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An Improved Version of the Reduction

to Scalar CDS Method for the Numerical Solution

of Separably Stiff Initial Value Problems

By Peter Alfeld

Abstract.   In 11 ] the Reduction to Scalar CDS method for the solution of separably

stiff initial value problems is proposed.   In this paper an improved version is given

that is equivalent for linear problems but considerably superior for nonlinear prob-

lems.   A naturally arising numerical example is given, for which the old version fails,

yet the new version yields very good results.   The disadvantage of the new version is

that in the case of several dominant eigenvalues i > 1, say, a system of s nonlinear

equations has to be solved, whereas the old version gives rise to s uncoupled nonlin-

ear equations.

1. Introduction.   In order to avoid repetition the reader is assumed to be famil-

iar with reference [1], particularly with Sections 1, 2, 3-IV, and 5-IV.  There the Re-

duction to Scalar (RS) method has been derived by constructing a set of s scalar initial

value problems whose solution evaluated at xn+x provides an approximation to the com-

ponents of y(xn+x) corresponding to dominant eigenvalues. The scalar initial value prob-

lems are then solved using the trapezoidal rule.

In this paper the reverse procedure is used.  The trapezoidal rule is applied to the

full initial value problem, then the numerical problem is scalarized by forming the sca-

lar product with the left eigenvectors corresponding to the dominant eigenvalues.  In

Section 2 the new RS version is introduced, and it is shown that both versions are

equivalent for linear initial value problems.  In Section 3, the application of both ver-

sions to nonlinear problems is described and compared.   In Section 4 a naturally aris-

ing separably stiff problem is given for which the old version fails, and the new one

produces very good results.

2. The New RS Version Applied to Linear Problems.   In this section we consider

the linear initial value problem

(2.1) y =f(x,y) = A(x)y+g(x),     y(a) = n,     y,gERm,

where A(x) is an m x m separably stiff matrix.  (In the next section we will consider

the case that f(x, y) is nonlinear.)  To (2.1) we apply the CDS scheme
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(2.2(i)) ?„ + , =5>V

(2.2(h)) ^n+i=7,,+i+ t ?^i^'l,;
1=1

see [1].

In [1] the following choice of correction factors is suggested:

tU)    _ _ /A')    ?r     \ -L Ai) i = i   o i

where

(2.3)      + | [«&,/„> + <dn%x,f(xn+x,yn+(Kn%x - <dVx,yn))4li)n,

i =1,2,... ,s.

This system of equations is obtained by setting up s scalar initial value problems

whose exact solutions are approximations to the components of the exact solution cor-

responding to the dominant eigenvalues, and then solving these scalar problems using

the trapezoidal rule.

Since (2.1) is stiff it would be advantageous if we could apply the trapezoidal

rule

«
(2-4) yn+i ~yn = 2 ifixn+i > yn+i) -Q

to the full problem (2.1), but this would lead to a system of m nonlinear equations if

(2.1) were nonlinear. However, forming the inner product with the rth left dominant

eigenvector, dnl\.k, in (2.4), and substituting (2.2(h)) into (2.4) yields

U(âvyn+i+ Í£lAli-yn)

(2.5) = \(¿&»fm + /(*„+„?„+! +   t   l&Äl)).

/=1,2,... ,s.

This is a system of s equations for the s correction factors %n%i' i = 1,2, ... , s.

Making use of the linearity of (2.1), and the biorthonormality of the eigensystem (see

[1]), and proceeding similarly as in [1], (2.5) can be solved exactly, giving

(d^yn+\ifn+sixn+x)))
(2 6Ï £(,)   = - <dw     v      > +   —-—

1 - — X(,)

which is the same correction factor as obtained in [1] as the solution of the system

(2.3).
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Thus, for the linear problem (2.1), the two versions of the reduction to scalar

method are identical, and we have as an immediate consequence

Theorem.   The CDS scheme defined by (2.5) is dominantly stable.

3.  The Two RS Versions Applied to Nonlinear Problems.  We now consider the

fully nonlinear separably stiff initial value problem

(3.1) y' = fix,y),    yia) = n,    /,/er.

Both the systems (2.3) and (2.5) are now nonlinear, but (2.3) is a set of s un-

coupled scalar equations, whereas the unknowns kn'\i in (2.5) are not independent of

each other.

The reason why (2.3) is uncoupled is that the scalar initial value problems giving

rise to (2.3) are defined in terms of functions whose components corresponding to eigen-

values other than the ith are independent of yn + x. This is an advantage computation-

ally, but may lead to problems if (3.1) is so badly nonlinear, that the components cor-

responding to different eigenvalues cannot be considered independent even locally,

The system (2.5), on the other hand, represents the trapezoidal rule, as it is ap-

plied to the full problem (3.1), and then reduced to the dominant components.  Thus,

we can expect that the effect of the interdependence of the components corresponding

to different eigenvalues is represented in the numerical solution of (3.1) by a CDS

scheme based on (2.5).  To solve (2.5) numerically we first consider the case s = 1, and

then generalize to the case s > 1.

