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On the L°°-Convergence of Galerkin Approximations

for Second-Order Hyperbolic Equations

By Garth A. Baker* and Vassilios A. Dougalis**

Abstract.   It is shown that certain classes of high order accurate Galerkin approxima-

tions for homogeneous second-order hyperbolic equations, known to possess optimal
2 °°

order rate of convergence in L  , also possess optimal order rate of convergence in L   .

This is attainable with particular smoothness assumptions on the initial data.

We establish sufficient conditions for optimal L   -convergence of the approximations to

the solution and also the approximation to its time derivative.   This is done for both

semidiscrete approximations and for single-step fully discrete approximations generated

by rational functions.

1.   Introduction.   We consider approximating the solution of the following initial-

boundary value problem,  il will be a bounded domain in R^ with boundary 3Í2

assumed to be an (N - l)-dimensional manifold of class C°°.   For a fixed 0 < t* < °°,

a real-valued function u is sought satisfying

N
a , .   au

D2u=-Lu =   E "¿7 \a„(x) ^-j- a0(x)u    in Í2 x (0, r*],

(1.1)      ) " = °> on3ñx (0, t*],

u(0) = u°      )
}       in Í2.

Dtu(0) = u° )

u°, «° are given functions,

a//= a/(. G C~(Í2),      /,/= 1,2, ...,N,

and a0 G C°°(Í2) with a0 > 0 in Í2.  L will be assumed to be uniformly elliptic, i.e.,

for some constant a>0,

i,j= 1 i= 1

for all je G ñ and all (Ç,.... , tN) G RN.

Semidiscrete and fully discrete Galerkin approximations in the context of exis-

ting finite element methods have been considered by Dupont [8], Baker [1 ], Crouzeix
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[7], and Baker and Bramble [2], among others.  In these works optimal order rate of

convergence estimates in L2(Í2) have been obtained.

In this paper we are concerned with the convergence in ¿°°(Í2) of such approxi-

mation schemes.  Our approach is motivated by techniques of £°°(£2)-estimation

initiated for parabolic equations in [4], [3], adopting the first-order system formula-

tion for second-order hyperbolic equations of [1], [2], [7].

In the special case of one space dimension, optimal ¿"-estimates have been ob-

tained by Wheeler [16] and Wahlbin [15].  Specifically, the estimates are derived for

both the semidiscrete approximation and for a particular second-order accurate in time,

two-step, fully discrete scheme devised in [8], the techniques used being clearly re-

stricted to one space dimension.

In this work we attack the general problem (1.1).  Our techniques yield for the

semidiscrete approximation optimal L°°(i2)-convergence for the error, as well as for the

time derivative of the error, under suitable smoothness assumptions on u° and m°.  Of

prime interest is a class of fully discrete schemes generated by rational functions, de-

vised in [2], [7].  For these high order accurate in time schemes we obtain optimal

¿™(i2)-convergence of the approximation to the solution, and also for the approxima-

tion to its time derivative, occurring naturally from the first-order formulation.

The remainder of this section is devoted to establishing the notation and a pre-

cise statement of the main results.

For S > 0, HS(Q) will denote the Sobolev space W2(£l) of real-valued functions

on S2, the norm on which we denote by || • Il   s      . The inner product on Z,2 (£2) =

H°(Ü.) we denote by ( • , • ) and the associated norm by || • ||.  The norm on Z,°°(S2) we

denote by I • I and, in general, that on the Sobolev space W™(Çl) by | • |m, m > 0.

{Xy}>1 will denote the eigenvalues, in nondecreasing order, of the elliptic operator L

on Í2; the corresponding set of eigenfunctions (with boundary values zero) is {<£>•} •> j

C C°°(f2).  This set is assumed to be orthonormal in L2(£2).   For real S, we define the

space

Hs(Sl) =   j v G L2(Í2):   Hülfe = (T Xf |(0, ̂ .)|2j   '   < -

Following [4], it is easily seen that for integer S > 0,

Hs(Sl) = {v G Hs(Siy.  L'v = 0 on dfi, for; < 5/2},

and the norms || • ||  s       and || ■ \\s are equivalent on HS(ÇÏ).  The solution of (1.1) is

given by

"(0 = £ {cos X}'2t(u°, q) + Xr^sin xV2t(u°t, *,)] <pf,
!

from which we obtain the conservation law

(1.2) IWOHl + \\Dtu(t)\\2s_, = ||«°||| + \\u%_x,

îoit>0 and S > 0.
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In order to exploit the property (1.2) we introduce the generalized "energy"

spaces Hs = Hs(£l) x ¿^(ft), for S > 1, furnished with the norms |||- |||s, defined

as follows.  A generic point of Hs we denote by

--(i;)-

and define

III mis = (IK Iß + im!_1)1/2,    s>\.

Let a( ■ , • ) denote the form

a(<p, *) - Jn I ¿   «f/|j |¿+ «0^|  dx,      *, * G ffl<fl).

We shall work with the solution operator T: Hs(£l) —» HS+2(Q) n i/x(i2) of

the associated Dirichlet problem, defined by

a(r/f u) = (/, v)   for all u G #»(£2).

rhas a discrete spectrum of eigenvalues {M;};>i, where ju- = XT" .

