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Numerical Integrators for Stiff

and Highly Oscillatory Differential Equations

By Simeon Ola Fatunla

Abstract.   Some /.-stable fourth-order explicit one-step numerical integration formulas

which require no matrix inversion are proposed to cope effectively with systems of

ordinary differential equations with large Lipschitz constants (including those having

highly oscillatory solutions).   The implicit integration procedure proposed in Fatunla

[11] is further developed to handle a larger class of stiff systems as well as those with

highly oscillatory solutions.   The same pair of nonlinear equations as in [11] is solved

for the stiffness/oscillatory parameters.   However, the nonlinear systems are transformed

into linear forms and an efficient computational procedure is developed to obtain these

parameters.   The new schemes compare favorably with the backward differentiation

formula (DIFSUB) of Gear [13], [14] and the blended linear multistep methods of

Skeel and Kong [24], and the symmetric multistep methods of Lambert and Watson [17].

1. Introduction. The development of numerical integration formulas for stiff as

well as highly oscillatory systems of differential equations has attracted considerable

attention in the past decade.  The reason for this cannot be farfetched, realizing that

the mathematical models of physical situations in kinetic chemical reactions, process

control and electrical circuit theory often generate systems of ordinary differential

equations whose Jacobians have at least one eigenvalue with a very negative real part

or very large imaginary part.  These two situations are, respectively, described as stiff

and highly oscillatory.

Consider the following model problems

(11) y' = X(y-c(x)) + c'(x),    y{a)=y0,

where y(x) 6/?',Aa complex constant with re X< < 0 and c(x) is slowly varying in

the finite interval a < x < b;

(1.2) z' = l )*'   ^) = zo.

with z(x) G R2 and co > > 0, £ a positive constant such that | * 0.

Problem (1.1) has theoretical solution

0-3) y(x) = c(x)+y0eÁX,
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whose component c(x) is slowly varying in the specified interval while the second com-

ponent decays rapidly in the transient phase.

The analytic solution to problem (1.2) is given by

/ a cos cox + ß sin ojx
O-4) z(x) = e~t*l

\ß cos tjx - a sin cox

where a and ß are the arbitrary constants of integration.

The transitory phase for problem (1.1) is of the order of -1/À while that of

problem (1.2) is the entire interval of integration with co/2rr complete oscillations per

unit interval.

Almost invariably, most conventional numerical integration solvers cannot ef-

fectively cope with problems (1.1) and (1.2) as they lack adequate stability charac-

teristics.  Any attempt to impose the stability properties will in effect constrain the

integration mesh-size to be intolerably small.  This may ultimately have adverse effects

on the accuracy due to accumulation of roundoff errors.   Besides, the computing time

and cost may be too excessive.

Existing algorithms developed for problems of the type (1.1) can be classified

into the following categories:

(i) generalized Runge-Kutta schemes—Lawson [18],

(ii) implicit Runge-Kutta scheme—Butcher [5],

(iii) trapezoidal rule with extrapolation-Lindberg [19],

(iv) multiderivative multistep formulas—Enright [7],

(v) backward differentiation multistep formulas-Gear [13], [14].

As of now, the most widely used numerical integration code for stiff systems is

the class (v) schemes, particularly Gear's DIFSUB [13], [14].   The method is efficient

and reliable provided the eigenvalues of the Jacobian are not close to the imaginary

axis where the higher-order schemes exhibit poor stability properties (as evidenced

from Example 2).  Dahlquist [6] established that neither an explicit linear multistep

scheme of any order nor an implicit multistep method of order greater than two can

be ,4-stable.  He proved that the trapezoidal rule (which of course is not ¿-stable as

ytlyt-x —*■ 1 as Xh —► -°°) has the smallest error (±)(1/I2)h3y&.  Other schemes

which behave better than DIFSUB when the eigenvalues are close to the imaginary

axis includes the second derivative multistsp method (Enright [7]).

