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smooth function such that z = 0 on 9£2, we obtain

(-Vi/», + k x v<//f, k x Vz)

= (Vi//f, Vz) = - (fk x u, k x Vz) = - (fit, Vz).

(3.4c)

Set

¿2(£2)  =  |ze¿2(£2)|Jíiz_/5 = 0J,

77i(£2)  = H\£l)nLl(n),

H\(SÏ)  =  jzGT/2^) jp  =0 on9£2ln¿2(£2).

We can formulate our eigenproblem as follows:

Find (X, Ç,ip,\p) = C x Z/¿(£2) x Z7?(£2) x 7Y0(£2) such that

X(?, z) = - (V?, Vz), zGH\ü),

<3-5) x(v<a vz) = (vf -/k x w -/v«//, vz),    z ez/^n),

x(vi//, vz) = í/vrAx vi//, vz), z e //0(£2).

We now define the linear operator, T, whose spectral properties we wish to

approximate.  We take   H  to be the complex Hubert space defined by ff = 7,2(£2) x

77j,(£2) x 770(£2) with inner product

dp, i/>>  = <(<?., <p2, <p3),  (t//., \j/2, t//3)> = fo,, i//.) + (v<p2, Vi//2) + (V«p3. 7^3)

and norm ||^|| = <i¿>, i/))1/2.

We note that tYJc(£2) and 77¿(£2) are closed subspaces of 77!(£2) and that

(Vz, Vz)1'2 defines a norm equivalent to the usual 7/x(£2) norm restricted to these

subspaces.  For a state ip =(tpx, ip2, ip3) G ti, lM$x, <px) is the potential energy of the

state, të(V<p2. vV2) is the "irrotational" kinetic energy of the state, and y¿(V</>3, V^3)

is the "rotational" kinetic energy of the state.  Hence, IMI2 is twice the sum of the

potential, rotational, and irrotational energies of the state of the system described

by <p.

We define T to be the selfadjoint, unbounded operator with domain  D(T) =

77j,(£2) x 7/i(£2) x 77¿(£2) such that for (a, B, C) G 7/J,(£2) x H2x(£l) x 77¿(£2),

T(a, B, C) = (d, E, F) G H satisfies the following equations:

(3.6a) (d, z) = i(VB, Vz) = - /(Aß, z), z E 771 (£2),

(3.6b) (V7f, 7z) = - ¿(7-1 - fk x VB - f VC, Vz),      zGH1 (£2),

(3.6c) (VF, Vz) = - i(fVB-fk x VC, Vz),      z G 77¿(£2).

If X is an eigenvalue of T with eigenvector (a, B, C), then /X is an eigenvalue of

(3.2) (and (3.5)) with the corresponding eigenfunction f = a and u = - VZ? + k x vC.
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We may also define T in terms of the bilinear form

B(</>, i//)  =   B(foi, <P2, <p3), Of-1, 11*2• ^3))

=  i(V«p2, 7^i) - -(7<?. ~/k x v^2 -/7«/»3, 7<//2)

-.(/"7</>2 "A x V</>3, 7i//3).

Note that 8( ■ , • ) is not defined on f. x tf.  However, if ip G H^Sl) x Z72(£2) x

77¿(£2), then there exists a constant, C(ip), depending on ip, such that

|B(*, M < OfoWII    for all  ^ G fi.

In this case, we can define Tip through the Riesz representation theorem so that

(Tip, i//> = B(ip, M   for all  <// G tf.

Since there does not exist a constant K > 0 such that C(i¿>) < /vlMI for ip G //^C-Ti) x

7Z](£2) x Z7¿(£2), B is not a continuous form on H x H.

We shall now show that T is selfadjoint and unbounded. We define the operator

r. :   77i(£2) x 772(£2) x 77¿(£2) -» tf by

(3.7) Tx (ipx, ip2, ip3) = (~ iAip2, iVi, 0).

It is easily checked that Tx is an unbounded, selfadjoint operator.

We also define the bilinear form B2( • , • ) on tf x tf by

B2(ip, \¡/) - .(/k x v^2 +/Vsc3, Vi//2) - if/7^2 -/k x v^3, Vi//3).

Since there exists a constant 7C > 0 such that

Bate, </0 « Z-IMI tW|,   W>, <// G H,    and    B2(ip, «//) = B2(>//, ip),

there exists a bounded, selfadjoint operator T2:   tf —► tf defined by the relations

(T2ip, w) = B20a w),   Ww G tf.

Now T = Tx + T2,so T is an unbounded, selfadjoint operator.  Note that Tx

is the "zero-rotation" operator, i.e., if to = 0, then T = Tx.

We now consider how the spectral properties of T may be approximated by the

spectral properties of operators, Th, defined by means of a finite element approximation.

We assume the existence of spaces of functions, Mn, parametrized by A, such that the

following properties hold:

(1) dim M„ < °°.

(2) MfcCZZ1^).
(3) There exists a positive integer r > 1 and a constant K, independent of A,

such that for 1 < 5 < r + 1 and z G &(&.),

<3-8a) „S.* {!|z_xll^(") +Ä||z_xlW)} <^sllzWr

We define the spaces

K = M„ n 77¿(£2),   M* = M» n //¿(n).
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We also assume that for 1 < s < r + 1, if z G 7ZÎ(£2) n 7Z¿(£2), then

(3.8b) jtfo i''2 -XllL2(n) + ftllz-XllHl(n)} <Khs\\z\\HS(n),

and if z G Hs(ü) n 77JÍÍ2), then

.•sil
(3.8c) inf  {||z - xllL2(n) + h\\z - x\\HHa)} < ^4ll2llw»(n)-

(4) If s G C°°(£2), then there exists a constant K = K(s) such that for all £ G Uh,

(3.8d) mf ll^-Xll//i(n)<^HIIL-/i(n).
XtMft

This is a version of the Nitsche-Schatz property [13].

