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Semiexplicit A -Stable Runge-Kutta Methods

By G. J. Cooper and A. Sayfy

Abstract.   An s — 1 stage semiexplicit Runge-Kutta method is represented by an î X i

real lower triangular matrix where the number of implicit stages is given by the number

of nonzero diagonal elements.   It is shown that the maximum order attainable is i when

s < 5.   Necessary and sufficient conditions for ^-stability are derived and it is shown

that there must be î — 1 implicit stages if the order is î and s < 5.   Examples are given

for s < 4 where all the nonzero diagonal elements are equal.   Additional problems arise

when i > 4; but when î = 6, an .4-stable method of order 5 is obtained.   This method

has five nonzero diagonal elements, and these elements are equal.   Finally, a six stage bi-

stable method of order six is given.   Again, this method has five nonzero (and equal) di-

agonal  elements.

1.  Introduction.  Consider an initial value problem, for a system of ordinary dif-

ferential equations, of the form x = f(x), x(t0) = x0.  An s - 1 stage, semiexplicit,

Runge-Kutta method computes a sequence of approximations

y(m)=y(m-i) + h   ¿ ^//(^«))s      r = i, 2, ... , s, m = 1, 2, 3, ... ,

i = i

where y^ approximates x(t0 + mh), m = 0, 1,2, ... .  Such a method may be rep-

resented by a real triangular matrix B, and described by an array

¿21

'si

22

Js2

where cr = brX + br2 + + brr,r 1,2, ... ,s.  It is assumed that cs = 1 so that

all methods are of order p > 1,  and it is also assumed that s > 2.  The convention bM

= 0 is not adopted, even though little is gained thereby.  Indeed, in this article it is

proved that, for s < 5,  the maximum attainable order is p = s and that there are such

methods with bss = 0.

Suppose that an s - 1 stage, semiexplicit, Runge-Kutta method is applied to the

scalar initial value problem x = Xx with x(0) = 1.  Then
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y(m) = P(T)

í(T)
y

(rn-i) t = hX,m

1 and

1,2,3,...

where p(r) is a polynomial of degree s

q(r)=   fi 0 - rbrr) = l-ßlT + ß2r2 -■■■ + (-lYßsr*.
r = l

The method is defined to be A -stable if \q(r)\ > \p(r)\ for all t with Re t < 0.  Thus,

for any .4-stable method, all diagonal elements of B must be nonnegative; and at least

one diagonal element must be positive.  The trapezoidal rule [4] is an ^-stable, semi-

explicit, Runge-Kutta method which may be represented by the array

0

1

0

Vi

where bss ¥= 0.  This method is of order p — s = 2.

In each step of a method, a set of « nonlinear equations has to be solved for each

nonzero diagonal element, so that A -stable, semiexplicit, Runge-Kutta methods of order

p = s, with a maximum number of zero diagonal elements, are required. When the non-

linear equations are solved by certain variants of the Newton-Raphson iteration, there is

a significant computational advantage in using a method where all the nonzero diagonal

elements are equal [2].  Methods of this type with p = s < 4 have been obtained by

Norsett [5].

In this article, necessary and sufficient conditions for A -stability are obtained.

These conditions, which are similar to conditions obtained by Norsett [6], are used to

show that when p = s < 5 an A -stable, semiexplicit Runge-Kutta method can have at

most one zero diagonal element.  Methods are obtained with p = s = 4 with one zero

diagonal element and all other diagonal elements equal.  One of these methods is due

to Norsett [5], and the other method is obtained by choosing bss + 0.  When p = s

= 5, it is not possible to obtain an A -stable method with one zero diagonal element and

all other diagonal elements equal.   However, it is possible to obtain such methods when

p = 5 and s = 6.   This is of little interest because an A -stable method with p = 6 and

s = 7 is obtained with two diagonal elements zero and all other diagonal elements

equal.