Following [2], we set L2 = L2(S2) x L2(Í2) and define

(1.3) T = (°i   J:   L2->L2,

1/(0 = ,      f > 0,   and   C/° = [

(1.4)

*r /

Then (1.1) is equivalent to

!TDt U + U = 0,      0<r<r*,

C/(0) = U°,

or

t/(0) = i/°.

For the spatial discretization we assume the existence of a one-parameter family

{5ft(i2)}0</)<1 of finite-dimensional subspaces of L2(£2), and corresponding operators

Th:  L2(Î2) —► Sh(SÏ) which approximate T in the following sense:

(1.7) Th is selfadjoint, positive semidefinite on Z,2(Í2) and positive definite on

Sh(Sl).
(1.8) There exists an integer r > 2 and a constant C such that 11(7^ - T)f\\ <

C7is + 2H/Hs,forall/Gifs(i2), - 1 < S < r - 2.
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(1.9) There exists an h0 > 0 and a function y(h) such that for 0 < h < h0,

\(Th - T)f\ < y(h)\ Tf\r, for all sufficiently smooth /

(1.10) There exists a constant C such that for all sufficiently smooth /, \Tnf\ <

cir/iLandiiviKCiir/ii!.
(1.11) Tn has a discrete spectrum of eigenvalues {0, px, . . . , phM}, in nonde-

creasing order, for some integer M = M(h), with p\ > 0.  Moreover, for some hQ > 0,

if h <h0, then p!^ < A for some constant A independent of h.

From [2] —[4], it is known that, for example, for the standard Galerkin method

using finite element subspaces Sft(£2) C HX(Q.), satisfying

inf     (||w - x II + h\\w - xll,) < Ot'llwll,    for 1 < s < r,
xesh(n)

with Th given by

(1.12) <Thf,  x) = (f, X)    for all X G S „(O),

(1.7), (1.8), (1.11) hold.

In [11 ] Nitsche shows for the standard Galerkin method in the constant coef-

ficient case L = - A, for r > 2, under certain regularity assumptions on the triangula-

tion defining Sh, that (1.9) and (1.10) hold for y(h) = Chr, for some constant C.   In

the case of Neumann boundary conditions (not considered here), Scott [14], shows

that for N = 2, (1.9) and (1.10) hold with

ÍChr, r>2,

(1.13) 7(A) =    Í     ,
{Ch2]iih-\      r=2,

for some constant C.   For analogous results in the variable coefficient case (and the

nonlinear case, not considered here), cf. the works of Rannacher [13], Nitsche [12],

Frehse and Rannacher [9], among others.

As in [2], the semidiscrete approximation is a mapping un:   [0, t*] —► Sh(£l)

defined as follows.  We set Sh = Sh(ü.) x Sh(ÇÏ),

Id,«»«)/
and

(1.14) T,=

Then V is required to satisfy

0     Th
-I     0

(F(0)

V+V=0,       0<t<t*,

given in Sh.
(1.15)

In Theorem 2.1 we prove that if the initial values V(0) in (1.15) are chosen by
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/rsz.s«0N(1.16) V(0)=T2SL2SU° = [   h

\nLs»°t>

with S > [N/2] + l,then

(1.17) SUP   \u(t)-uh(t)\<C{y(h)\\\U0\\\s  +hr\\\U°\\\2S+r+x},
o<t<t* °

where S0 = 25 + r + [N/2] - 1.

In the standard Galerkin method (1.12), it is easily seen that the computation of

V(0) in (1.16) involves the solution of 2S linear systems of equations with the same

real matrix, and in such a case, with sufficiently smooth initial data u°, ut, we attain

the optimal L°°(f2)-convergence.

In the same theorem we prove that if the operators Tn are such that

(1.18) p\>Ch2,

for some constant C independent of h, and V(0) is chosen by (1.16), then

(1.19) sup    \Dtu(t)-Dtuh(t)\<C{y(h)\\\U0\\\s    x +^"1lllt/°lll2S+,+ 1},
0<f«r* °

with S and S0 as above.  It is known in the case where Th is defined by (1.12), (1.18)

follows with an "inverse property" of the form

(1.18a) Hxll, <Ch~l llxll    for all x e 5„(S2),

for some constant C independent of h.

In Theorem 2.2 we prove that if, alternatively, V(0) in (1.15) is chosen by

(j.S+1 iS+l,,0\

k  s s o
ThL ut

with S > [N/2] + 1 (same as above), then the optimal estimate (1.17) holds.  More-

over, (1.19) is improved to

(L21)   ^    lDí«(í)-Dí«A(0l<C{7(A)IHt/0||ls<)+1 +hr\\\U°\\\2S+r+2},

without the assumption (1.18).  Thus, by solving one extra linear system as dictated by

(1.20), in comparison with (1.16), we obtain also optimal ¿°°(i2)-convergence for the

time derivatives.

We now turn to single-step fully discrete approximations to (1.1), following [2].

Let r be a rational function of the complex variable w = x + iy which satisfies for

constants a > 0, C < °° and v > 0

(1.22) \r(iy) - tT**\ < C\y\v + \      \y\ < a.

Definition I.   r is defined to be of class i-1 if in addition to (1.22),

(1.23) IKí»I<1     forLvKa,

for some constant a > 0.
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Definition II.  Ms defined to be of class i-II if r satisfies (1.22) and (1.23)

with a = °°.

For convenience we set Lh = T^1:  Sh(ü.) —► Sn(£l), and consequently

(U4) L""t   o')

Then (1.15) is equivalent to

JDtV+LhV=0,      0 < í < i*,

(L25) \v(0) given in $„.