As regards problems of the type (1.2), earlier efforts include Gautschi's [12] non-

linear multistep schemes which produce exact solution to algebraic (or trigonometric)

polynomials up to certain degrees.  The main drawback of this scheme is that it re-

quires an a priori knowledge of the period of the systems under consideration. Other

numerical integration solvers for oscillatory systems include Amdursky and Ziv [1]—

[3], Snider and Flemming [25], Miranker and Wahba [21], Miranker et al. [22],

Miranker and Veldhuizen [23], and Fatunla [9], [10].  Unfortunately, none of these

existing routines has been properly (adequately) put to test for various kinds of oscil-

latory problems.
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In this paper, we propose some two-point numerical integration formulas which

effectively cope with systems of ODEs whose characteristics are identical to problems

(1.1) and (1.2).

We shall consider initial value problems

0-5) y'=A*,y),   y(0)=yo,

with y(x) G Rm in the finite interval S = [0,xf]C Rl, where xf = Nh for some posi-

tive integer N> 0.  It is assumed that y(x) is sufficiently differentiable.  We adopt the

vector notation: y — {ly, 2y,.. ., , my)T, f = (Y> V» • • • . mf)T■  The numerical

estimates yn to the theoretical solution y(xn) at the points xn = nh,n = 0(1 )7V are to

be generated.

On every subinterval [x , xn + /?], the theoretical solution y(x) is approximated

by either the interpolating function

0-6) F(x) = (I-eniX)A-(I-e~n2X)B + C,

A, B, and C being m-tuples with real entries, / is the identity matrix, whilst Í2j and

Í22 are diagonal (stiffness/oscillatory) matrices; or

0-7) F(x) = (I-eniX)A+(I-en*lX)A*+B,

where A, B are m-tuples with complex entries and ( ) denotes complex conjugate.

The choice of interpolation formula is determined by Eq. (3.15).

The following definitions are worthwhile:

Definition 1. A one-step numerical integration scheme is considered /,-stable

if apart from being ^-stable, when it is applied to the scalar initial value problem

(1.8) y' = Xy,   y{0) = T]

(X being a complex constant with negative real part), the resultant numerical solution

is given by

(1-9) J„ + i=M(M)y„,

with the characteristic equation ß(Xh) having the property:

(1.10) lim       |/i(M)l = 0.
ce(\ft)-*-~

Definition 2. A numerical integration scheme is said to be exponentially fitted

at a complex value Â = X0 if when it is applied to the initial value problem (1.8) with

exact initial condition, the characteristic equation p(Xh) satisfies the relation

(1.11) KV) = e      •

Liniger and Willoughby [20] and Jackson and Kenue [15] have discussed A -stable

one- and two-step numerical integration methods, respectively, which are exponentially

fitted at infinity.  Both schemes ensure exponential fitting by a suitable choice of a
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free parameter.   This approach was further extended to construct a stiffly stable k-

step method of order k + 2  in Enright [7].

We shall construct from both Eqs. (1.6) and (1.7) explicit one-step numerical

integration formulas of fixed order four which possess adequate stability and con-

vergent characteristics to cope with both stiff and highly oscillatory systems of ordinary

differential equations.   For linear systems the interpolating functions are global in the

sense that the stiffness/oscillatory matrices have constant entries which are determined

by solving a set of linear equations at the first step of the integration procedure.  The

implicit scheme proposed in Fatunla [11] is further developed using the interpolating

function (1.7).  The need to solve nonlinear equations for the stiffness/oscillatory

parameters is eliminated.

2.   Development of the Integration Formulas.   Let yn + ¡ denote the numerical

estimate of the theoretical solution y(x) at x = xn+¡, and adopt the notation fn+- =

Ax»+,,yn+f).
By demanding that the interpolating function (1.6) coincide with the theoretical

solution at the endpoints of the interval [xn, xn+l], the following pair of equations

are readily obtainable:

(2.1) yn = (I-eniX")A-(I-e'n2X")B+C,

and

(2.2) yn+l =(/-/■
alxn+l\A _ (i - /TSl2xn +

If the interpolating function satisfies the differential equation (1.5) at x = xn,

we have the relationship

(2-3) fn=-nieniX"A^2e-a2X"B,

and

(2.4) /O) = - n\en lX"A + n22e'n2XnB.