(5) There exists a constant K, independent of A, such that the inverse property

(3.8e) |lxH„i(n) <ZiA-1|lxlli2(n),  VXGM„

holds.

The above properties for Un, with the exception of (3.8b), are satisfied by spaces

of continuous, piecewise polynomials of degree r defined over a regular, quasi-uniform

triangulation of £2 with the diameter of the largest triangle bounded by A [2].  How-

ever, if the spaces \hh are spaces of piecewise polynomials, then (3.8b) is impossible

to verify for a smooth boundary, 9£2.  If the boundary, 9£2, is a polygon, then (3.8b)

can be achieved by spaces of piecewise polynomials.   However, in the case of a poly-

gonal domain, £2, the components of the eigenfunctions of T will not even be in

H2^) unless £2 is convex.  Isoparametric elements [2] are often used to obtain zero

values on the boundaries of approximating domains for finite element spaces with a

high order of approximation.   However, we feel that the analysis of these elements

in the present context would obscure the main ideas of this paper.

We define the operator Th:   M* x MJ x M£ -* M£ x M£ x M° by

Th(ah,Bh,Cn) = (dh,En,Fh) if

(3-9a) (dh, z) = i(vBn, Vz),      Vz G MJ,

(3.9b)
(7-5^, Vz) = /(- V-.„ + /k x VZ?„ + fvC„, Vz),   Vz G M*.

(3.9c) (7F„, Vz) = /(- /VZ?„ + /k x VC„, Vz),    Vz G M£.

We note that by (3.8e) there exists a constant K such that

llvxll£2(n)<Ä:A-1ilxllL2(n))   vXGM„.

Hence, there exists dn G M* such that

(dn, z) = i(vBh, Vz),    VzGM£.

We can also define Th in terms of our bilinear form B. We note that B(- , •)
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is defined on (M£ x M* x M°) x (M£ x M* x M°) and that there exists a constant

7C> 0 such that

\B(ip,4>)\<Kh-l\\ip\\ \W\

for ip, \¡j G M£ x Jl|£ x M°.  Hence, for <p G U% x M£ x M°, there exists rV G

M£ x M£ x M° such that

<rV, <J-> = B(ip, V),    V* G MJ x Mí x Mg.

Note that D(Th) <£ 7X7) and D(T) <£ D(T").  Also, if nD(Th) is the orthogonal

projection of tf onto M* x M* x M°, then Th ¥= i¡D(Th\T.   However, it is easily

checked that Th is a selfadjoint linear operator when Mjf x M* x M° is given the

inner product of tf.

In [18], Veltkamp has analyzed the spectral properties of Thy studying T as a

perturbation of Tx.  The spectral properties of Tx are easily discovered.  The eigen-

value X = 0 is an eigenvalue of infinite multiplicity for Tx.  All elements (0, 0, ip3),

¡p3 G 77¿(£2), are eigenfunctions.  Thus, the modes with zero frequency have only

rotational energy.  These are the vorticity modes.

It can be seen by eliminating ip2 from the eigenvalue equations associated with

(3.7) that (ip, - iip/X, 0) is an eigenvector with eigenvalue X if

Aip = - \2ip,      * G £2,

(3.10) in *dS = °>

dip
t- = 0,      x G 9£2.
dn

Thus, the eigenfunctions of Tx corresponding to nonzero frequency have only poten-

tial and irrotational energy.  These are the gravity modes.

So, the spectrum of Tx consists of isolated eigenvalues with a limit point at

- °° and -o.   All the nonzero eigenvalues have finite multiplicity and zero is an eigen-

value of infinite multiplicity. We assume that the addition of T2 to Tx perturbs the spec-

trum of Tx so that the spectrum of T consists of isolated eigenvalues of finite multiplicity

with limit points at 0, °°, and -°°; This is proven in a special case and conjectured in gen-

eral in [18]. All modes now have both rotational and irrotational energy. We also note

that even if Tis one-to-one, T~x will not be a bounded operator.

IY.  The Approximation of Unbounded Operators.  We now study how two prop-

erties concerning the convergence of T*1 to T imply the convergence of the spectral

properties of Th to 7.   These properties for the ocean equations will be verified in

Section V.

We let tf be a separable Hilbert space and The a selfadjoint operator in tf with a

pure point spectrum of eigenvalues of finite multiplicity. Let {\k}k-_ao be the eigen-

values of T listed according to multiplicity with corresponding orthonormal eigenvectors

{vk}. We also suppose Th to be a finite dimensional operator on a subspace D(Th) C tf

such that Th : D(Th) —*■ D(Th), dim D(T*) < °°, and Th is selfadjoint in D(Th) when
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D(Th) is given the inner product of tf. Let {X^}^=. be the eigenvalues of Th with corre-

sponding orthonormal eigenvectors, {irjjj..*..

The basic properties of spectral approximation of T by Th will be shown to

follow from the following two properties:

Property A.  If vk is one of the above eigenvectors of T and \k ¥= 0, then

3 vh G D(Th) such that

(4-0 \\vk - vh\\ + \\Tvk - Thvh\\ <Khr,

where K = K(\k).