For a chosen discrete time step k > 0, we have from (1.25),

V(t + k) = exv(-kLh) V(t),      t > 0,

which in turn motivates the following fully discrete approximations.  For

« = 0,1,..., [*•/*],   w"=ri)esn

is sought satisfying

o-26)
)Wn+1 =r(kLh)W",      n>0,

h>

W" = V(0).

A computationally efficient class of rational functions rv of class i-II for any

even integer choice of v is constructed in [2].  It is shown that the approximation

W"+ 1 is obtained from W" in (1.26) with the solution of v linear systems of equations,

with the same real matrix.  Hence, a single L U decomposition of this matrix is required;

and a fixed number, v, of "back solves" need be carried out at each time step.  Other

examples such as Padé approximations are also discussed in [2], [7].

In Theorem 3.1 we derive the following Z.°°(i2)-estimate.  It will be assumed that

there exists an integer J0 and an h0 > 0 such that

(1.27) Z(ß1)Jo<C<°°,

i
for some constant C independent of h, for all h < h0.

In the case of the standard Galerkin method (1.12) it can be readily deduced that

(1.27) holds for some finite J0 = /0(Í2), by virtue of the fact that {(^)_1 } approxi-

mates the spectrum of the elliptic operator L, for h sufficiently small.  See Section 4

for details.

If r is of class i-II, and W° = V(0) is chosen by (1.16), with S > [N/2] +J0 + 1,

we prove that

max       \W"-u(nk)\
0<n<lt*/k]

(1.28)
<C{7(/0ll£/°lllSo +ArHI£/°lll2s+,+ i +^IIIC/0lll25+,+ i}.

where S0 = 2S + r + [N/2] - 1.
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In addition to the above conditions, if (1.18) holds and k/h < C for any constant

C> 0, we prove that

max       \W"-Dtu(nk)\
0«ii<[r*/fc]

(1.29)
<C{7(/i)llli/°||L  +1 +^-1|||i/°||l2S + r+1 +r-1|||t/0|||2S + „ + ,},

yo'

with S and S0 as above.

In Theorem 3.2 we prove that for r of class i-II, and W° = V(0) chosen

by (1.20),

(1.30)

and

(1.31)

max       \W"-u(nk)\
0<n<[f*/k]

<C{y(h)\\\U°\\\So + hr\\\U°\\\2S+r+2 + kv\\\U°\\\2S+v+2}

max       \W" - Dtu(nk)\
0<n<[r*/fc]

<C{7(A)lll£/°llls0+1 +/iHi/0lll25+r+2 +*"III^IH2S+I, + 2}.

without the extra assumption (1.18).

Again it is seen that in order to obtain the optimal Z,°°(i2)-convergence it is suf-

ficient to regulate the starting values by performing a given number of projections of

the given initial data u° and u°t. In particular, to obtain (1.30) and (1.31) it suffices to

solve the 25+1 linear systems with the same real matrix as dictated by (1.20), with

S= [N/2] +J0 + 1.

For r of class i-I, we show that there exists a constant C = C(a), such that with

the Courant-type condition k/h < C, and assumption (1.18), the estimates (1.28) and

(1.29) hold, for IVo = V(0) chosen by (1.16), and for IVo = V(0) chosen by (1.20),

the estimates (1.30) and (1.31) hold.

Section 2 is devoted to the derivation of the L°°(i2)-error estimates for the semi-

discrete approximation, (1.17), (1.19) and (1.21).  In Section 3 we derive the estimates

(1.28)—(1.31) for the fully discrete approximation.  Throughout the remainder of the

paper, no distinction will be made between the different constants appearing in the

error bounds, and all will be denoted by the generic C.  Also, conditions of the type

h < h0 will be implicitly assumed wherever needed.

2.  ¿"-Estimates for Semidiscrete Approximations.   We first modify slightly the

notation of [2].  On L2 we define the positive semidefinite bilinear form, ((• , ■ ))n,

as follows.  For

(($, *))ft = 0¿>!, >//,) + (Th<p2> \¡i2).   (( • , • ))h is an inner product on Sh. The

associated norm we denote by III ■ III,,, i.e., |||<p|||ft = (($, <í)))¿'2, which is a seminorm

on L2.
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We point out that no confusion should arise between the norm ||| • \\\n and the

norms ||| • ||¡s, S > 1, defined in Section 1.

P will denote the L2(i2)-projection operator onto Sh(il) and Pthe induced

L2-projection operator onto Sh-

Let i//? G Sh(£l) denote the eigenfunction of Th corresponding to the positive

eigenvalue jl^*, i.e., Th^f = rftfj = 1, 2,. . . ,M, chosen so that the set {tf }f=
is orthonormal in L2(Sl).

We note that Ln is defined on L2(£l) by the spectral representation

V=Z (^)_1K */*)*/*,      vEL2(Çl).
i

By Parseval's relation we then see that

||Lft||<sup(u>r1.
;

Hence, if (1.18) holds, we have that

(2.1) \\Lh\\<Ch-2.

As a consequence of the definition of Lh, if Th and Lh are defined by (1.14) and

(1.24), respectively, a simple computation gives, for integer S,

¡sTs= Ts,s
Lh'h        ' hLh

and

Of course, it is easily seen that for all positive integers S, LSTS is the identity

on L2 and that TSLS is the identity on Hs+l x Hs~l\ if 5 is odd, and on Hs x Hs

if S is even.