2.  Attainable Order of Semiexplicit Methods.   An s - 1 semiexplicit Runge-Kutta

method with bss ^ 0 is equivalent to an s stage method of the form

1   *n

'21 i22

Jsl

Js2

Js2 bSs       0
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so that the order conditions may be obtained from those for conventional Runge-Kutta

methods [1].  The conditions may also be obtained, directly, by adapting the treatment

of Cooper and Verner [3].  It is convenient to state the conditions in terms of the

expressions

br(o) = car-o   ¿Vf"1.      r=l,2,...,s, o =1,2, 3,...,
/ = i

where, as already defined, br(l) = 0 fox r = 1,2, ... , s.  Then the conditions

(1.1) bs(o) = 0,      o<p,

(1.2) ¿ bsrcT~1br(o) = 0,      o + r<p,
r = l

(i.3) £ KCVX £ Vf1 W = o,    o + r + v<p,
r=l ;=1

(1.4) t K   Í br,    t bjkbk(2) = 0,      p>5,
r = l / = 1 k=1

(1.5) t bsrbr(2)br(2) = 0,      p>5,
r = l

where o, t and v take all possible positive integer values, are necessary for a method to

be of order p, and are necessary and sufficient for a method to be of order p < 5.

It has been remarked that methods may be obtained with bss = 0 and p = s for

s < 5.  Consider the case p = 5 and assume that bss = 0.  Then the order conditions

may be replaced by the more restrictive conditions

(2.1) bs(o) = 0,      o<5,

(2-2) bri2) = 0,      r =1,2,..., s - 1,

s

(2.3) Z bsrbrj = bsj(l -c,),     j = 3, 4, ... , s - 1,
r = l

(2-4) ¿ bsrcrbrj = -f (1 - cf),      j = 3,4,...,s-l,
r = l z

which give a one parameter family of methods when s = 5.  In particular, the method
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0

5 -y/5

10

5 + y/5

10

1

0

5-y/5

20

0

-1+V5

_1_
12

5 -y/S

20

5 + 3y/5

20

_5_
12

5 -y/5

20

S -y/5

_5_
12 12

0

has equal nonzero diagonal elements (though it is not ,4-stable).

Theorem 1.   When s < 5 the order of an s - 1 stage semiexplicit Runge-Kutta

method cannot exceed s.

Proof.   Only the case s = 5 is considered since the case 5 = 4 may be proved by

a similar argument and the other cases are comparatively trivial.  It is shown that, when

s = S and p = 6, the order conditions must lead to a contradiction.

Condition (1.1) gives, for any polynomial II of degree at most 5,

í>(0*= ¿ b5ríi(cr).
J0 r = l

Suppose there are at most two distinct values c- and ck in {cx, c2,c3, c4}.  Then

- Sl(t-cj)(t-ck)(t-l)fdt = 0

c¡ + ct1
+

cick
v = 0,1,2,

(4 + v)(3 +v)       (3 + »0(2 + v)       (2+ »0(1 + v) '

gives a contradiction.   Hence, at most, two values in {cx, c2, c3, c4} axe equal.  Sup-

pose c = ck with / ¥= k.  Then, b5j + b5k ¥= 0; and b5r ¥= 0 for r ¥=]', k and r < 5.

If cx,c2,c3, c4 are distinct,condition (1.2) gives b5rbr(2) = 0 for all r < 5.  If

not, then ôSrôr(2) = 0 for all r #/, k, where c;- = ck and (1.2) and (1.5) give

bsjbjV) + b5kbk(2) = 0 = b5ibf(2)2 + b5kbk(2)2,      bsj + b5k * 0.

Hence, b5rbr(2) = 0 for all r < 5 and, in particular, b5Xcx = 0.

Suppose c2,c3, c4 are not distinct with c- = ck,j =£ k.  Let cr be the other value.