We now solve Eqs. (2.3) and (2.4) to give

(2.5) e   l "A =

(2.6) e^2X"B -

a.l(a1 + n2)

#> - «i/.
Í22(í2j + S22) ■

By subtracting Eq. (2.1) from (2.2) and adopting (2.5)-(2.6) (noting that

xn+1 = xn + h) yields the integration formula

(2.7) yn+i=yn + Rfn + sál)>
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where the matrices R and S are defined as

(2.8) Ä = Í22*-Í21*,

(2.9) 5 = $ + xt,.

and the diagonal matrices <i>, ̂, respectively, have entries

'fl.h
(2.10) i# = .   e    l   -1

inl(in1 + *n2) >
and

(2.11) ''*

-'íí,/i
e      2    -1

'fiji'n, + 'n2)

for i = l(l)m.

In the event that a component of the stiffness/oscillatory matrix ('Í2X say) does

vanish, by L'Hospital's rule, the corresponding component of <i> specified by (2.10) is

obtained as

(2.12) '»«'IÇ1*,

and the resultant integration formula is given by

(2.13) 'yH+\ = hH + h'fn + dn2lh + /*)# >.

We now discuss the case of the complex interpolating function (1.7).  The com-

ponents of the oscillatory/stiffness matrices £2t and £2X are, respectively, given as

follows:

(2.14) /«j = x + ai,

and

(2.15) /i2î=X-to,

for some real numbers X,u.

By imposing the same constraints on (1.7) as on (1.6), we still obtain the inte-

gration formula (2.7) but now with the components 'R, 'S of R and S, respectively,

given by

n i « f»n    n     eXH[(K2 - u2)sin(hu) - 2Xu cos(hu)] + 2Xu
(¿.10) 'K(k,U)-- - ,

«(X2 + u2)

-and

ekh[X sin(hu) - u cos{hu)] + u

(2.17) 'S(X, «0
u(X   + u )

When both X and u are simultaneously close to zero, Eqs. (2.16) and (2.17) both

reduce to

(2.18) 'R(X, u) = h,
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h2

and

(2.19) !'S(X,u)~   ,  ,

respectively, the resultant integration formula thus reducing to the popular Taylor

series method of order two.

3.   Evaluation of Stiffness/Oscillatory Parameters.   The Taylor expansion of

yn+\- y(xn + n)about x = xnis given by

(3.1) y„+l s Z -pr^
c=0

SI,h -n2h
while the Maclaurin series of e        and e          can be, respectively, given by

(3.2) e   l    =T. —-.
r=0

(3.3) e 2 =z eiy^-
»•=0

By the application of Eqs. (2.8)—(2.11) and (3.1)—(3.3) in the integration formula

(2.7), it is observed that the coefficients of h°, h1 and h2 vanish identically.

With the view to obtain numerical estimates for the stiffness/oscillatory param-

eters, we simply allow the coefficients of h3 and h4 to vanish, thus yielding the

following pair of nonlinear equations:

(3.4) (fij - n,)#> - n^/; = -f2\

and

(3.5) - (Í22 - n,n2 + i22)/<2> + n,^^ - n^ = -/„3>.

By adopting (3.4) as a definition of ÇllÇl2fn, Eq. (3.5) becomes

(3-6) (n2-ni^2)-niii2/„1) = -/„3)-

If the set of equations (3.4) and (3.6) were to be meaningful, it is desirable that

liAl)     ¡Al)\
■>n J n

' =h 0,      i= l(l)m.

iAi)    if
J n J n

(3.7) det

Let

(3.8) iD = in2-ini,      z=l(l)m;

and

(3.9) í£'=/í21ín2J      í=l(l>n.

Equations (3.4) and (3.6) can now be expressed as an m pair of linear equations

<3-10) " " " for/=!(!>«.
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These m pairs of equations can be readily solved for 'D and 'E by Cramer's

rule to give

if i A3)   _iAl)iA2)

iAi)iAi) - 'f >A.i)
J n     3n J n J n

and

IA1VÁ3) _ iA2)iA2)

(3.12) '£ = -vm-vm—■   .,,,    ,      i = l(l)m.
v       ' ifii)'f\i) - if i Aï)

1n    Jn Jn ■>n

The numerical values obtained for 'D and 'E can be substituted in Eqs. (3.8)

and (3.9) to generate the oscillatory/stiffness parameters as

(3-13) '£2, = &[- lD + sJÇD2 + 4'£)]
and

(3.14) 'Í22 = % + *D.