We set E = U - V, where U is the solution of (1.5) and V is the solution of

(1.15) .  To obtain the maximum norm estimates for u - un  we first derive estimates

of the even-order time derivatives of E in the seminorm ||| • |||ft.

Lemma 2.1.   For S ~> 0 integer, let the initial condition in (1.15) be given by

V(0) = T2hs L2S U° if S > 0 and V(0) = ?U° ifS = Q.  Then for some constant

C=C(t*),

(2.2) SUP   \\\D2SE(t)\\\h<Chr[\\u%s+r+1+\\u%s+r].

Proof.   By (1.5) and (1.15) we see that E satisfies

ThDtE + E=(Th- T)DtU   for 0 < t < ?*,

which implies that

ThD2S+1E + D2SE = (Th - T)D2S+ÏU.

= P     if S > 1

T*L-=(Ó °)
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Hence

((ThD2S+lE(t), D2S+ >*(*)))„ + \ £\\\D2SE(t)\\\l

= Wn - T)D2S+lU(t),D2S+lE(t)))n

= ¿ Wh - T)DtS+ ' m, D2SE(t)))h

-(((Th-T)D2ts+2U(t),D2SE(t)))n.

Integrating the last equation and using the fact that ((Th<b, $))„ = 0 for any <ï> G L2,

we see that

\\\D2SE(t)\\\2 = |||Z)25ir(0)HI2 + 2(((T„ - T)D2S + 1U(t),D2SE(t)))n

(2.3) -2(((TÄ - T)D2S + lU(0),D2SE(0)))n

~ 2f0(((T" " T)D2S+2U(T),D2SE(T)))n dr.

Now, using (1.6) and (1.25), we see that

(2.4) D2SE(0)= L2SU°-L2SV(0).

Hence, since V(0) = T2SL2SU°, S > 0, we see that

D2SE(0) = L2SU° - L2hsT2SL2SU° = (I - ?)L2SU°,      S>0.

Since

the above equation becomes

L2S = (-l)s\
0   Ia

D2t*E(0) = (-iy

'(I - P)L*uS„0>

K(J - P)Lsu°tJ

|||D*S£(0)|||Ä = ||(/ - P)Lsu°\\.

(2.5)

and thus

(2.6)

Now, using (2.5), we have,

(((Th-T)D2S+1U°,D2SE(0)))h

- l)s((Th - T)D2S+2u(0), (I - P)Lsu°)

l)s+l(TD2S + 2u(0), (I - P)Lsu°)

-l)s + 2(D2Su(0), (I - P)Lsu°)

- l)s+2(D2S(u(0) - uh(0)), (I - P)Lsu°)

(- l)s+2((£»2^(0)),, (/ - P)Lsu°)

= \\(I-P)Lsu°\\2.

(2.7)



410 GARTH A. BAKER AND VASSILIOS A. DOUGALIS

From (2.3), (2.6), (2.7) we obtain

\\\D2SE(t)\\\2h < 2(((T„ - T)D2S+iU(t), D2SE(t)))h

-2 f ' (((Tn - T)D2Ts+2U(r), D2SE(T)))h dr
J o

< i \\\D2SE(t)\\\2 + 4|||(T„ - T)D2S+1U(t)\\\2h

+ \    sup    \\\D2SE(t)\\\2 + 4t* Ç* WJh - T)D2S+2U(t)\\\2

Now, by (1.8)

\\\(Th - T)D2S+1U(t)\\\n = \\(Th -T)D2S+2u(t)\\<Chr\\D2S+2u(t)\\r_2

= Chr\\Ls+1u(f)\\r_2 <CAr||M(í)ll2s+r-

Similarly,

||I(T„ - T)£»25+2C/(0lllft < Chr\\Dtu(t)\\2S+r

Then, by the above, (1.2) and (2.8) give (2.2).   D

We also need the following result in the case that the initial conditions are

chosen by (1.20).

Lemma 2.2. For S > 0 integer, let the initial condition in (1.15) be given by

V(0) = T2S+1 L2S+1 U° if S > 0 and V(0) =PTnLU°ifS = 0. Then, for some
constant C = C(t*Y

(2.9) ^sup^ \\\D2SE(t)\\\h < C7V(||«°||25 + ,+ 1 + l|uf°||2S+r).

Proof.   We need merely modify the proof of Lemma 2.1 to account for the

different starting values.  Obviously (2.3) and (2.4) still hold.  By the hypothesis on

V(0), (2.4) gives

Since

we conclude that

D2SE(0) = (T-PTh)L2S+iU°,     S>0.

L2S+l=(-l)sl

(2.10) D2SE(0) = (-I)' v

(T-Th)Ls+1u°\

(J - P)Lsu°t

Hence

(2.11) \\\D^E(0)\\\h --   HT-W + 'u^U.
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Now, using (2.10), we obtain

(((Tn - T)D2S+1U(0),D2SE(0)))h

= (- i)S((Tn - T)D2S+2u(0), (T - Th)Ls+lu0)

(2.12) = (_ i)2S+i((Th _ t^s+i^o), (T - Th)Ls+1u°)

= \\(T-Th)Ls+1u°\\2.

