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A Polynomial Representation of Hybrid Methods for

Solving Ordinary Differential Equations

By G. K. Gupta

Abstract.   A polynomial representation of the hybrid methods for solving ordinary

differential equations is presented.   The advantages of the representation are briefly

discussed.   Also it is shown that one step taken using a hybrid method is equivalent to

two steps of the usual multistep methods; one step taken using an explicit method and

the other taken using an implicit method.   Therefore, the hybrid methods are really

a special case of cyclic methods.

1.  Introduction.   A linear fc-step multistep formula for the solution of the

differential equation

(i-i) y'=f(x,y),    y(x0)=y0

is usually written as

k k

(1.2) ^ + 1  =  EVn + l-r-4^  Zfy',I + 1_,-
r=l r=0

The above formula has 2fc + 1 unknown a's and |3's and, therefore, can be of

order up to 2fc.  However, it was shown by Dahlquist (1956) that the order of the

above formula cannot exceed fc + 1 (if fc is odd) or fc + 2 (if fc is even) for the for-

mula to be stable. It was suggested by several authors, e.g., Butcher (1965), Gear (1965),

and Gragg and Stetter (1964), that a slight modification of the above formula can

overcome the stability condition imposed.  The modified formulas were given the name

'hybrid methods' by Gear (1965), because they seem to combine the features of Runge-

Kutta and the linear multistep methods by evaluating the function / at 'off-step'

points.  Thus, the hybrid method with one 'off-step' point looks like (there is no

reason why the number of off-step points should be restricted to one)

O-3) yn + l   =E   «ryn + l-r+hi:ßSn + l-r + «ß8fn+l-e-
r=l r=0

The order of the above formula can be as high as 2fc + 2 if we include 0 as a variable.

In practice, it has been shown by Kohfeld and Thompson (1967) that stable formulas

of order 2fc + 2 can be obtained only for fc < 6.  Stable formulas of order 2fc + 1,
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fc < 7 exist, but it is not known what maximum orders are achievable for stable

formulas for fc > 7.   For further discussion refer to Lambert (1973, Chapter 5).

It is obvious that to implement formula (1.3), a value Xox fn + x_e must be

computed.  This requires computing yn + x _e ; and therefore, two predictors are

required, one for computing yn + x_e and another for computing the predicted value

of yn + x.  This and the problems of error estimation make it somewhat more difficult

to design an algorithm using hybrid methods than by using the conventional predictor-

corrector methods.  This actually may have been the reason why interest in the develop-

ment of hybrid methods decUned, and these methods at present are not considered

'competitive' with the other methods available.

This paper looks at a polynomial representation for the hybrid methods and then

suggests an implementation using the Nordsieck representation of a polynomial.  It is

shown how the problems of predicting yn + x_e and estimating the error could possibly

be overcome.

2.  Polynomial Representation.  A polynomial representation of the usual Unear

multistep methods has been presented in WaUace and Gupta (1973) and was extended

to represent the seccnd-derivative methods in Gupta (1978).  We now show how this

representation can be used to represent the hybrid methods.

Assuming that the step-size A is fixed, we have xn = xQ + nh; and yn is the

computed solution at xn.  If Pn(x) is the polynomial approximation of degree m at xn,

such that P„(xn) = yn, then the new polynomial Pn + X(x) is obtained using the follow-

ing relation

(2.1) Pn+i(x) = P„(x) + 8n+1C((x-xn+l)lh),

where C is a fixed polynomial of degree m characteristic of the particular m-step

(usual) multistep method being used.    Sn + 1 is chosen to satisfy

(2-2) K+i(xn+i)=f(xn+l,Pn + 1(xn + l))-

In the hybrid methods we require that, in addition to Pn + X (x) satisfying the differential

equation (1.1) at xn + x, it must also satisfy an additional condition which usually is

(2-3) ^ri + i(*« + i-e) = fn + i-e = f(x„ + i-e> ^n + i-e)'

where 6 is usually chosen so that 0 < 6 < 1 and yn + i_e is an approximation to the

solution at xn+x _e computed in some way.