Property B. There exists Kx, independent of A and \k, such that if vk is one of

the above eigenvectors of TH with eigenvalue \k, then there exists u G D(T) such that

(4.2) II" - «¿Il < Kx \\hk\h,    \\Tv - r*t>*|| < KM I + l*

If x G tf and TV is a subspace of tf, define

dist(x, N) =  inf Ibr-^H.
yGN

As in [10], given two closed subspaces M and TV of tf we define

8(M, N) = sup      distix, AO,      8(M, N) = max[5(M, AO, 8(N, M)].
xŒM, 11x11=1

We also wish to define two quantities measuring the separation of eigenvalues.

We set

C7+ = inf{\j-\k\ all / suchthat X;--Xfc>0},

Gk = inf{Xfc - X;| all /' such that Xfc - Xy > 0},

Gk   =  min{G+ Gk}.

We assume that Gk =£ 0 for \k ^ 0.

Theorem  1. Suppose T and Tn are as above and satisfy Property A and

Property B. Let X i= 0 be an eigenvalue of T of multiplicity n.   We may assume with-

out loss of generality that \ = \x = • • • — X„ (reorder the eigenvalues, if necessary).

Let

Ah = {/|X^G [X - GXI2, X + G+/2] }.

Also set

V= span{u,, . . . , vn},    Vh = span{i^ \j GAh).

Then there exists K = K(\) > 0 such that

(i) maxilX-XJMl/G^} <Khr,
(ii)  8(V, Vh) < Khr.

Remarks.   It follows from (ii) of Theorem 1 that for A sufficiently small dim V

= dim Vh.  Hence, the cardinality of the set Ah — n for A sufficiently small.
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In what follows, K will denote a positive constant which may depend on X,

but which is always independent of A.   We allow K to vary from equation to equation.

Note that it follows from Property A that to {u., . . . , vn } we can associate

{yHx, . . . ,vHn} CD(Th) such that

(4.3) ||um -er^ll + \\Tvm - Th7hm\\ <Khr    for m = 1, . . . , n.

Hence, we can define a linear map, Lh:   V —► 0(7*), such that

Lhvm =vm    for m = 1.n.

We can then deduce from (4.3) and the finite dimensionality of V that

(4.4) ||u - Lhv\\ + \\Tv - ThLhv\\ < Khr\\v\\    for  vGV.

If M is a closed subspace of tf, we shall denote the orthogonal projection onto

Mhy nM.  We shall divide the proof of Theorem 1 into a series of lemmas.

Lemma 1.  Let \k be an eigenvalue of TH and let ek = min-IX, - X*|.  Then

there exists Kx (independent of h and Xk) such that

(4.5) £<Kh   «XJ)4+(IXg| + l)»)*

(l-Kx\\hk\h)

Furthermore, ifkGAh, then

(4.6) dist(u£, V) < ZCA.

Remark.   Note that it does not follow from (4.6) that 8(Vh, V) < Kh until

we verify that dim VH = dim V.

Proof.   By Property B, there exists v G D(T) such that

lit; - ir*|| < Kx \\hk\h,      \\Tv - Thv¡¡\\ < Kx(\ + |X£|)A.

yfyj.  Then

Tv=Zy^ñ
i

Tv  - (Tv - Thvhk) + Thv¡¡

= (Tv-T"vk) + \k(4-v) + \»kv

= (Tv-T"vk) + \ik-(vhk-v)+Z\kyjVj.

i

After subtracting (4.8) from (4.9), we obtain

(4.10) B\- - Kh,Vj = (Tv - Thv£) + \hk(vhk - v).
i

Hence, it follows from the orthonormality of the family {vk} and (4.7) that

(4.7)

Let v = 2;" _

(4.8)

and

(4.9)
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(4.11) £(X,. - \Hk )2 yj < K\h2 [(IXjl + l)2 + (X*)4].
/

Thus,

(4.12) (e2)2IMI2 = (ehk)2Zyj<K2 A2 [(|X*| + l)2 + (X*)4].
/

The result (4.5) follows from (4.12) and the estimate

(4.13) Hull > K\\ - Kx |X£|A = 1 - Kx |X* \h.

We now assume that kGAh, i.e., x£ G [X - Gx/2, X + G^/2].  It follows

from (4.5) that for A sufficiently small

(4.14) |Xy - x£| > G./2    for / # 1, . . . , n.

Hence, we can obtain from (4.11) that

(4.15)

So, by (4.7) and (4.15)

(cV2)2   Z  yf<Zfrf-\*)2yf<Kh2.
1*1.n i

(4.16) vk -     Z   T/»<
7= i,...,«

< K - «ii + Z   7/ty
,7-1,...,«

< 7CA.    Q.E.D.

Lemma 2.   8(V, Vh)<Khr.

Proof.   Let m G {1, . . . , n}.  By (4.4)

(4.17) H«« -L*»m\\ + H^m - 7%uJI < A.Arl|uw|| = KA'.

Since Zftum G Z3(rft), we can expand Lhvm = rf^ß/rf-  Then

(4.18)

and

T"Lkvm =Tß,W

T"Lhvm   = (T"Lhvm - Tvm) + Tvm

(4.19) = (ThLhvm - Tvm) + \(vm - Lhvm) + \Lhvm

= (ThLhvm - Tvm) + \(vm - Lhvm) +ZßM-
i

So, after subtracting (4.19) from (4.18) we obtain

(4.20) ZßjQf - -Otf = O^-V,,, - -%,) + KLhvm - O-
/

From (4.17), we obtain from (4.20) and the orthonormality of {uj1},

(4.21) Zß2(.y-V2<Kh2r.

It follows from Lemma 1 that for A sufficiently small,

|Xf-X|>G./2    for /€ Ah.
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Hence,

(4.22) (C7./2)2   Z ßf< Zßjtf - X)2 < Kh2r.
&A h i

So, as in Lemma 1, we find from (4.17) and (4.22) that

(4.23) vm -   Z   ßiVf
JGAh

< \\vm - Lhvm + <Khr.