Using (2.11) and (2.12) in (2.3), we obtain

\\\D2SE(t)\\\2 = 2(([Tn - T]D2S+1U(t),D2SE(t)))h

-2 (* WH - T]D2ts + 2U(t), D2SE(T)))h dr- \\(T - Th)Ls+xu°\\2.
J o

The result (2.9) now follows from this last equation via the same arguments used

in Lemma 2.1.    D

We now set Z = Dt U - Dt V = Dfi.   To obtain maximum norm estimates for

Dtu - Dtuh we first derive estimates of the even-order time derivatives of Z in the

seminorm
Mft-

Lemma 2.3.   For S > 0 integer, let V(0) = J2hsi2SU° if S > 0 and V(0) =

?U° if S = 0. In addition let Tn satisfy (1.18). Then, for some constant C = C(t*):

(2.13) 0|upft HIZ^ZCOIH, < Ch-\\lu%s+r+x + \\u%s+r).

Proof.   Clearly Z satisfies

ThDtZ + Z = (Tn - T)D2U,      0<t<t*,

which implies that

T„D2S+1Z + D2SZ = (Tn - T)D2S+2U,      0<t<t*.

Hence

|||£»2SZ(0lll^ = IIII»2SZ(0)HI2 + 2(((Th - T)D2ts+2U(t),D2tsZ(t)))h

(2.14) - 2(((Th - T)D2S+2U(0), D2SZ(0)))n

-2f((.(Th - T)D2S+3U(t), D2rsZ(r)))n dr.
o

Now, it is easily seen that

(2.15) D2SZ(0) = - L2S+ J U° + Lf+ ! V(0).

By the given initial conditions then,

D2SZ(0) = (LhP- L)L2SU°,      S>0.

Since by the definition of Lh, LnP = PLn - Lh, we have

/(/ - P)Lsu°t \
(2.16) D2SZ(0) = (-1)S[

\(Lh - L)Lsu°J
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Thus

|||7)2SZ(0)|||2 = ||(/ - P)Lsu°t\\2 + (Th[Ln - L]Lsu°, [Lfl -L]Lsu°)

(2-17) = 11(7 - P)Lsu°t\\2 + ([P - TnL]Lsu\ Lh[P - ThL)Lsu°).

Also, using (2.16), we see that

(((Th-T)D2S+2U(0),D2SZ(0)))n

= (- l)S((Th - T)D2S+3u(0), (I - P)Lsu°t)

= (- l)s+ l(TD2S+ 3«(0), (7 - P)Lsu°)

(2.18) = (- l)s + 2(D2S+lu(0), (I - P)Lsu<})

= (-l)s + 2(D2S(Dtu(0) - Dtuh(0)), (I - P)Lsu?)

= (-l)s+2((D2SZ(0))x,(I-P)Lsu^)

= \\(I-P)LSu°\\2-

Now, using (2.1) in (2.17), we obtain

((P - ThL)Lsu°, Ln(P - ThL)Lsu°) < ||Lft|| ||(7> - ThL)Lsu°\\2

< \\Lh\\ ||(7 - ThL)Lsu°\\2 < Ch~2\\(T - Th)Ls+1u°\\2

<Ch2'-2\\u0\\22S + r.

Hence, (2.14), (2.17), (2.18) and the last inequality imply that

|||7)2SZ(0lllft2 <C//2'-2||u0||2s+, + 2(((TK-T)D2S+2U(i),D2tsZ(t)))h

-2f (((Tn - T)D2S + 3U(t), D2TsZ(r)))n dr,
J  0

from which (2.13) follows easily by estimating the inner products in the right-hand

side of the above equation in an analogous way as in Lemma 2.1.    D

The analogous result in the case of the initial condition (1.20) is given by:

Lemma 2.4. For S > 0 integer, let V(0) = T2ns+ ' L2S+1,y0 if S > 0 and V(0)

= PTh LU°ifS=0.   Then, for some constant C = C(t*):

(2.19) sup    |||£»2SZ(OIIU<C/i'-(||«0||25+,+2 +l|u?||2s+r+I).

Proof.   Obviously, (2.14) and (2.15) still hold. Putting the appropriate V(0) in

(2.15), we obtain

/-(I-P)Lsu°t\

(2.20) £>2SZ(0) = (-1)5+1
\(I~P)Ls+lu0/

which gives

(2.21) \\\D2SZiO)\\\h = ||(7 - P)Lsu°t\\.
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As in Lemma 2.3, we see that in this case, also,

(2.22) (((T„ - T)D2S+2U(0),D2SZ(0)))h = \\(I - P)Lsu°t\\2.

In analogy with previous calculations, (2.14), (2.21) and (2.22) give then the estimate

(2.19).    D
To derive now the maximum norm estimates we recall a result from [4].  We

denote by || • ||     the norm

\\v\\LP = UwdxV,P

on 7,p(i2), for 1 < p < °°.

Lemma 2.5.   Let 2 < p < °° and 0 < l/q - 1/p < 1/7V.   Then there exists a

constant C such that for every w G Lq

(2-23) IIVIIlP<CMlT

A proof of Lemma 2.5 is given in [4].