Pn + X(x) as expressed in (2.1) assuming a constant polynomial C, has only one

variable 5n + 1.  Therefore, Pn + X(x) can satisfy only one of the above two conditions.

To satisfy both conditions C must include a variable and not be a constant polynomial.

We now consider one example showing how a variable C can represent a hybrid

method.  The treatment here is similar to that for the second-derivative methods

presented in Gupta (1978).
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Example.   Consider a one-step hybrid method

(2-4) yn+i=yn+ä6(fn+i +4+4/„+l/2).

The above formula is derived using a polynomial Pn +, (x) approximating the differential

equation such that

Pn + l(Xn) = yn'     Pn + l(xn) = fn '    Pn + 1 (xn + Vi) = fn + lA '     °n + l(Xn + 1 ) = fn + 1 '

The above four conditions imply that Pn + x (x) is of degree 3 and also that C(t) must

satisfy the foUowing conditions: C(x = xn) = 0, C'(x = xn) = 0, C'(x = xn + x)= 1

(say) and C'(x = xn + Vl) = s.  If we put t = (x -xn+x)/h, then we want C(~l) = 0,

C'(-l) = 0, C'(0) = 1, and C'(-Vî) = s, where s is yet to be determined.  We have

put C'(0) = 1 arbitrarUy, because the scaling factor gets included in S„ + 1 in repre-

sentation (2.1).

The above conditions give us

(2.5)

C(0=(¡+¡s)+t + (¡-2s)t2+¡(l-2s)t>

= \^ + \t2+Y+s{^-2t2-^)=p(t) + sq(t).

Note that p(t) satisfies the conditions p'(0) = 1, p'(-l) = 0, p'(-lÁ) = 0, p(-l) = 0

and q(t) satisfies q'(0) = 0, q'(~l) = 0, q'(-Vz) = 1, <7(-l) = 0.   Therefore, p(t) and

q(t) axe easily obtained.

The above example shows how the representation (2.1) can be extended to

represent the hybrid methods. Pn + X(x) for a hybrid method may be written as

follows:

(2.6)    Pn + Xix) = Pnix) + Sn + ltlp((x -xn+1)lh) + 5n+li2q{(x-xn+1)lh),

where Sn + X , and Sn + 1 2 are chosen to satisfy conditions (2.2) and (2.3).  We note

that the above representation is similar to the representation for second-derivative

methods obtained in Gupta (1978) except in that case Sn + 1 , and bn + x2 axe

evaluated to satisfy condition (2.2) and a second-derivative condition.  Also, it follows

that a hybrid method using two off-step points can be represented by

Pn + l(t) = W + 5» + l,lP((* - *„ + ,)/*) + S„ + l,2<7((* - *„+.)/*)

(2.7)

+ K + l,A(X-Xn + l)lh)'

and so on.  Again, the above relation is similar to a relation which would be obtained

for a multiderivative formula using second and third derivatives of y.

We call formulas of type (2.6) a 2-C multistep method because it is a method

requiring two corrections (or needs to satisfy two conditions).  Similarly, formulas of

type (2.7) could be caUed 3-C multistep methods.

3.  Implementation.  In the polynomial representation suggested by Nordsieck

(1962), a polynomial P„(x) of degree m at xn is represented by the following vector:
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[Pn(xn), hP'n(xn), hP„\xn)l2l, ..., h">P<r\xn)/m\]T.

Using this representation, Gear (1971, p. 217) suggested that the predictor-corrector

algorithm may be expressed as follows:

(3.1) an+l  =Aan +lw'

where an + x is the vector of scaled derivatives of Pn + l(x) at *„ + 1, and an is the vector

of scaled derivatives of Pn(x) at xn.  A is the Pascal triangle, / is the vector of scaled

derivatives of C at xn + x and w is a scalar.

In using (3.1) to represent the hybrid methods, we find that / is not a constant

vector.   Similar to the second-derivative methods, hybrid methods can also be represent-

ed by the foUowing modification of (3.1):

(3.2) an + x =Aan + gwx + zw2,

where g and z are (constant) vectors of scaled derivatives of polynomials p and q in

(2.6) and wx and w2 are scalars computed to satisfy (2.2) and (2.3). Vectors g and

z for the example in the last section are

[WriY - [§.°.-^r.
We have already commented that in representation (3.2) scalars wx and w2 must

be computed by an iterative method to satisfy the two conditions (2.2) and (2.3).