Then, since b5Xcx = 0, condition (1.1) gives

- Slit-Cj)it-cr)(t-l)fdt = 0

Cj + cr

+
CiCr

(4 + »0(3 +v)       (3 + »0(2 + v)       (2 + »0(1 + »0 '
v= 1,2,

whence cr = (4 ± \/6)/10 and cj = (4 + V6)/10.  This gives b5(6) ¥= 0 so that c2, c3,

c4 must be distinct and b5rcr ¥= 0 for r = 2, 3, 4.
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Now b5rbr(2) = 0 for all r and b5Xcx = 0 so that (1.3) gives

5 5

¿54^4  Z   b4rbr(2) + b53cv3   Z  b3rbr(2) + b52cv2b2rbx(2) = 0,      v = 0, 1, 2.
r=l r=1

Since c2, c3, c4 ate distinct b52b2Xbx(2) = 0.  But b52 ¥= 0 so that b2Xcx = 0 and,

also, ¿>2(2) = 0.  Thus, b2(3) # 0.  However, (1.2) gives b2(3) = 0, a contradiction.

It has been mentioned that it is possible to obtain ^4-stable, semiexplicit, methods

with p = s = 4 which have equal nonzero diagonal elements. It is now shown that it is

only possible to obtain a semiexplicit method of order p = 4 of the form

c

b2X

b3i

bA1

c

¿32 c

be 0j4x u42 u43

if (24c3 - 36c2 + 12c - l)(6c2 - 8c + 1) = 0.  Since (1.1) gives a quadrature rule

which is exact for any polynomial of degree three,

~ Jo (t~c)(t-c2)(t-c3)dt = 0

(3.1)
= cc2c3 -  ^(cc2 + cc3 + c2c3) + - (c + c2 + c3) - J

Suppose that (1.1) holds.  Then conditions (1.2) reduce to

(3.2)

(3.3)

*43*32C2  + (è43è3l   + *42*2l)C

1 -3c

j _ 4C
b^b32c\ +ib43b3x +b42b2x)c   =      J2   .

3-8c
(3.4) b43b32c2c3 + (b43b3xc3 + b42b4lc2)c

while condition (1.3) may be expressed as

(3.5) ¿43^32^ - 4cc2 + 2c2) - (b^b3x + b42b2x)c2

24

0.

It follows that c ¥= 0 and that Eqs. (3.2), (3.3) and (3.5) can be solved only if

c2(2c - l)(6c - 1) = 2c(6c2 - 6c + 1) whence 2c - I ¥= 0.  The equations give

b^b32(c2 -c)2
1 -4c

*43Ô32C2(C2  ~ C) =
6c2 - 6c + 1

24     '      ty43t/32'-2Vl-2       "/ ]2

so that (c2 - c)(l - Ac) =#= 0.  Since b2x = c2 - c and b3x + b32 = c3 - c, (3.4) gives

24     = b43b32c3(c2 -c) + b43cc3(c3 - c) + b42cc2(c2 - c).

Conditions (1.1) imply that

¿>43cc3(c3 ~ c) + b42cc2(c2 -c)= ^  ~(s°'\

and substitution gives c3(l - 4c) = (c2 - c)(12c2 - 16c + 3), whence
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._ c(12c2-16c + 3)

C*      (2c - l)(6c - 1)

From (3.1), if 6cc2 - 3(c + c2) -I- 2 = 0, then 6c2 - 6c + 1 = 0 so that c2 = 0, which

gives a contradiction.  Thus,

6cc2-4(c + c2) + 3 72c4 - 168c3 + 128c2 - 36c 4- 3

3     2{6cc2-3(c + c2) + 2}      2{72c4-144c3+96c2-25c + 2}'

Hence a polynomial equation is obtained for c and this factors as

(2c - l)2(24c3 - 36c2 + 12c - l)(6c2 - 8c 4-1) = 0.

The roots of 24c3 - 36c2 + 12c - 1 are real and positive and give the methods

c

1 -2c

2

2c

2c(c - 1)

2c-1

1 -4c

6c- 1

6c(2c - 1)

Mc - D       0
2c- 1

which were obtained by Norsett [4] who showed that one of these methods is A -stable.

The roots of 6c2 - 8c + 1 give the methods

2
3

J_
6c

c

2-3c

3

4c- 1

6c

1

20c

1 -4c

2c

%      010

though neither of these methods is A -stable.