The maximum norm estimate will depend on the following result:

Lemma 2.6. Let y(h) be defined by (1.9), and let S be a given integer such that

S > [N/2] +1.  IfS0 = 2S+r+ [N/2] - 1, then, for some constant C,

sup    \u(t)-uh(t)\
(2.24)    0<'<f*

< C{y(h)(\\u%   + K°llsn-i) +    SUP    WD2S(u(t) -«„(0)11}
and oo 0<f<f. )

sup    \Dt(u(t) - un(t))\
0«f<f*

(2.25)

< C\y(h) (\\u°\\s     x + \\u%) +    sup    \\D2S+l(u(t)-uh(t))\\\.
1 ° 0 0<r<r* '

Proof.   Let e = u - uh.  Then from (1.5) and (1.15), for 0 < t < t*,

ThD2e(t) + e(t) = p(t) = (Tn - T)D2u(t),

from which it follows that, for integer /,

D[e(t) = D¡tp(t)-TnD[+2e(t).

Hence, for 2 < Pj < °°, 0 < l/p/+2 - \/Pj < \/N,

\\D¡e(t)\\      < \\D[p(t)\\       + \\ThD¡+2e(t)\\ P]
(2.26) L "i l"> l

= \\(T - Tn)Dit+2u(i)\\LPj + \\TnD't+2e(t)\\ Pj-

Now, using (1.9), we have that

11(7 - Th)D{+2u(t)\\      < C\(T - Tn)D{+2u(t)\ < C7(/i)|7Z>/+2t/(r)|r

= Cy(h)\D{u(t)\r.
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Hence, (2.23) and (2.26) give

(2.27) \\D[e(t)\\      <C(y(h)\D[u(f)\r + \\D[+2e(t)\\ ).
L  > L  l+2

It is easily seen that for S > [N/2] + 1 a decreasing sequence °° = p0> p2>

p4 > ■ • ■ > p2S = 2 can be found such that 0 < l/p/+2 - 1/fy < 1//V, 0 </ <

25-2.  Hence, using the inequality (2.27) recursively for / = 0, 2, . . . , 25 - 2, we

see that

\e(t)\ < C{y(h)(\u(t)\r + \D2u(t)\r + ■■■   + \D2S~2u(t)\r) + ||Z>f2S<f)||}.

Using (1.1), we can write the above as

\e(t)\ < C{7(A)|a(f)|r+2s_3 + \\D2Se(t)\\},

which, by Sobolev's inequality and (1.2), gives (2.24).  The proof of (2.25) is entirely

analogous.    D

We now obtain the main results of this section.

Theorem 2.1.  Let V(0) = T2hsL2SU°, where S is an integer such that S >

[N/2] +l,and let S0 = 2S + r+ [N/2] - 1.  Then, for some constant C = C(t*),

we have that

sup   \u(t) - uh(f)\
o<t<t*

(2.28)
<C{7(/0(||W°||5o + ll«?lls0_i) +^(ll"0ll25 + ,+ i + ll«?H2s + r)}-

If in addition (1.18) holds, we also have

(2.29)

sup     \Dtu(t) -Dtun(t)\
0«f«f*

<C{7(A)(||ll°||s0 + 1   +ll«r,|lSo)+/'''"1(ll«0|l25 + ,+ l  +ll«r)N2S + r)}-

Proof.   It is immediately seen that (2.28) follows from (2.2), (2.24) and the

fact that for E = U - V,

\\D2S(u(t) - uh(t))\\ < \\\D2SE(t)\\\h.

Similarly, (2.29) follows from (2.13) and (2.25).    D

As a consequence of Lemmas 2.2, 2.4, and 2.6 we also obtain

Theorem 2.2.  Let V(0) = T2„s+1 L2S+1U°, where S is an integer such that

S > [N/2] + \,andletS0 = 2S + r+ [N/2] - 1.  Then, for some constant C =

C(t*) we have that

sup    \u(t)-uh(t)\
(2.30)     0<t<t*

<C{7(A)(||ii°||s0 + K°H«0^i) +A,(ll«°llas+r+i + ll«?tW)>.
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and

sup    \Dtu(t)-Dtun(i)\
0«f<f*

(2.31)
<C{7(/0(l|u°llSo+1 + ll«?lts0) +Ar(ll«°ll2s + r+2 + ll"?Mî5+.+ l)>-

Proof.   The result (2.30) follows by using (2.9) in (2.24).  (2.31) follows by

using (2.19) in (2.24).    D

Remarks,  (i) Theorem 2.1 basically asserts that in the case where the initial

values of the semidiscrete approximation (1.15) are chosen via (1.16), one obtains opti-

mal L°°(i2)-convergence for the error u - uh.   In addition, one obtains naturally a

"consistent" suboptimal estimate, of 0(hr~ *), for the time derivative of the error Dfu

- Dtun, provided we work with space discretizations satisfying (1.18).

(ii) Theorem 2.2 shows that if one desires optimal 7,°°(£2)-convergence for both

the error as well as for its time derivative, it is sufficient to choose the initial values of

the semidiscrete approximation via (1.20).  This amounts in practice to solving 25 + 1

linear systems with the same real matrix, initially.

(in) From Lemma 2.3 of this work we obtain a result which supplements the

results of [1], [2] on £2(i2)-convergence.  With 5 = 0 in Lemma 2.3 we have V(0) =

PU° (starting with 7,2(£2)-projections), and under condition (1.18) we obtain

sup   \\Dtu(t) -Dtuh(f)\\ < Chr-1 [||ii°||r+1 + ||k°|LJ-
0<f<f*

3. ¿"-Estimates for Fully Discrete Approximations.  The results of the previous

section although mathematically interesting in their own right, will basically be used as

a tool in obtaining the 7,°°(i2)-estimates for the fully discrete approximations, which

are the objectively important schemes from a practical standpoint.