The complex interpolation formula (1.7) is adopted if in (3.13), the following

relationship holds:

(3.15) 'Z>2<-4<£.
Equations (3.4) and (3.6) are now replaced by the pair of matrix equations

(3-16) -(^ + n*yO) + ni2*/„ = -/„2).

and

(3.17) "(Í2 + ft*)¿2) + srnY» = -/„3).

The matrix Í2 in the case of the linear system y = Ay is determined by either

(3.18) -(fi +n*)A 2yn + Sin*Ay n = -A 3y„

or

(3.19) -(Cl + Sl*)A3yn + aSl*A2y„ = -A*yn.

In case A is nonsingular, both Eqs. (3.18) and (3.19) reduce to the matrix

equation

(3.20) A2 - (Í2 + Í2*>4 + Í2Í2* = 0.

The following theorem guarantees the existence of a solution to (3.20).

Theorem 1. If A is a real, normal n x n matrix with distinct eigenvalues

(Xj, Xj, X2,X2, . . . ,Xr, Xr, Ltj, li2, . . . , ßs), where 2r + s = n, and if Uis a uni-

tary matrix such thatU~lAU = G is diagonal, then the solution to matrix equation

(3.20) is given by SI = m3U~l with U=I,ri=i © X/2 © 2f=, © ßfo, where Ir is

the r x r unit matrix.

Proof.   Since A is a real matrix, and if X is an eigenvalue of A, so is X. Hence,

we can find a unitary matrix U such that U~lA U = G, where G is a diagonal matrix

with entries (Xj, X1; X2, X2, . . . , Xr, Xr, jU|, p2, . . . , ßs).   Here each ¡i is real and

2r + s = n.
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If IS = U~lÜ.U, then the matrix equation (3.20) is equivalent to

(3.21) G2 - (IS + IS*)G + ISIS* = 0.

Now a solution of

[x2   o\ _/x 0\     _
(3.22) 1-(Z + Z)        _)+ZZI2=0

\0      X2) \0    X/

is given by Z = X, and a solution of

(3.23) ri2 - (Z + Z)n + ZZ1X = 0

is given by Z = \i (ß is real).   Hence, a solution of (3.21) is given by

(3.24) U=¿ ©X/2©¿ ©m,/,
/= i í= i

giving a solution Í2 = UISU~X for Eq. (3.20).

4.  Stability Considerations.  We now apply the integration formula (2.13) to the

scalar test equation

(4.1) y = Xy,

where X is a complex constant with negative real part.

The numerical solution is given as

(4-2) yn+1=Pfr,Sh>H)yn>

where the characteristic equation p(X, Í22, h) is given by

(43) p(x, O,, h) = 1 + Xh + X2(Sl2h + e""2" -1)/Í22.

Equation (3.11) gives the following relationship:

(4.4) Í22 = lD = D.

For the test problem (4.1) condition (3.7) is violated.   However, by setting

Í2j = 0 in Eq. (3.4), we readily obtain

(4.5) Í22 = -X

and from Eq. (3.14), we also have that

(4.6) D = -ff)lft).
These in Eq. (4.3) give

(4.7) P(X,-X,h) = eKh.

We further consider the application of the integration formula (2.7) to test

problem (4.1) for the case when the stiffness/oscillatory parameter is imaginary. Thus,

R(X, u) and S(X, u) used in the integration formula (2.7) to the test problem

(4.1) are specified by

(4.8) R(0,u) = *f^,
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and

(4.9) S(0,u) = ̂ f^.
u

Let

(4.10) X = iz,      i2=-l.

The resultant integration formula is given by

(4-n) y„+i=lfr,u,h)yn,

where the characteristic equation can be obtained as

(4.12) q(X, «,/,)=!+ (1"COs(to))X2 + ^^.

u2 u

With the same argument as in the case of real X, we can also obtain

(4.13) D = -iz = -X = SI*.