3.  Conditions for A -Stability.  Suppose that an s - 1 stage, semiexplicit, Runge-

Kutta method

'n

'21 '22

*.l 's2

is applied to the scalar initial value problem x = Xx with x(0) = 1.  Then
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(m) _  PM    (m-1)     T = h\m = l23
s q(r)    s        ' *>*»J»"->

where p is a polynomial of degree s - 1 and q a polynomial of degree s,

P(t)= 1 -cr,r + a2r2-+ (-l^a^T*-1,

?(t) =   ¿O- Tbrr) = 1 - ß, r + |32r2 - • ■ • + (- 1)V-
r = l

The method is .4-stable if |<7(t)| > \p(r)\ for all t with Re t < 0 so that it is necessary

and sufficient that brr> 0 fox r = 1,2, ... , s and p(r)/q(r) < 1, Re r < 0.  Since all

methods are assumed to be of order p > 1 the rational function is not constant.  As

q(r) is analytic for Re r < 0, it follows from the maximum modulus principle that nec-

essary and sufficient conditions for ,4-stability are that brr> 0 fox r = 1,2, ... , s and

IP0»I2 < l?0»l2 Vf E R.  Now define ß0 = 1 and ßs+x = 0,+2 - ••• - 0.  Then

\q(T)\2 = q(T)q(T) =   ¿   í"1)'   Z  KW**
r=0 j=0

2i k/2] .   .       .      .
=   Z (-IX    Z    ßr-jßji^'r' + r'f'-')

r=0 j=0

where [y] is the integral part of v and where the asterisk denotes that any term with

2/ = r is halved.  It follows that

\qiiy)\2 = 2 z y2r ¿*02r-/0,(-i)r+/,
r=0 ;=0

and there is a similar expressions for \piiy)\2 with a0 = 1 and as = as+x = • • • = 0.

Hence an s - 1 stage semiexplicit Runge-Kutta method is A -stable if and only if brr =

0,r = 1,2, ... , s, and

Z y2'   Z* &2r-A - «2r-ñ)i- lY+* >°     V^ > °"
r = l /'=0

This result may be further simplified if it is assumed that the method is of order p for

then

= eT+T + 0(\t\p + 1)

whence |<7(/»|2 - lp(i»l2 = 0(yp + l).  This gives the following result.

Theorem 2. An s - I stage semiexplicit Runge-Kutta method of order p is A-

stable if and only if brr> 0,r = 1,2, ... , s, and

Z      /  ¿*(&,-^-«W*X-l)r+/>0    Vy>0.
r=l(p+2)/2] /=0

This is similar to a result obtained by Norsett [6].  Other stability regions may

also be examined.

Pij)

dir)
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Suppose that an s - 1 stage semiexplicit Runge-Kutta method is of order p.  Then,

since p(T)/q(r) = cT + 0(|r|p + 1), it follows that

(4) <*r = ßr-ßr^+Kßr_2---- + (-l)r^,      r=l,2,...,p,

and the polynomial p is uniquely determined if p > s - 1.  Of course, these are order

conditions rather than conditions for A -stability.  However, in the search for A -stable

methods it is convenient to start with diagonal elements bxl, b22, ... , bss, which en-

sure .¿-stability, and then to solve the (remaining) order conditions.  When p = s, the

diagonal elements must be chosen so that as = 0.  When p = s - 1, there is no a priori

restriction on the choice of diagonal elements.  In some applications that are envisaged,

p = s - 2 is required.  Here it suffices to choose both the diagonal elements and as_x,

and then to incorporate the choice of as_x as an extra condition to be satisfied when

the order conditions are solved.

Suppose that an s - 1 stage, semiexplicit, Runge-Kutta method is of order p = s,

that brr> 0 fox r = 1,2, ... , s, and that at least one diagonal element is zero so that

ßs = 0. Since as = 0, a necessary and sufficient condition for the method to be ^-sta-

ble is that

Z / ¿*       (02r-/ß/-«2,-/Oy)(-l)r+/>O      Vy>0.
r = [(s+2)/2] /=2r+l-i

Some low order cases are now considered.