We first recall some notation from [2].  Th restricted to Sh possesses a set of

purely imaginary eigenvalues {t?± •} IjL x given by

(3.1) n±j = ±i(ßf)112,

and a corresponding set of eigenfunctions

Í3 21 *♦/ = — >      /= 1,2, . . . ,M.(D-^> ±l PS \  , -,   hx-\ 12 i h

The set {4>± • }jL x is orthonormal with respect to the inner product ((•»•))»» extended

to the complex case by (($>, *))h = 0^, ^j) + (7;h^2, ^2), for

•■(;)■ -C;)"-
where z denotes the complex conjugate of z.  We see that the assumption (1.27)

becomes

(3.3) ¿2\T}j\2J°<C<°o.

i
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We first present a prehminary lemma on an estimate in the maximum norm of

the eigenvectors \p*? of Tn, the proof of which follows from [3, Lemma 3.1].  For

convenience in notation we set i//* = i//l •.

Lemma 3.1.  With notation as above, there exists a K depending only on N and

a constant C for which

(3.4) \tf\ <C\t)j\-2K   for all j;

in fact, K= [N/2] +1.    D

We point out that Lemma 3.1 is a slight refinement of Lemma 3.1 of [3] ex-

pressly for our present purposes.  The details of the proof are the same, except that we

exploit the fact that the iterative argument used may be carried out in [N/2] + 1

steps, which gives the convenient value K = [N/2] +1.  We have prior to this also

exploited this fact in Lemma 2.6, where we use the same iterative argument.

We shall need to work with functions of the operator Lh-  Let /be a function

analytic in a neighborhood of the spectrum {rjr1 }!¡L\ of Lh on Sh-  Then, if X G

L2, we have the spectral representation,

f(Lh)X=Zf(Tifl)((X, *,))„*,.
/

We shall, in the first instance, restrict our attention to fully discrete schemes

associated with rational functions r of class i-II, defined in Section 1. This is no loss

in generality since our whole analysis will go through for (conditionally stable) schemes

associated with rational functions of class i-I, under a restriction on k/h, provided

(1.18) holds; cf. e.g., [2, Lemma 3.3].

With r(z) as in Section 1 we define for n = 0, 1, 2, ... ,

(3.5) Fn(z) = r"(z) - e-"2.

Then, if {W" }„>0 is the solution of (1.26) and V is the solution of (1.15), we have

(3.6) W" -V(nk)=Fn(kLn)V(0).

We first present a prehminary stability result.

Lemma 3.2. Let r(z) be a rational junction of class i-II. 7,er 5 be an integer

such that S>J0 + [N/2] + 1, where J0 is defined by (1.27) or (3.3). Then, there

exists a constant C = C(t*) such that for X G L2,

(3.7) \(Fn(kLh)T2ns+'X)x | < Ck'-l\\\X\\\h,      KKp + 1, n = 0, 1.[t*/k],

and also,

(3.8) KP„(kLn)T2hsX)x\ < C\\\X\\\h,      n = 0, 1, 2,

If in addition (1.18) is satisfied, then we also have

, [t*/k].
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\(Fn(kLh)T2S+,x)2\ < c*»:1*-1«**,

1 <!<» + l,fi = 0, 1,..., [/•/*],

and

(3.10) |(F„(fcLJT2SX)2| <C/z-1|IIX|||/),      R = 0, 1.[t*/k].

Proof.   We have

(Fn(kLh)T2S+'X)x = £ Fn(knJx)tfa+K{X, *,))»*,,,.
i

Hence, by (3.2)

Kr„(*U)T**+,*)il< 2-1/2 ( £ IF^fcnr1)! ltyl2S+'l*;ij 111*111,,.

Now, using [2, Lemma 3.1], we conclude that for n = 0, 1, 2, ... ,

(3.10a) IF^fcjr1)! <C«^|t?/|-' <CA:,-1|t?/|-',       KKv+ 1.

Hence, for £ = [/V/2] + 1, using (3.4), we conclude that

KF„(kLh)T2S+lX)x\   ^Ck'-^Z^25-2«) \\\X\\\h

<Ck'-l(j: lr]j\(2S-2K-2J0) + 2J0\ mK

<Ckt~1\\\Xl%k,

where the last inequality follows by the hypothesis on 5 and (3.3).  To prove (3.8) we

note that, by the definition of Fn, since the 77. are purely imaginary:

\Fn(knJl)\<2   all/,«.

The proof then follows from similar calculations as above.

Now (3.2) gives,

\(Fn(kLn)T2hs+,X)2\<2-l/2(z ^(kvi^Wnf5*1-1^]) \\\X]\\„.

By (1.18) we conclude that |tj|   1 <Ch   1 for all/; and the remainder of the proof

of (3.9) and (3.10) follows, as that for (3.7) and (3.8) above.    D

We now find maximum norm estimates for the components of W" - V(nk)

with initial conditions of the type (1.16). For the proofs we need to define some

auxiliary functions.  Given k > 0, let Q be the least integer for which

kXfl2>l    for }>Q.