Note that 2/ej4 J-yUy1 = nv„Lhvm.  Thus, we have proved that for am = 1,

||i>m - nvhLhvm\\ < 7CAr.  Hence, by the finite dimensionality of V,

,n,

(4.24) llu - TtvhLhv\\ < Khr\\v\\    for  v G V.    Q.E.D.

Lemma 3. 8(V, V")<IOrr.

Proof.   If we can show that dim Vh = dim V for A sufficiently small, then

(4.6) implies that 8(VH, V) < Kh for A sufficiently small. The above result and the

bound 8(V, Vh) < A.Ar imply that 8(V, Vh) < 1 for A sufficiently small.

However, if M and 77 are two closed subspaces of a Hubert space tf and 8(M, N)

< 1, then 8(M, M) = S(77, M) = 8(M, N) (see [10, p. 200]). Hence, for A sufficiently

small 8(V, Vh) = 8(V, Vh) < Khr.

Now it follows from Lemma 2 that 8(V, Vh) < 1 for A sufficiently small.

This implies that dim V < dim VH for A sufficiently small.  It remains to show that

dim Vh < dim V.

We let nh = dim Vh and suppose that nh> n = dim V.  We may assume with-

out loss of generality that Ah = {1, . . . , nh} (renumber eigenvalues, if necessary).

By Lemma 1, for each / G Ah there exists w- G V such that

(4.25) \\vf - Wj\\ < Kh.

Since nh > n, there exists {<*„}"_. such that

(4.26)

So,

wn+l = Z asws-
i=l

<4-27)        <+i=Z^+(vn\x-Wn+x) + z^s-^).
1 1

Let r be such that \ar\ = max{|a„| |s = 1, . . . , n}. We may assume without loss of

generality that ar > 0.

If we take the inner product of (4.27) with u?, we obtain from the orthonor-

mality of {vf }

(4.28)
0 =  ar + 0(h) + Z K \0(h)

i
= ar + 0(h) + narO(h).
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So,

(4.29) a, < Kh.

But since

1 -Kh < IKH < 1 + Kh    for  s = 1, . . . , n,

we see from (4.26) that

(4.30) 1 - Kh < ||w„ || < Z k*,IIIw,|| < «a, (1 + Kh).
i

So for A sufficiently small

(4.31) a  > ilzM > 1
r"n(l 4-ATA)      2n

However, (4.31) contradicts (4.29).    Q.E.D.

We now state the following easily proved lemma [6].

Lemma 4.  Let Y and Z be two subspaces of tf such that dim Y = dim Z.

Let P:   Y —* Z be a linear operator such that

(4.32) \\Py-y\\<2-l\\y\\,    WyGY.

Then P is bijective and

(4.33) Wiz\\<2M,    VzGZ.

We wish to apply Lemma 4 to the map nvhLh:   V ~> Vh. It follows from

(4.24) that for A sufficiently small,

(4-34) \\itvhLhv - u|| < Mv\\,    Vd6K

Hence, it follows by (4.33) that by choosing a new orthonormal basis for V, we may

assume that there exist scalars {<xm}n\=x such that

(4.35) JF-ift-m = amvm,    |orm | > H    for m = 1,_«.

Lemma 5. max {|X - X^111/ G Ah} < KAr.

Proof.   We follow the proof of Lemma 2.  Let m G { 1, . . . , «} and represent

Lhvm = Z^ßtf. Then, as in Lemma 2, we shall obtain 2ßf(tf - X)2 < Kh2r.

However, it follows from (4.35) that \ßm | = \am \ > xh. Thus,

(K)2(\hm - X)2 < S|-2(X; - X)2 < TCA2'.

So, |X* - X| < Khr for m G {1, ...,«} = -4„.    Q.E.D.

Lemmas 4 and 5 complete the proof of the theorem.

V.  Analysis of the Finite Element Procedure.  In this section, we shall show

that Property A and Property B hold for the operators T and Th defined in Section

3.  We first prove a lemma concerning the regularity of the eigenfunctions of 7.
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Lemma 6. If vk = (a, B, C) is an eigenvector of T with eigenvalue Xk =£ 0,

then a, B, CGC°°(£2).

Proof.   It suffices to show that a, B, C G fl^ = 0ZZm(£2). We show that B G

Hk+1(Sl), a, CG Hk(Sl) implies that B G 7Zfc + 2(£2), a, C G Hk+l(Ü.).  Since B G

H2(SI), a, CG7Z1(£2), this will prove the lemma by induction.

By the definition of T, C G 77¿(£2) satisfies

(5.1) Xfc(7C, 7vv) = 0/77? + ifk x VC, Vw)

for w G 77¿(£2).  Since Xfc ± 0 is real and B G nk+l(Sl), it follows by elliptic regu-

larity [11] that CGHk+l(Q.).

Now a satisfies

(5.2) .(7a, Vw) = (- Xfc77? + ifk x V75* + z/VC Vw)

for w G 7Z1(£2).  So, since B, C G Hk+i(Sl), it follows by elliptic regularity that a G

Hk+l(Sl).

Also, B satisfies

(5.3) ¿(7-9. 7z) = X(a, z),      z G //»(iï).

Since a G 77*+1(fi), it follows that B G Z7fc+2(£2).    Q.E.D.

Theorem 2.   Property A holds for the operators T, Th of Section 3.