This in (4.11) gives

(4.14) q(X, u, h) - 1 - (1 - cos(hu)) + i sin(hu) = eihu = eXH.

Equations (4.7) and (4.14) together with Definitions 1 and 2, thus establish the

¿-stability and exponential fitting of the proposed integration formulas.

5.   Local Truncation Error.  We now associate with the integration formula (2.7)

the operator F[>>(x), h] specified as

(5.1)      V(y(x), h) = y(x + h) - y(x) + (Sl2y - Sl^fix, y) - (y + a^\x, y)

for an arbitrary function y(x) G C5(SÍ).  The local truncation error Tn+ x at x = xn + 1

is, hence, given as V\y(xn), h], where y(xn) denotes the solution to the intital value

problem (1.5).  By using the Taylor expansion of FLv(x), h] about x = xn with the

localizing assumption that there is no previous error (i.e.yn = y(xn)), the truncation

error for the integration formula (2.7) with constraints (3.4) and (3.6) can be derived

as

Tn+1 =ff (fii + «jr'KQ, + tt2)/„4> - fi?(#> + i22/„)
(5.2)

+ n*^ - ív„)] + o(h6).

The corresponding truncation error for the integration formula (2.13) is given

by

(5-3) Tn +, = £ (/„4> - Q|#>) + 0(h6),

while the truncation error when R(X, ß) and S(X, u) are specified by Eqs. (2.16) and

(2.17) is

(5-4)     Tn+ ! = ^ [#> + (X2 + «2)(3X2 - u2)fn + 4X(u2X2)fn1>] + 0(h6).

From Eqs. (5.3) and (5.4) we deduce that all the proposed explicit integration

formulas are of fixed order four.
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6.   Extension of Nonlinear Scheme.   We recall the implicit numerical integration

formula proposed in Fatunla [10]

(6.1)  j£+/l = y\ß\x - [I - «WjrWJi - OftU - G„),      s = 0, 1, 2, ... ,

where fl^l ¡ denotes the Jacobian specified as

(6-2) JlnÍl =%(xn + i>ylÍi),      tilt =/(^+i.^li).

and

(6.3) Gn = yn - (y + oy„-

The components of 0, y, a are obtained as

.      'na(l-e°1*) + '01(l-e"''n**)
(6.4) «fl = —-L-—--,      i = 10K

-'fi,/i 'i2,/i
'fi/n^e     2   -e    x )

-'n2h 'nih^
(6-5) V=--°"e.     }.     Í-KD».

to.c-0**-.01*)

and

(6.6) 'a =-r-;--,      i = l(l)m.

>ïl2(e      2   -e    »  )

The corresponding truncation error for the integration formula (6.1) was obtained

as

Tn+i =èn (9/„4)+ 5(Í22 - n,V<3) + 5(n2 _ í2in2 + n¡^2)

(6J) -9(Í22-Í21)(S22+Í22)/<1)

+ [5Í22Í22 - 9í2,n2(í22 - ^O, + fi2)]/„} + 0(hn).

In the case when the oscillatory/stiffness parameters have complex values, the

components of 6 and (7 + 6) in Eq. (6.1) are replaced by

eXhu cos(hu) - X sin(hu) + u

(6.8) .      '8 =-^ /     „,   \   ,-,      ¿MO)«,
eXh(X2 + u2)ún(hu)

S)
(6.9) (/    . Sx = g»X>l - [X sin(/2u) + m cos(/ii¿)]

(X2 + u2) sm(hu)

with the truncation error (6.7) replaced by

(6.10) T"+1 = nô {9/<«4) - 10X^3) + 5(3x2 - "2^2)

+ 36(X2 - u2^ + 4(X2 + «2)(8X2 - u2)fn} + 0(/27).
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7.  Numerical Examples.