When p = s = 2 and ß2 = 0 all methods are /1-stable.  Since a2 = 0, it follows

from (4) that ßx = 1/2 so that either bu = 1/2 or b22 = 1/2.

When p = s = 3 and ß3 = 0 a method is A -stable if and only if ß\ > a\.  Since

a3 = 0, it follows that j32 =  (ßx - l/3)/2 and ß22-a\ = (0, - l/2)/6.    Thus, such

a method (with nonnegative diagonal elements) is .4-stable if and only if (Sx > 1/2.  This

inequality is violated if ß2 = 0, so that there must be at least two nonzero diagonal ele-

ments.  However, these elements may be chosen equal.  An example with bxl = b22

and ¿33 = 0 is given by Norsett [5].  An example where bxx = 0 is the method

0

3+V3
c c c =--f—

6

6c- 1      1 -2c

12c 4c C

When p = s = 4 and ß4 = 0 a method is ,4-stable if and only if ß2 > a\.  Since

a4 = 0, it follows from (4) that

03 = \{h -}*. + h)    and    ̂  -*3 -?(* ~l)(ß2 - H + i) •

As j33 3s 0, necessary and sufficient conditions for ^4 -stability are

ßt-±>0,  ß2-\ßx + \>0.

0

2c

1
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When ß3 = 0, these inequalities give ßx = 1/2 so that ß2 = 1/6; and the method cannot

have real diagonal elements.  Thus, there must be at least three nonzero diagonal ele-

ments.  If these elements are chosen to be equal, then ßx = 3c, ß2 = 3c2 and ß3 = c3,

and a4 = 0 gives

24c3-36c2 + 12c-1 =0.

Only the largest root of this equation c = 1.06857902130 ... satisfies the .4-stability

conditions. An example with b44 = 0 was given in the previous section and is due to

Norsett [5].  The case bxx = 0 gives

0 0

2c c c

1 +2c 4c2 + 8c - 1 1 -4c2

2 16c 16c C

24c2 - 12c + 1       2c(c - 1) i -6c

12c(4c2 - 1) 2c~1 3ci2c + !)

An example where the diagonal elements are not equal is the method

1

j_
2

0

1

and it is readily verified that the diagonal elements satisfy the ^-stability conditions.

4. Higher Order Methods. Methods of order p = 5 present new complications

which are not directly associated with the order conditions. Consider the case p = s

= 5 with ß5 = 0.  Then, a method is ̂ -stable if and only if

- 2(ß4ß2 - a4a2) + ß\ - a2 + y(ß\ -*\)>0    \/y > 0.

Since a5 = 0 the condition (4) gives ß4 = (ß3 - ß2/3 + j3j/12 - l/60)/2 and hence

ß2 - 4 - 2(ß4ß2 - a4a2) = £ (-k + \ß2 - ^ßx + j¿) ,

so that necessary and sufficient conditions for A -stability are that

k-y0i + è>o* ^-y^ + ^-^o, -03+^2-2^i+¿>(

3^

4

6

5_
4
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If ß4 = 0, the first two inequalities give ß2 - ßx/2 + 3/20 = 0, whence ß3 -

/3j/12 + 1/30 = 0.  Suppose that bx,b2 and b3 are the three possible nonzero diag-

onal elements.  If bx + b2 = 1/2, the first equation gives bxb2 = 1/10 and bx and b2

axe complex.  If è, + b2 i= 1/2, the equations give

»î(*l - \h * è) -1, (i»i - ¡fr + ¿) ♦ i»i - ¿fcj + -i - 0;

and bx can be real only if p(b) = - 300Z>4 + 24063 - 84Z>2 + 146 - 1 is nonnegative

for some b.  If p(b) > 0 for some real b, then p(c) > 0 for some c such that p'(c) =0.

But when p'(c) = 0,

p(c) = -y0(20c2 -lc+l),

which is negative for all real c.  Hence, there must be at least four nonzero diagonal

elements in an A -stable method with p = s = 5.

Now suppose that ß4 =£ 0 but that the diagonal elements are chosen to be equal.