If s = 1, (2.5) can be solved by Newton's method, giving

(ffii.%+i+ B&i[rlgff, ~yn - \iSn +/(*n+i,y„+i + BJfti]Wffj^

(3'2) i - f(^ii. £<*.«.%+.+ [ei,]'"^.^)'
r = 0,l,2,....

Approximating the denominator by 1 - KK^\ x /2 and defining

vifl    = ÎT       + \t^)  1 t'l p<i)
Xn + l       Xn + l  T U/i + lJ      cn + l'

(3.2) becomes

(¡$i. ylâi -y» - \ifn +fixn+vy[ài)))

(3.3)    lWiJ IWiJ
l-AX^/2

r = 0,1,2,

If s > l, s iterations of the type (3.3) can be linked.  This, and defining initial

approximations for the correction factors, gives

(3.4(i)) [^li][0l=^°       (= 0 if #> is not defined),
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tei][f+i1=äim --

(3.4(h))

l-h^l/2

i= 1,2.s,f = 0,1,2,

where

(3.4(iii)) 3*li-Ä«+   t   [*&,Wli-
1 = 1

It is straightforward (but somewhat tedious) to see that for the linear problem

(2.1) the iteration (3.4) terminates after one step and reduces to (2.6).

Note that in the above approach we are not restricted to using the trapezoidal rule

(2.4).  Any (implicit) linear multistep method with suitable stability properties could

be used instead, before scalarizing.

4.  Numerical Example.   Enright et al. in [3] give the following separably stiff

initial value problem, arising in insulator physics:

(4.1(0)  V = - ly + 108 * 3yii - ly), \v(0) = 1,

(4.100)  Y = 10 * 2y + 3 * 107 * y(l - 2y),      2yi0) = 0,

(4.i(ii0)  y=-y-y, 3^(o) = o,

Y €[0,1].

The Jacobian df(x, y)/dx of this system is singular for all (x, y) (this is implied

by (4.1(iii)); thus, one of the eigenvalues is zero.  On the exact solution curve the sec-

ond eigenvalue decreases from -1 to -8.6, the third and dominant one decreases from

-3 * 107 to approximately -4 * 107, as x increases from 0 to 1.

(4.1) was tackled by both versions of the RS method, using the 4th order Adams-

Bashforth method as basic method, a step-length « = 0.01 and "exact" starting values

y(xx),y(x2),y(x3),y(x4), computed by a Runge-Kutta method with sufficiently small

step-length.  The initial value y(x0) = r¡ was not used because it lies in the transient

phase.

The first version of the reduction to scalar method, as it is described in [1], failed

after a few steps, because the iteration for the correction factor did not converge in 20

steps.  If the accuracy requirements on the correction factor were decreased, the itera-

tion did converge, but then the numerical solution was sufficiently inaccurate for the

Jacobian no longer to be separably stiff (i.e. X^ became much larger), and the power

method did not converge.  The failure occurred at xn + x = 0.07 or 0.08 depending on

the convergence parameters in the power method, and the routine used to compute the

correction factor.  With our new version, the computation was successful.

For comparison purposes, an "exact" solution was computed using the standard

4th order Runge-Kutta method with the very small step-length « = 5 * 10-8, which was

required by stability.



THE REDUCTION TO SCALAR CDS METHOD 539

Measures of the maximum correction factor, and the maximum dominant and

subdominant error, respectively, are given by

MC =       max      |#>|,
5<n«100

MD=       max    \(dnl\ y(xn) -yn >|,
5«««100

MS=      max     \\y(xn) - yn -(?<'>,y(xn) ~yn>cnl)\L.
5<n<100

Thus, MD gives the maximum error in the dominant component of the numerical solu-

tion; and MS gives the infinity norm of the error after the dominant component has

been subtracted.

The computations were carried out in DOUBLE PRECISION, carrying 19 digits.

The results for our new version are:

MC = 9.63 * 10-12,      MD = 3.08 * 10^17,      MS = 1.60 * 10""6.

The numerical solution is stable, and the results are accurate.  The subdominant accura-

cy can be improved by decreasing the step-size.

For a comparison of the above results with those obtained by a gradient predic-

tion CDS method; see [2].

Conclusions.  We have seen that the first version of the Reduction to Scalar meth-

od, advocated in [1] as the best CDS method available, may fail for severely nonlinear

naturally arising problems.  The improved version, proposed in this paper, is more ro-

bust with respect to nonlinearity.  Its disadvantage is that it is computationally more

expensive than the first version if s > 1.
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