Example 1.  We first consider the linear system

(7.1) y =

-.1     -49.9 0

0        -50 0

0 70      -120

y,    y(P) =

in the interval 0 < x < 15.  The eigenvalues of the Jacobian of (7.1) are Xj = -0.1,

X2 = -50, X3 = -120.  The theoretical solution is given as

*y(x)

2y(x) = e~SOx

3y(x)

e~01x +e-50x.

e~50x _|_ e-120x

The new explicit scheme performs better than the DIFSUB [13], [14] and the

blended DIFSUB [24].  Details of the numerical results are given in Table 7.1.

Table 7.1

Numerical results for Example 1

Max Function     Back       LU        Accurate

Method Order    Steps       Calls       Solves    Decomp      Digits

DIFSUB [13], [14]        6 353        1024        969 18 9.3

11        234 595        1056 22
BLENDED
DIFSUB [22]

EXPLICIT
SCHEME 75 75

10.4

12.5

Table 7.2

Numerical results for Example 2

Max Func      Back LU Accurate

e        Order    Steps    Eval     Solves    Decomp       Digits

DIFSUB [13], [14]

10~2        (4)     (1001) (3002) (2959)      (7) (1.1)

"too much work"; integration abandoned at x = 8.3

blended DIFSUB

10"'0     (12)   (1001) (2917) (5580)     (21)       (10.3)

"too much work"; integration abandoned at x = 5.1

unspecified 4

Explicit Scheme

200      200 14.2
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Example 2.  We further consider the linear problem

(7.2) y =

-10

-100

0

0

0

0

100
-10

0

0

0

0

0

0

-4

0

0

0

0

0

0

-1

0

0

0

0

0

0

-.5

0

0

0

0

0

-u

y,   y¡(0) =1,      ¿=1(1)6

in the range 0 < r < 20.  The eigenvalues of the Jacobian are X1 2 = -10 ± 100/',

"4, X4 = -1, X5 = -.5, and X6 = -.1.  This problem is particularly, troublesome

for both DIFSUB and the blended DIFSUB as can be seen from Table 7.2.

Example 3.  We now consider the initial value problem of Liniger and

Willoughby [20].

(7.3a) y

-2000    1000\ /V

i      -i I      \o,
y(0) =

in the interval 0 < x < 5.

This problem is contained in the test batch recommended by Bjurel et al. [4],

and was also considered in Lambert [16]. In addition, it is solved with the blended

DIFSUB [24].

Table 7.3

Numerical results for Example 3

10V.V

Explicit
Scheme
h = 0.5

Blended
DIFSUB [24]
Variable h

e = 10~6

Lambert

[16]
h = 0.01

Theoretical
Solution

Explicit      Blended      Lambert       Theoretical
h = 0.5     DIFSUB     [16] Solution

[24] h = 0.01

0.5 6.1038

1.0 6.9655

1.5 7.6365

2.0 8.1592

2.5 8.5663

3.0 8.8834

3.5 9.1303

4.0 9.3226

4.5 9.4724

5.0 9.5891

6.1038

6.9650

7.6362

8.1590

8.5662

8.8833

9.1303

9.3226

9.4724

9.5891

6.0731

6.9427

7.6175

8.1444

8.5555

8.8741

9.1263

9.3238

9.4765

9.5945

6.0795

6.9467

7.6221

8.1481

8.5577

8.8768

9.1252

9.3187

9.4694

9.5867

2.2096

3.9324

5.2743

6.3194

7.1333

7.7673

8.2610

8.6456

8.9452

9.1784

2.2096

3.9315

5.2735

6.3189

7.1332

7.7671

8.2609

8.6455

8.9451

9.1784

2.1467

3.8854

5.2371

6.2901

7.1106

7.7492

8.2592

8.6525

8.9564

9.1915

2.1574

3.8922

5.2433

6.2955

7.1149

7.7531

8.2500

8.6371

8.9386

9.1734

The eigenvalues of the Jacobian to (7.3a) are X( = -2000.5 and X2 = -0.5, thus

yielding a stiffness ratio 4001.   The stiffness matrices which have constant entries

were obtained as

(7.3b)       fii
'-0.499875 0      ,

-0.499875,
Í2-,

/2000.5        0     N

\   0 2000.5/
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Table (7.3) gives the numerical results for the explicit scheme, Lambert's scheme and

the blended DIFSUB. The global relative error for the blended DIFSUB is 0.743400 D-5

while the global relative error for the explicit scheme is 0.5746777037 E-05.