Since |34 = (ß3 -ß2/3 + /Jj/12 - l/60)/2, these elements must satisfy

120c4 - 240c3 + 120c2 - 20c + 1 = 0.

A direct computation shows that each root violates one of the three inequalities neces-

sary and sufficient for ,4-stability, so that this case differs from the lower order cases.

Even when the diagonal elements are not equal it appears that it may not be possible

to satisfy the conditions for ,4-stability together with the condition

To overcome this it is possible to consider methods where p = s = 5 but ß5 =/= 0.

In this case a method is A -stable if and only if

2(ß5ßx - cx5ax) - 2(ß4ß2 - cx4cx2) + (ß2 - a2)

(5)
+ y{-2(ß5ß3 - a5a3) + (ß2 - a2)} + y2(ß\ -a\)>0

for all y > 0.  Here a5 = 0, where a5 = ß5 - ß4 + ß3/2 - ß2/6 + ßx/24 - 1/120.  Sup-

pose that all diagonal elements are equal, bxx = b22 = ••• = c.  Then

120c5 - 600c4 + 600c3 - 200c2 + 25c - 1 = 0,

and only one root c = .278053841136 ... satisfies the ^-stability condition (5).  It now

seems likely that the order conditions (1) cannot be satisfied.

However, it is possible to obtain an A -stable method with p = 5 and s = 6 with

ß6 = 0.  The same A -stability condition (5) must be satisfied but it is no longer neces-

sary that as = 0.  Since ßs = 0 implies as = 0, it follows as before that there must be

at least four nonzero diagonal elements and that these diagonal elements cannot be

equal.  Hence, suppose that there are five equal diagonal elements so that ßx = 5c,

ß2 = 10c2, ß3 = 10c3 and ß4 = 5c4 and j35 = c5.  Although it is now possible to ob-

tain a method where as = 0, it is more interesting to consider other values of c which

satisfy the ^-stability condition.  In particular, the ^-stability condition is satisfied if

c = (6 - y/6)/10; and this choice gives the following A -stable method of order 5:
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6-y/6

10

6 + 9V6
35

4-y/6
10

4+y/6

10

6- s/6
10

-6 + 5V6

14

888 + 607V6
2850

3153 -3082V6
14250

-32583 + 14638V6

71250

6-V6
10

126- 161V6
1425

3213 + 1148V6
28500

6-V6
10

-267 + 88V6

500
6-V6

10

-17199 + 364a/6    1329 - 544y/6    -96 + 131x/6
142500

0

2500

16-V6
36

6 -y/6

10

16 + V6
36

Finally, the case p = 6 and s = 7 is considered. When ß6 = ßn = 0 the condition

for .4-stability is that

-2(05J33 - <xs<x3) + (ß2 - a2) + y(ß\ - a2) > 0    Vy> 0;

and a6 = 0, which gives ß5 =(ß4 - ß3/3 + /32/12 - py60 + 1/360) ¡2.  It follows that

necessary and sufficient conditions for ,4-stability are

03-U + 4^i- Tn>0>20' 30

04-^3+i^2-^ßl+    l2lP0>

1 1 1 1 1 1
-ß4ßx +  204 + yMi - Ï5*3-2oWi + 12*32 + 30^1 -4Ö^i + 288>0-

Suppose that the five nonzero diagonal elements are chosen equal so that ßx = 5c, ß2

= 10c2 ,ß3 = 10c3 and ß4 = 5c4 and j3s = cs.   Then, c must satisfy

720cs - 1800c4 + 1200c3 - 300c2 + 30c - 1 = 0;

and there is just one zero c = .473268391258 ... which satisfies the conditions.  For

many problems such a method would require little more computation than that needed

for a fifth order 4-stable method.