Proof of Theorem 2.  Let vk = (a, B, C). Then we shall show that (4.1) is

valid for some constant K(Xk) if we take vh = nD(Th)vk where nD(Th) is the orthog-

onal projection of   tf onto 75(7*) = M* x M* x M°.  Now nD(Thfk = (ah, Bn, Ch)

satisfies

(5.4a) (a - a„, z) = 0,    Vz£M£,

(5.4b) (S(B-Bh), 7z) = 0,    VzGMÍ,

(5.4c) (v(C-C„),Vz) = 0,     VzGM^.

Now by Lemma 6, a G IT+1(ÇI) n Z2(£2).  Since ah is the 7L2(£2) projection of a

onto M*, we have for 0 < s < r + 1 that

(5.5a) Wa - «*BL2(0) = JnfJI-- - xHLl(n) < *.-*ll-.|lH.(n).

It then follows from (3.8e) that for x G M*

llfl - aftH/ii(s.) < Hfl - Xlljyi(£1) + IIX - fl*Hwi(n)

<lla-xll//i(n)+Z:Ä-llIIX-aft||L2(n)

< Ha - xll^i^j + ^-Mla - xllL2(íi) + ÍTA-Ml« - a„llL2(n).

Thus, we can obtain from (3.8c) that for 1 < s < r + 1,

(5.5b) \\a-ah\\Hi(n)<Kh^\\a\\Hs{SÏ).
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We also have from Lemma 6 that B G If+Í(n) n 772(£2) and C G Hr+1(Sl)

n 77¿(£2).  We obtain from (5.4b) and (5.4c) the result that for 1 < _• < r + 1

(5.5c)        llV(-9-.9Ä)||L2(n) = x|rfJIV(5-x)ll<-îrA*-1WH,(n),

(5.5d)       IIV(C-CA)||L2(n)=   MQmC'-)Ùll<Khs'imHs(ay
h

So, by (5.5a), (5.5c) and (5.5d) we see that

(5.6) \\vk-vh\\<Khr.

Let Tvk = (d, E, F) and Thvh = (dh, Eh, Fh).

By (5.4b), it follows that

(d-dh, z) = (\ka~dh, z) = 0,    VzGMt

Hence, by (5.4a), dh = X^.  So, we obtain from (5.5a) that

(5.7) \\d - dh\\L2(n) = Xfc||a - ah\\L2w < Khr.

Now by the definition of T and Th we see that

(V(7J - Eh), Vz) = (- -V(a - an) + ifk x v(Z? - Bh) + i/V(C - Ch), Vz)

for z G M/,.

Hence, if E G Uh,

(V(E - Eh), vz) = (\J(E -E)- /V(a - a„) + ifk x v(5 - Bh)

+ iMC-Ch), Vz)    for zGM„.

If we take z = E — Eh G M/, in the above and use the Cauchy-Schwarz inequality, we

obtain

liv(7f - Eh)\\L2(n) < Hv(zT - zOIIL2(n) + live« - «*»x,a(n)

(5'9) + K\\V(B - Bh)\\L2(n) + Z.||V(C - Ch)\\L2lny

Hence, by the triangle equality and (5.5), if we let E approximate E, we can obtain

by (3.8a)

||V(7? - Eh)\\L2(n. < 2||7(7f - £)||L2(n)' + IIVC« ""hA2{a)
(5.10)

+ K\\V(B - Bn)\\L2(n) + K\\V(C - Ch)\\L2{n) < Of.

Note that since E = \kB, E G If+l(Çl).

We also have that

(7(F - Fh), 7z) = (- ifV(B - B„) + ifk x v(C - Ch), 7z)

for z G M°.  A similar argument to the previous one shows that

(5.11) ||V(F-FJ||L2(n)<^.
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Hence, the result (5.7), (5.10), and (5.11) shows that

(5-12) \\Tvk-ThvH\\<Khr.

Theorem 3.   Property B holds for the operators T, Th of Section 3.

Proof. In the following proof Kx will denote a constant which is independent

of X£ and A, but which may vary from equation to equation.

Let v\ = (an, Bh, Ch) and Thv\ = (dh, Eh, Fh). We set B G H\(£2) to be the

solution to

(5.13) -AT? = idh.

Note that fndh dS = 0 since dh G M*.  By elliptic regularity,

WB\\H2(a)<Kx\\dn\\L2{ny

We set v = (ah, B, Ch). Then v G D(T) and

(5.14) \\v-vk>\\ = \\V(B-Bh)\\L2{n).

However, by (5.13)

(5.15) iy(ß-Bh), 7z) = 0    for z G M„.

So, since ||u£|| = 1,

(5 16) \\^B-Bh)h2in)<Kxh\\B\\H2W<Kxh\\dh\\L2in)

<Kxh\-kk\\\ah\\L2{n)<Kxh\\hk\.

Thus, we have verified that \\vk - v\\ < A..A|X£|.

Set Tv = (d, E, F).  By (5.13), d = dh.

Now

(5.17) (7(7i - Eh), Vz) = i(fk x v(B - Bh), Vz)    for z G M„-

By the argument used to obtain (5.9) from (5.8) we see that for E G Mh

\\nE-En)\\L2iiî)<mÊ-E)\\L2(n)+Kx\\sj(B-Bn)\\L2{n)

(5.18) <\W-mL2(n)+Kxh\\B\\H2(n)

<\\V(Ê-E)\\L2(n)+Kxh\\dh\\L2(ny

So, we must estimate how well we can approximate E by members of Uh in the

TZ^f.) norm.

Now E satisfies

(5.19) (V77, Vz) = (- iVflfc + ifk x 75 + i/7C„, 7z)

for z G TZ'ífi).  Note that in general E is only in TZ^O).
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Since Ch G M°, by (3.8d) there exists x G Uh such that

(5.20) \\x-fch\\HHsi) < ^i*BCÄ||wi(n) < -riÄfl7CÄHi2(n).