The computational cost and function evaluation on IBM 360/75 for the blended

DIFSUB are, respectively, $1.84 and 107 while that of the explicit scheme is $0.77

and 10, respectively.

Table 7.4

Numerical results for Example 4

No. of

Fn. Eval. of

f-r\ r = 0, 1,2,3

5

7

10

20

40

80

EXPLICIT

>-(!)

0.2000

0.1500

0.1000

0.0500

0.0250

0.0125

1.8716065

1.8711045

1.8705973

1.8694380

1.8694389

1.8694388

Á2)

-0.14358810

-0.I45747I3

-0.14610294

-0.14823599

-0.14823587

-0.14823588

No. of

Fn. Eval.

120

Blended DIFSUB [24]

ÁI)10~

i = io- 1.86944

y(2)

-0.148236

No. of

Fn. Eval. of
¿r\r = 0, 1,2,3

42

81

161

321

•No convergence

IMPLICIT [11]

h y(\)

0.2000

0.1500

0.1000

0.0500

0.0250

0.0125

1.8693953

1.8694357

1.8694387

1.8694389

y(2)

-0.14824187

-0.14823631

-0.14823589

-0.14823587

The global errors were computed as

(7.3c) e =    max     Y]
0<t<N   ,= i

'yt-'Axt)
\2

to

1/2

(7.3d) '« =    max   {1, •j'o.'j'i» • • • ,%}■
1 </*Sm
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Example 4.  Van der Pol's oscillator (considered in Enright et al.

(7.4) y'1=y2' ^i(0) = 2,
^2 = 5(1-^)72-^1,     72(0) = 0,      0<xCl.

Eigenvalues: -0.067 and -15 —*• 5.7 and -1.5 —* 3.6 and 1.4 -* 2.4 ± 2.8/ -*

-0.052 ± 8.8/ -* 2.0 -> 9.5/ -»■ -5.9 -* 4.5/ -»- -2.0 and -12 -> 0.050 and

—15 —> 1.1 and-3.4.

The numerical computation was effected with both the explicit and the implicit

schemes using uniform mesh-sizes h = 0.2, 0.15, 0.1, 0.05, 0.025 and 0.0125.  The

same problem was solved with the blended DIFSUB using an initial mesh-size h =

IO-3 as suggested in Enright et al. [8].

Table 7.5

Numerical results for Example 5

Xf= 10» uniform h = 7r/20

x       io12 x 'r,+ 1     10n x 2Tt+i

n 0.16918 0.00949

2ir 0.02447 0.02233

3rr 0.29342 0.03504

4rr 0.61126 0.04402

5w 0.92906 0.05704

6ir 1.2468 0.07060

7ir 1.56451 0.08478

8tt 0.09729 0.09991

9jt 1.29056 1.06429

lOir 1.60815 0.12150

One evaluation of oscillatory/stiffness parameters.

From Table 7.4 the new schemes compare favorably with the blended DIFSUB.

Example 5.

,    /-io-5 100   \ /o\
(7.5a) y = ]y,      y(0) = ,      0<x<\0n.

\-ioo   -io-y \i/

This is the model problem (1.2) with e = IO-5 and w = 100 whose theoretical solu-

tion is

_s    /sin 100* \
(7.5b) >>(*) = e-10    x[

\cos lOQx /

The numerical results in Table (7.5) are obtained with a uniform mesh-size h =

n/20, and only one evaluation of the stiffness/oscillatory parameters was obtained and

given by

/-10_s-100/ 0      \ /-io-5 + ioo/ 0       \
«1=1 . ),        «2=1 ,

\       o       -io-5-ioo// \       o -io-5+ioo//
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Example 6. We finally consider the nearly periodic initial value problem which

was earlier studied by Stiefel-Bettis [26] and Lambert-Watson [17]

(7.6a)        / + y = O.OOle'*, y(0) = 1,   y'(0) = 0.9995/,      y G Rl,

whose theoretical solution is

!y(x) = u(x) + iv(x),     u,v& Rl,

u(x) = cos x + 0.0005jc sin x,

v(x) = sin x - 0.0005* cos x.