To obtain such a method consider a general s - I stage method

c, bxx

b21 '22

bsi       bs2  •  • • b„

where cr = brX + br2 + • • • + brr for r = 1,2, ... , s, and cs = I.  Let

br(o) = c°r-o   Z Vf1'      r= 1, 2, ... ,s, a- 1,2, 3, ... ,
/=i
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so that br(l) = 0 for r = 1, 2, ... , s.   Now suppose that bsrbr(2) = 0 for r = 1,2,

... , s.  Then the method is of order p = 6 if

(6.1)

(6.2)

bs(o) = 0,      o < 6,

Z bsrcTr-1br(o) = 0,      o + r<6,
r = l

(6.3) Z bsrcTr-1   Z bri<tr%i°) = 0,      a + r + m < 6,
r = l i = l

s s s
„T-l       X^     J,     .JU-1(6.4)      Z Kcr       Z brA      Z Vf ' Va) = 0,       o + T + p + v<6,

r = 1 i = l / = l

(6.5)

(6.6)

Z  bsr   Z  *„•   Z  *,/    Z bikbk(2) = 0,
r = 1 i=l / = l ft =i

Z *,,   Z Vi(2)£,(2) = 0,
r = 1 / = j

where a, r, ju and v take all possible positive integer values.  To simplify these equations

assume that

Z  bsrbrj = VI - c/)>      j = 3,4, ... ,s,
r = l

. ,S.Z  bsrcrbr/=-f(l-cf),      / = 3,4,
r = l

Provided that c2 ¥= c, these equations must hold for / = 1, 2, ... , s because

¿  bSTc^br(l) = 0,     ¿  bsrc\-'br(2) = 0,      r = 1, 2.
r=l r=l

A method with s = 7 which has the particular form

c

b2x        c

ô3i        b 32

/41 i/42 w43

ôsi è52 bs3        b54        c

b6i        b62        b63        b64        b6s        0

0 0 b73        b14        bls        b16        0
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where cr = brX + br2 + •■■ + bTT and c2 ¥= c, is of order p = 6 if

(7.1) b3(2) = b4(2) = b5(2) = b6(2) = 0,

s

(7.2) Z  bsrbrj = bsj(l-Ci),      7 = 3,4,5,
r = l

í b ■
(7.3) Z bsrcrbrj = -f (1 - c2),      / = 3, 4, 5,

r = l

(7.4) ¿/a) = 0,      a < 6,

(7.5) Z  bsrc2br(3) = 0,
r = l

2      *
(7.6) ^  bsrc2  Z *wW = 0.

r = 1 1=1

Since (7.4) implies that c5 ¥= 1 conditions (7.2) and (7.3) give, in particular, cs

1 - 2c.  Condition (7.4) gives the quadrature rule

Slpit)dt=   Z  bsrP(cr)
r = l

valid for any polynomial p of degree 5.  Hence,

JJ (r-c3)(r-c4)(r-c5)(r-l)<ir = 0, JJ r(i-c3)(r-c4)(r-c5)(r-l)dr = 0,

and these identities imply that c3 and c4 are the two (real) roots of

(8.1) 5(40c2 - 24c + 3)x2 - 10(16c2 - 9c + l)x + 20c2 - 10c +1=0.

The quadrature rule also gives the relations

c c c   + c i

(8.2) bs3(c4 - c3)(cs -c3)(l -c3) = -y1 -    4 fi        + -¡j«

(8.3) 0j4(c3 - c4)(c5 - c4)(l - c4) = ^ - ^fi  + ±,

(8.4) ¿iS(c3 - cs)(c4 - cs)(l - c5) = -V- - "h"1 +
^3C4 C3  + C4 1

2 6~~ +   Ï2'

/-» <;•» ,    , ., 2c- - 1 3c,; - 2 4cc - 3
(8-5) bs6(c3 - i)(c4 - i)(Cs - j) = _J_ ^ _ -5^—(c3 + c4) + -L__,

which define the quadrature weights.

To obtain an expression for c2 consider condition (7.5).   Since Eqs. (6.2) must

hold, this condition is subsumed by

¿ bsr(cr - l)(cr - c5)br(o) = 0,   0=1,2,3,
r = l

which give three linear equations.  Provided that c, c2 and c3 axe distinct the equations
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give

ax c2c3 - a2(c2 + c3) + a3

(8.6) bs4(c4 - l)(c4 -c5)b4x +bs3(c3 - l)(c3 -cs)b3x =-(c_c )(c_c }-.

