CORRIGENDA

H. J. Godwin, "A note on congruent numbers," Math. Comp., v. 32, 1978, pp. 293-295.

Dr. N. M. Stephens of Cardiff has informed me that he has probed (Bull. London Math. Soc., v. $7,1975, \mathrm{pp} .182-184)$ that a prime p is congruent if $p \equiv 5$ or 7 (mod 8). Thus the only merit in my table (Math. Comp., v. 32, 1978), pp. 293-295) lies in leading to explicit representations.

Dr. J. Lagrange of Reims has noticed that the values for r and s for $p=311$ and for $p=383$ are not coprime, though this does not prevent explicit representations from being obtained. Since a rerun of the program produced coprime pairs, I cannot now determine how the quoted ones arose.

H. J. Godwin

Department of Statistics and Computer Science
Royal Holloway College
Egham Hill
Egham, Surrey TW 20 0EX, England
C. M. Lee \& F. D. K. Roberts, "A comparison of algorithms for rational l^{∞} approximation," Math. Comp., v. 27, 1973, pp. 111-121.

Charles Dunham has pointed out to us that the theorem we stated in [1] is not a correct statement of the theorem in [2]. The hypothesis that $Q^{*}(x)$ not have any sign changes in the span of $\overline{\mathbf{X}}$ was omitted. A partial solution of the characterization problem of (1) has now been given by Leeming and Taylor [3] and a complete solution by Dunham is to appear in [4].

1. C. M. LEE \& F. D. K. ROBERTS, "A comparison of algorithms for rational l^{∞} approximation," Math. Comp., v. 27, 1973, pp. 111-121.
2. T. J. RIVLIN, An Introduction to Approximation Theory, Addison-Wesley, Reading, Mass., 1964, p. 131.
3. D. J. LEEMING \& G. D. TAYLOR, "Approximation with reciprocals of polynomials on compact sets," J. Approximation Theory, v. 21, 1977, pp. 269-280.
4. C. B. DUNHAM, "Alternation in (weighted) ordinary rational approximation on a subset," J. Approximation Theory.

C. M. Lee

F.D. K. Roberts

Department of Computer Science
University of Alberta
Edmonton, Alberta, Canada
Department of Mathematics
University of Victoria
Victoria, B. C., Canada
H. C. Williams, "Certain pure cubic fields with class-number one," Math. Comp., v. 31, 1977, pp. 578-580.

On page 578, line -4 , for 35100 read 35000 . In Table 3 on p. 579, the lines
following that for $x=20000$ should read

x	$100 g(x) / n(x)$	n	$100 g(x) / n(x)$	n	$100 g(x) / n(x)$
21000	47.72	26000	47.46	31000	47.53
22000	47.13	27000	47.59	32000	47.71
23000	47.33	28000	47.54	33000	47.36
24000	47.73	29000	47.64	34000	47.49
25000	47.41	30000	47.74	35000	47.34

H. C. Williams

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba, Canada R3T 2N2