Equations (7.6b) represent motion on a perturbation of a circular orbit in the

complex plane in which the point y(x) spirals slowly outwards such that its distance

from the origin at any time x is given as

(7.6c) t(x) = s/(u2(x) + v2(x)).

The initial value problem (7.6a) can be expressed as

y = 27, V(o) = i,

''V = -V + 0.001 cos jc,    2y(0) = 0,

V = V,    3y(0) = 0,

V = ~3y + 0.001 sin x,   V(0) = 0.9995.

The system (7.6d) was solved with the explicit formulas in the range 0 < x <

4Û7T which corresponds to 20 orbits of the point y(x).  The integration was performed

using uniform mesh-sized h = tt/4, 7r/5, ïï/6, 7r/9, and 7r/12.  Two sets of numerical

results were generated:   In the first set, the oscillatory/stiffness parameters are obtained

once at the first step of integration, while in the second set, the oscillatory parameters

are evaluated at every step of integration.

The same problem was solved with the symmetric multistep method of Lambert

and Watson [17] as well as the Störmer-Cowell five-step multistep formula [24] (both

of order 6)

yn+s-2yn+4+yn+3

(7.6e) n
■ 240 (18/" + * + 209/« + 4 + 4/« + 3 + Wn+2 - 6/„ + 1 +/„).

The exact distance from the origin t(x) is given by (7.6c), and the approximate

distance is t = \/(ly2 + 3y2) at x = 407r.   All the solutions generated by the new

scheme spiral outward in agreement with the theoretical solution as well as Lambert's

scheme, whilst the first three values generated by Störmer-Cowell scheme spiral inward.

From the Tables (7.6a, b and c) which, respectively, show r, \t(x) - t\ and

\y(x) - y\   = V[( V(x) - V)2 + Cy(x) - 3y)2], we see that despite the fact that the

new scheme is of lower order, yet it is more accurate than both the symmetric multi-

step method as well as the fifth order Störmer-Cowell multistep scheme.

(7.6d)
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Table 7.6a

xf=40n,T(xf)= 1.001972

h       Störmer-Cowell     Symmetrie Explicit

one evaluation     repeated eval.

of parameters      of parameters

w/4 0.965645

tt/5 0.993734

77/6 0.999596

tt/9 1.001829

tt/12 1.001953

1.003067

1.002217

1.002047

1.001978

1.001973

1.002311

1.002205

1.002140

1.002050

1.002016

1.001972

1.001972

1.001972

1.001972

1.001972

Table 7.6b

xf = 40-n,T(xf)= 1.001972

7T/4

«IS

77/6

W9

tt/12

77/4

TT/5

tt/6

77/12

106x\t(x) - t\ 109x|t(;<:)-t|

Störmer-Cowell     Symmetric Explicit

one evaluation     repeated eval.

of parameters      of parameters

36 327

8 238

2 376

143

19

1 095

245

75

6

1

339

233

167

78

44

204

66

26

3

0

Table 7.6c

xf = 40rr, u(xf) = 1, v(xf) = 0.062832

lO6*^)-^! \09x\y(xf)-yf\

Störmer-Cowell     Symmetric Explicit

one evaluation repeated eval.

of parameters of parameters

48 014

13 136

4 494

405

73

31 272

7 300

2 303

188

33

389

252

176

79

45

384

159

77

15

5

8.   Concluding Remarks.   The proposed explicit scheme (2.7) and (2.13) is con-

sidered to be more efficient and accurate than the DIFSUB and the blended DIFSUB

for linear stiff systems of ordinary differential equations.  It is equally efficient for

highly oscillatory systems as it is capable of admitting fairly large mesh-size and still

maintains high degree of accuracy.  The major drawback is the need to generate

higher-order derivatives, but automatic generation of higher-order derivatives is practicable

for an  extensive range of problems.  The proposed scheme being one-step readily
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accepts the use of variable mesh-size in the event that the asymptotic local error obtain-

ed in Section 5 is greater in magnitude than a specified tolerance.
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