These iterations for hybrid methods turn out to be quite simple.  In the example we

considered in the last section we have

(3.3) p'(x =xn + x_e) = p'(-V2) = 0    and    q'(x = xn+1_e) = <?'(-#) = 1.

If p and q satisfy these two conditions, then condition (2.3) wiU be met if

(3-4) P'n + liXn + l-e) = P'n^n + l-e) + K + l,2=fn+l-8-

Here we have evaluated the derivative of Pn + X given by (2.6).  Since Sn + 1 x and

5n + 1 2 in representation (2.6) are reaUy the same scalars as wx and w2 in (3.2), the

above equation (3.4) immediately gives w2.  Now only wx needs computing, and this

is computed iteratively so that Pn + X satisfies the differential equation at xn + x.  This,

of course, is exactly what is done in the usual predictor-corrector scheme.  The

algorithm for hybrid methods can, therefore, be written as foUows:   (We have an at

xn and we want to compute an +, at xn +,.)

(a)    Find P„(xn + X _e) and P'n(xn + X _e).

Since an is given the above quantities can be obtained by computing the

inner products of an with vectors

[\,\ -9,(1-0)2, ... ,(l-9)m]    and    [0,1 -0,2(1 -9)2, ... ,m(l-0)m]T.

We have assumed that the ratio (xn + x_e ~ xn)l(xn + x - xn) is equal to

1 - 0 and used the Taylor series to evaluate P„(xn + l _e) and P'nixn + X _e)

given the scaled derivatives of Pn at xn.  Note that both vectors used in

computing the inner products with an are constant for any hybrid formula.
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(b) Evaluate fn + x_e = f(xn+ï_g, P„(xn+i_9)).

(c) Compute w2 =/„ + 1_e -P„(xn + l_e).

(d) Compute Aan + zw2 = cfnl^x (say).

(e) Correct iterations to compute wx

an+l,l  +SlWl =hf(-xn + l'an + l,0 + S0Wl)

anl+i o an(l #o are first elements of vectors <4+i and g, respectively,

and fl^j x,gx axe second elements.

(f) We now have an + x.

We now note that the simple algorithm above will work only if conditions (3.3)

are satisfied. But this must be possible always because if some p and q do not satisfy

the conditions, linear combinations of p and q could be found which do.

The presentation in this section is different from the Nordsieck representation of

hybrid methods discussed by Kohfeld and Thompson (1968), who do not discuss the

polynomial representation.

4.  Discussion.  The advantages of the polynomial representation are clear.  The

problem of finding predictors for computing yn + x_e is immediately solved and the

order of the error term for yn + x_Q is the same as for the hybrid method.  Also, it

should be relatively easy to estimate the local error at each step of the hybrid method

since the last element of (gwx + zw2) is an approximation to hm + íy^m + í^lm\.

The algorithm presented in the last section also gives us further insight into

hybrid methods.  The algorithm clearly shows that one step taken using a hybrid

method is reaUy two steps of the usual multistep methods taken together; first step

taken from xn to xn +, _e using an explicit method (given by z) and the second step

from xn + x_e to x„ + j using an implicit method (given by g).  For example, if d = Vi,

we can say that one step taken using a hybrid method with a step-size h is equivalent

to first advancing the solution to xn + Vi using an expUcit method with step-size A/2

and then computing yn +,   using an implicit method with step-size h/2.  Therefore,

a fc-step hybrid method with step-size A could be looked at as a 2fc-step method

with step-size A/2.  Since 2fc is even, order 2fc + 2 can be achieved.

Although further investigation is required, it is possible that the hybrid methods

may turn out to be efficient for solving stiff equations.  Also, it is interesting to note

that the hybrid methods are similar to the cyclic methods proposed by Donelson and

Hansen (1971) and Stetter (1974).
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