Let E = E + iah - z'x.  Then

(5.21) (Ve, Vz) = (ifk x V7? + iV(/Ch - X) ~. .(7/)C„, Vz)

for z G ZZ'j;£2).

Let E G 7Zjt(£2) satisfy

(5.22) (777, 7z) = 0/k x V7? - .(V/)C„, Vz)    for z G H1 (SI).

Then

(5.23) (V(ZT - E), Vz) = (/V(/Cft - X), 7z)    for z G H1 (SI),

so

(5.24) \\v(E -I)llL2(n) < \\WCh -X)ll¿2(n) <-riA||7Cft||L2(iî).

From (5.22), we see that Z?  G ZZ2^) and

llll„2(n) < i.dlïll^fn) + KC/.IWt(n))

<^i(ll^llL2(ii) + IIVQIIL2(n)).

Hence, there exists i// G M/, such that

(5.26)   fë-nBi{a) <JT,*l»Sliia(0) <*i*(KH/.*<«) + ll7C„Ht2(n)).

So, let Ê = - iah + ix + 4/. Then

E-Ê = (E-iah +ix)-(-iah + iX + tf/) = (7? -E) + (E - *).

Thus,

(5 27) l^"^1(«)<l^"^1(«)+l|Í"V/|l",(«)

</?1A||7C,||l2(í2) + -T./WJia^j + H7C„|lL2(n)).

We shall now estimate ||7(F - Fh)\\L2{ny  Since C = Ch, F - Fh satisfies

(5.28) (7(F-Fh), 7z) = (-//7(-9--9Jt), 7z)    for all z G M^.

So, for F G Mg,

(5 29)    "V(F " Fh)l^2(«) < miF ~^<<2W + KlW ' Bh)h2^

<W(F-F)\\LHn)+Kxh\\dn\\L2(ay

Therefore, we must approximate F by an element of M° in the 7Z1(£2) norm. Now F

satisfies

(5.30) (7F, 7z) = (- //77i + ifk x VC„, Vz)    for z G 77¿(£2).
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However, if z G CJ(£2),

(fk x vC,,, Vz)  = (Ch, 7 • (fk x Vz))

= (C„7/, k x vz) = - (k x Chvf. Vz).

So, (5.31) is satisfied for all z G7Z¿(£2).  From (5.30) we obtain

(5.32) (VF 7z) = (- i/7-9 - iChk x v/, Vz)    for z G 7Z¿(£2).

Therefore, F G TZ2(£2) and

(5-33) WF\\H2(n)<Kx(\\B\\H2{a) + \\Ch\\HHn)) <Kx(\\dh\\L2(n) + \\VCh\\L2(n)).

Hence, there exists F G Mg such that

(5.34) \mF-F)\\L2(a)<Kxh(\\dh\\L2(n) + |l7C„„L2(n)).

It follows from (5.29) and (5.34) that

(5.35) \\nF-Fh)\\L2w<Kxh(\\dh\\L2(n) + ll7C„||L2(n)).

Therefore, since d = dh = Xkah, by (5.27) and (5.35), we obtain

(5.36) \\Tv-ThVj-1| <£,(|X£| + 1)A.    Q.E.D.

VI.  Improved Eigenvalue Estimates.   In this section we get improved eigen-

value estimates for the approximation of T by Th.  These estimates cannot be deduced

from Property A and Property B, but require addition analysis of the operators T and

Th defined in Section III. Our technique is to represent the eigenvalues in terms of

Rayleigh quotients.

Theorem 4. Let X ̂  0 be an eigenvalue of T of multiplicity n.   We may  as-

sume as in Theorem 1 that X = X. = ■ • ■ = X„.   Also, set

Ah= {j\\?G[\-Gxl2, X + G+/2]}.

Then there exists K > 0, independent of A, such that

(6.1) |X - \f |< Kh2r   for all jGAh.

Proof.   As in the proof of Theorem 1, we may assume for A sufficiently small

that

(6-2) Ah={\,...,n}

and

(6.3) nvhLhvm = amu^,    |am| > V.    for  m = \, . . . ,n.

Recall that in Section V we were able to verify Property A with Lh = nD(ThY  So,

we then have that nvhL„ = nvhnD(Th) = nvh.
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We shall estimate

(6.4)
v*      Tvm,vm)     <Thnvhvm,nvhvm)

x-x
tom'Vm) ^VhVm,nvhVm)

for m G Ah (recall from (6.3) that nv„vm = o¡mü^) by estimating

{Tvm, vm)     <ThLhvm, Lhvm)
(6.5)

and

(6.6)

(6.7)

Then

(6.8)

<vm- vm> ^h^m- L„Vm)

<ThLhvm, Lhvm) ^ (Thnvhvm,nvnvm)

^"m- ifium) ^v^m'^V"^

We first estimate the term (6.6). Represent as in Lemma 2,

»h

LhVm =   Z ßfVf-
1=1

nvhL„vm = Zßrf
/=-

It follows from (4.22) and the orthonormality of the family {v* } that

(6.9)      \<Lhvm, Lhvm) - (nvhvm, nvhvm)\
ß) < Kh2r.

iÇAh = {l,...,n}

Similarly, it follows from (4.21), (4.22) and the Cauchy-Schwarz inequality that

\{THLhvm, Lhvm)-{THnvhvm,nvhvm)\

(6.10) = z W < I z ß2Y( z (+?n2)Vz<™2r-
ft * h \/<M,.      J   \&Ah J

Since \\Lhvm\\ > \\vm\\ - \\vm - Lhvm\\ > 1 - Khr by (4.4) and \\nvhLhvn

nvhvm\\ > lA by (6.3), it follows from (6.9) and (6.10) that

<ThLhvm, Lhvm)       <THnvhvm,nvhvm)\

(6.11)
< 7CA2r.