(8.7) bs4(c4 - l)(c4-c5)b42 + bs3(c3 - l)(c3 -c5)b32 =

(8.8) ¿î4(c4-l)(c4-cs)Z>43 =

■2jyt.    í-3j

axcc3-a2ic + c3) + a3

(c2-c)(c2-c3)

axcc2 -ot2(c + c2) + a3

(c3-c)(c3 -c2)

where ax, a2 and a3 axe given by

I2c2-8c+l 20c2 - 10c + 1 30c2 - 12c + 1
ai = ñ '   tt2 ~ 60~       '   a3 -  - 180

On the other hand, Eqs. (6.3) imply that (7.6) may be replaced by

¿ bsr(cr-l)(cr-c5) ± bribi(2) = 0.
r=l i=l

Since br(2) = 0,r = 3, 4, ... , s, and since bx(2) = -c2 and Z>2(2) = c\ - 4cc2 + 2c2,

this equation gives

bs4(c4 - l)(c4 - c5)b4x + bs3(c3 - l)(c3 - c5)b31

c\ - 4cc2 + 2c2

c2
{bs4(c4 - l)(c4-cs)b42 + bs3(c3 - l)(c3 -c5)b32}.

Equations (8.6) and (8.7) now give a quadratic equation for c2 and the root c2= c

must be rejected.  Thus,

c^ccxj - 3a2) - c3(2c2a1 - 3a3) + 2c(ca2 - a3)
(8.9) c2=c-.

c\(cclx - a2) - c3(2c2aj - 0:3) + c(2ca2 -a3)

Thus, b2x = c2 - c may be obtained; and since b3(l) = ¿>3(2) = 0,

c\ - 4cc, + 2c2
(8.10) ¿32= 2(C2-C) '     &3>=C3-^-*32-

Equations (8.6), (8.7) and (8.8) now give b41, b42 and Z>43 since the quadrature weights

have already been given.

The remaining coefficients may be obtained by considering conditions (7.2) and

(7.3).  These give

(8.11) bs6b65=bs5c,

c2 + 2(3c - l)c4 + 4c2 - 6c + 1
(8.12)      b^b^=-bi6i/64 us4 4C

io .„,.                               c\+ 2(3c - l)c, + 4c2 - 6c + 1 Cr-t
(813)      bs6b63 = -6,3 -3-3--  + bs4b43 -^
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ÎR14Ï                                          u    t,            u      ° " C4>(c5 - C4>
(8-14> *,S*S4 = bs*-£-,

rsisï u   u        u    0 -C3KC5-C3)      .   .     »(8.15) ô.céc, = ft„,-7--è-6
15^5 3        "s3 ^ ^4^43       2c

Finally, ôs(l) = bs(2) = 0 and b6(l) = b6(2) = 0 give

(8.16) ¿c-,   =

14c2 - 8c + 1 + 2Z>s3(c - c3) + 2ès4(c - c4)

(8-17) b„ =

52 2(c2 - c)

cs + 2è63(c - c3) + 2è64(c - c4) + 2è6S(c - c5)

62 2(c2-c)

and ¿51 = c5 - c - ô52 - b53 - bs4 and b61 = 1 - ô62 - Z>63 - &64 - o6s.

Because c3 and c4 are the roots of the quadratic equation (8.1) there are no sim-

ple expressions for the coefficients in terms of c alone.   However, the coefficients are

easily computed from Eqs. (8) once c has been obtained as the root c=.473268391258

... of 720c5 - 1800c4 + 1200c3 - 300c2 + 30c - 1.  The coefficients have been com-

puted to 20 significant decimal figures and the results, rounded to 12 decimal figures,

are given in the table.  Each author has computed these coefficients independently, and

it has been verified that the coefficients satisfy all the order conditions given by But-

cher [1].   A similar method may be obtained by interchanging c3 and c4 and this gives

c2 E (0, 1), but some coefficients are large.
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