&hvm' Lhvm*> ^Vh°m ' ^yh^m^

We now turn to the term (6.5) and again recall that Lh = ^D(Th)-  Let  vm =

(a, 73, C), Tvm = \vm m (d, E, F), Lhvm = (ah, Bh, Ch) and ThLhvm = (dh, Eh, Fh).

Then

{vm, vm) - <Lhvm, Lhvm) =  (a, a) + (7ZJ, 75) + (7C, 70

(6*12) - («*. «*) - (VB„, VBh) - (VCh, 7C„).

In order to show that the left-hand side of (6.12) is 0(h2r), we need the negative

norm estimates for the terms estimated in (5.5).
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For ip G 7_2(£2) and s > 0, we define the norms

and

imItí-* =      ,sup   ,    (<(>> ^)

IMIW-* = sup        (ip, ijj).

Then it follows by well-known negative norm estimates for the L2 and Hl projec-

tions [l,pp. 538-539] that

\\a~ah\\Hs   <Khs+t\\a\\Ht(n)    for  0<s<r+l,0<f<r+1,

\\B-Bh\\H-s <Khs+t\\B\\Ht(a)    for  0 < s < r- 1, 1 < t < r + 1,

IIC-CfcHír_,<i1»A'+íBqiHí(n)    for   0<f<r-l,l<f<r + l.

Note that if ip G IP(Ü) n Z2(£2), then by (5.4a), (5.5a), and (3.8c) for 0 < s < r + 1,

|(a - a„ „)|   = Jrf \(a-ah,ip- X)\ < Ha - «»»¿»(ojöflMj^o).

Hence, for 0 <s <r + 1,0 < f < r 4-1,

\\a-ah\\H-s< Kh>$*-ah\\L2i:si)<Kh*+tMHtiny

By our definition of ah as the I2(£2) projection of a on M*,

(a, a) - (ah, ah) = (a, a - ah).

Since a G 7Zr(£2) and \\a - -*fcllff_r(n) < Kh2r\\a\\Hr{ay it follows that

(6.13) |(a, a) - (ah, a„)\ < Kh2r\\a\\2        < Kh2r.

Similarly, using negative norm estimates on the  7Z1(£2) projections, we obtain

1(75, VB)-(VBh, VBh)\

(6.14) = |(75> v(B-Bh))\ < 11511^+i(n)IIZ3 -Ä*Hj,--+i(n)

<ATA2,'||ZÍ||2.r+1(íi)</i:A2'-

and

|(VC, VQ-(VCh, 7Cfc)|

= |(7C, 7(C-Ch))| <Kh2r\\c\\2Hr+X(n) <Kh2r.

Hence, it follows from (6.13), (6.14), and (6.15) that

<6-16) !<»«, »m> - <L„vm, Lhvm)\ < Kh2r.
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We now consider

(Tvm,vm)-<ThLnvm,Lhvm)

(6.17) = (d, a) - (dh, ah) + (VF, V5) - (VF„, V5„) + (VF VO - (VF„, VC„).

It follows from (3.6a) and (3.9a) that

(d, a) - (dh, ah) = i(V5, Va) - .(V5„, X/ah).

Now by (5.4b) and the negative norm estimate for a - ah,

(6.18) ^B' Vfl) " ^Bh> Vah) = (77?, 7(a - ah))

= - (Aß, a -a„) < AVA2HIÄH//r+ ,(n)Nlffr+i(n) < ^2'-
So,

(6-19) IW-.)-(rfÄ,-.Ä)l<iiÄ2r.

Continuing to the next term in (6.17),

(7F, 75) - (7F„, 75„) = (7(F - Eh), 75)
(6.20)

= (7(F - Eh), V(5 - 5„)) + (V(F - F„), V5„).

It follows from (5.5c) and (5.10) that

|(V(F - Eh), V(5 - Bn))\ < Kh2r.

Now from (3.6b) and (3.9b)

(6.21)
+ i(fk x V(5 - 5„), V5„) + /(/V(C - CA), V5„).

However, by (5.5) and (6.18),

(7(a - ah), 75„) = (7(a - ah), V(Bh - B)) + (7(a - a„), 75),

\(V(a-ah),v(Bh-B))\<Kh2r,

\(\/(a-ah),S/B)\<Kh2r.

Also

(/kx 7(5-5„), V5„)

(6.22) = (/k x v(5 - 5,), V(5„ - 5)) + (/k x v(5 - 5„), V5),

|(/k x v(5 - 5„), V(5„ - 5))| < TÍA2'.

Observe that

(6.23) (fk x V(y3 - A/i)) VÄ) = - (xj(b - Bh), fk x V5).

Now define y? G H\.(ÇL) to be the solution to

Aip = - V • (fk x V5),      x G £2,

(6.24) 9«¿>
»r-   =(-/k x vB)-n,      x G 9£2,
9m
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where nis the exterior normal to the boundary of £2.  Then by elliptic regularity,

ip G If+ x(Sl) and

(6.25) IMI/*r+i(n) <K\mHr+Hsiy

Furthermore, for z G M*,

- (V(5 - Bh), fk x V5)  = (V(5 - Bh), v„) = (V(5 - Bh), V(*p - z)).

Thus, by (3.8a)

|(/kx V(B-Bh), V5)|  <Kh2r\\B\\Hr+X(n)\\<p\\Hr+X{n)
(6.26)

i(íí)<Z?A2Hl5H^+1(íí)<ZvA2^.

We now bound the last term in (6.21). We have by (5.5) and the negative norm

estimates for C' — Ch

(/V(C - Ch), V5„) = (/V(C - Ch), V(5„ - B)) + i/V(C - Ch), V5),

(6-27) l(/V(C - Ch), V(5„ - 5))| < Kh2r,

|(/V(C- C„), 7-9)1 - \(C-Ch, 7 • /75)| < Kh2r.

Hence, from (6.20)-(6.27) we obtain

(6-28) l(7F, 75) - (VF„, V5„)| < Kh2r.

Now by (5.4c)

(7F 70 - (VF„, VC„) = (V(F - Fh), VC)
(6.29)

= (V(F - Fh), V(C - Ch)) + (V(F - Fh), VC„).

It follows from (5.11) and (5.5d) that

(6.30) |(V(F - Fh), M(C - Ch))\ < Kh2r.

By (3.6c) and (3.9c),

(6.31) (7(F - Fh), MCh) = - /(/V(5 - 5„), 7C„) + i(fk x V(C - CA), 7C„).

Now by (5.5)

(/7(5 - Bh), 7C„) = (/7(5 - 5„), 7(Cft - C)) + Í/7Í5 - 5„), VC),
(6.32)

|(/V(5-5J, 7(C„ - C))| < KA2'.

Also, by an adjoint argument similar to that of (6.24)-(6.26) it follows that

\(fV(B-Bh), 7Q| <Kh2r.

Turning to the final term in (6.31), we have

(/kx V(C-Ch), VC„)

(6.33)
= (fk x V(C - C„), V(Ch - O) + (/k x v(C - Cft), VC)
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and by (5.5)

\(fkx V(C-Ch),V(Ch~C))\<Kh2r.

Also, since C G ZZ¿(£2) and by the negative norm estimates for C - Ch

l(fk x v<c - c*)> vc)l = KV(C - Ch), /k x VQI
(6.34)

= \(C-Ch, V • (fk x VQ)I < Kh2r.

Hence, it follows from (6.29)-(6.34) that

(6.35) |(VF, VC) - (VFh, VCh)\ < Kh2r.

Thus, from (6.19), (6.28) and (6.35) we obtain

(6.36) \{Tvm, vm) - (ThLhvm, Lhvm)\ < Kh2r.

Hence, it follows from (6.16) and (6.36) that

<Tvm,vm)    <ThLhvm, Lhvm)
-<ZCA   .    Q.E.D.

<"m. vm)        <Lhvm, Lhvm)

VII.   Remarks.  It is easily seen that the estimates given here are uniform for

parts of the spectrum of T in finite intervals not containing 0. However, the bounds

degenerate for eigenvalues whose absolute value approaches 0 and °°.  This can be

understood by considering the operator Tx.  The eigenspace of zero frequency,

{(0, 0, i//)|i// GZZ¿(£2)}, does not contain only smooth functions (in C°°(£2)) and by

(3.10) it is seen that the eigenspaces for high frequencies contain spatially highly

oscillatory functions.  Since T is a bounded perturbation of Tx, we can thus expect

"rough" eigenfunctions for low and high frequencies which can only be resolved for

small A.  Also, note that since 0 is a limit point of eigenvalues of T, the gap between

eigenvalues is small near 0.

It is clear that the first Galerkin method described in Section II will not satisfy

Property A and Property B due to the "spectrum bending".  Thus, one could not use

that method to approximate the spectrum in some finite interval.

That there is no spectrum bending for the proposed method can be seen as fol-

lows. We define the operator Txh:  D(Th) —* D(T„) by Thx(ah, Bh, Ch) = (dh,-iah,

0) where (dh, z) = i(VBh, Vz) for z G M*.  Then, if \h is a nonzero eigenvalue of

Tx , we see by eliminating Bh from the eigenvalue equations that

(7.1) \2h(ah,z) = (Vah,Vz)   for zGMJ.

Thus, (7.1) is a Rayleigh-Ritz approximation to (3.10).  Recall that the Rayleigh-Ritz

eigenvalues are larger in magnitude than their corresponding differential eigenvalues.

So, we see in the absence of the Coriolis terms why our proposed method does not

exhibit spectrum bending and why it yields good spectral approximation results.

Set r2" = Th- Txh. Define

. ||7?i»||
117*      =      sup     —=-.

2 * «*° „    Hull
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Then the above properties are shared by the approximation of T by Th since T =

Tx + T2, where T2 is a bounded linear operator in tf, and Th = Tx + T2 where

\\T2\\h is bounded independently of A.

We have seen that the use of the Stokes-Helmholtz potentials as dependent

variables in place of the horizontal transport vector leads to an improved procedure

for calculating normal modes.  The Stokes-Helmholtz potentials also have the advan-

tage of being "coordinate free". In addition, since by (3.3)

Jn\u\2 dS  =   Sn IVsPl2 dS + fnIVVI2 dS,

by determining whether the greater part of the kinetic energy is "rotational" or "irro-

tational" one can classify normal modes as vorticity modes or gravity modes [16].

If £2 is not simply connected and 9£2 has a finite number of connected compo-

nents {9£2}¿=1, then we have to allow \p in (3.3) to have arbitrary constant values

{c.}¿=1 on the components, i.e.,

\}/(x) — c¡    for x G 9£2,..

We then have to modify the definition of Th by replacing M° with the space

M£ = {W G Mh I there exists constants {c,-}¿=. such that W(x) = c- for x G 9£2,.}.

If we assume optimal order approximation properties for M£ then all of the previous

results remain valid in this case.
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