Then, given u G L2, we define

„<*>=   ¿    (U.tyty.
/-I
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It is easily seen that u^ G C°°(Í2) and that it satisfies

(3.11) \\v(k)h+m <*~mMs    for all m > 0 and real 5,

and

(3.12) llu-u(fc)llp <ks-P\\v\\s    for all 5 > 0 and all real p < 5

We define

(3.13) i/0(fc) =
uO(k)N

Lemma 3.3.   Let r(z) and the integer S satisfy the hypotheses of Lemma 3.2,

and let the initial condition in (1.15) and (1.26) be given by W° = V(0) =

T2SL2SU°.   Then, for some constant C = C(t*) we have

max       IM/7 - V.(nk)\
,     0<n<[f*/fc]

(3.14)

<C{hr(\\u°\\2S+r+x +ll"í0ll2S+r) + ^(ll«0ll2S+,+ 1 +||«?||2s+p)}.

If in addition Th satisfies (1.18) and k/h < C for any C <°°, we also have

max      \W%-V2(nk)\
0<n<[t*/k]

(3.15)
<C{*"-1(ll«0||2S+,+ l  + U»%S + V)+kr~\U»%S + r+l  + \\"Xs + r)}-

Proof Following [2] we can write, by (3.6), using our hypothesis for V(0) = W°,

W" - V(nk) = Fn(kLh)T2SL2SU° = Fn(kLh)T2SL2S(U° - £/«<*>)

(3.16) + ¿ FnikLh)Ti+2S(T _ Th)Lt+i+2SuH*)
1=0

+ Fn(kLh)Tvh+1 + 2S Lv+i + 2SU°<k\

from which, by Lemma 3.2,

IIV? - Vx(nk)\ < c(\\\L2S(U° - U°W)\\\h + HI(T- Th)L2S+lU°^\

(3.17) + ¿ k'~1 \\\(T- Th)Ll+ ! +2SU°^\\\h
¡=i

+ kv\\\Lv+ï + 2SU0^\\\X

For the first term on the right-hand side of the above inequality, using (1.8), (3.11),
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(3.12), we have

\\\L2S(U° - i/°<fc>)|||2

= ||L V - u°«)||2 + (ThLs(u°t - «?<*>), Ls(u° - «°<fc>))

< k2v\\u°\\22S+v + ((Tn - T)Ls(u°t - ««<*>), Ls(u° - a?«))

(3.18) + (TLs(u°t - «?<*>), Ls(u? - «?<*>))

<*2l«0H22S+„ + KT„ - T)Ls(u° - u°M)\\ ||¿V - u°W)\\

+ \\TLs(u° - u«»yav\\Ls(u° - u^)\\_1

<k2^u%s+v + Chr\\u%s+r_2k^uXs+v + k2v\\uXs+v-i

<C{h'\\uXs + r-2 + kV(\\uXs + v + ll"?ll2S + ,)}2-

We estimate the second term in the right-hand side of (3.17), using (1.8) and

i(3.H), by

(3.19) HKT- T„)L2S+1t/°<fe>|||„ - ||(r - Th)Ls+1u0^\\ < CÄrll«°ll2S+r.

For the third term we remark that for / + 1 even

/L(l+l)/2+S

l^l+l+2S _ ,     |-v(l+l)/2+S[

\       o ¿d+«/a+*y

and for / + 1 odd

/      0 -Ll>2+S
^l+l+2S _ ,_ jy/2+S|

Lí/2 + l+S 0

Hence,

lll(T-TJL/+1 + 25t/°<k)|||.

<

\\(T-Th)Ls+^l+^l2u^k\   /+leven,

||(r- Th)Ls+l+ll2u0(-k)\\,      / + 1 odd.

Then, by (1.8) and (3.11) we see that

(3.20)    £ k'-^KT - Th)Ll+1 + 2SU0<k% <Ch'(\\uXs+r + ll«°ll2s+,+ i)-
i=i

Finally, for the last term of (3.17), if v + 1 is even, we obtain, using (1.8),

(3.11), (3.12), that
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Ar2y|||L,+ l+2Sc/0(k)|||2

= £2l'{HZ,'S + (''+1)/2M0(fc)||2   + (T £,S + ("+l)/2M0(*)> ¿S + (v+l)l2u0(k)^

= k2v{\\u0(k)\\22S+v+i +((Th - T)Ls+^+^l2ufk\Ls + ̂ +^l2u0^)

+ (rjL*+<„+I)/2u0(*)   ZS + (,+ l)/2u0(fe))}

<C^{||u°||2s+i;+1+/iluí0<k)H2S+r+()_1H«í0(fc)H25+,+1

+ H«í0(fc)l^+,}i

< C{k2v\\uXs+v+í + hrk"\\u%s+r\\u%s+v + k2"\\uXs+v}

<C{^(||ti°||25+y+1 + \\uXs+v) + hrUuXs+r}2-

Similarly, for v + 1 odd we obtain

(3.21')

k2vUv+ l + 2S£/0(fc)|||2

< C{*"(||M°||2s + v+1  + ll«?ll2S + „) + hrWUXs + r+l }
2

(3.14) now follows from (3.17)-(3.21').

We now note, using (3.16), (3.9) and (3.10) that \W!¡ - V2(nk)\ is bounded by

a factor of Ch~l times the right-hand side of (3.17).  Hence, (3.15) follows im-

mediately.    D

We now state the first main result of this section, the proof of which follows

from Theorem 2.1 and Lemma 3.3.

Theorem 3.1.  Let r(z) and the integer S satisfy the hypotheses of Lemma 3.2.

Let S0 be defined as in Theorem 2.1, and let V(0) = T%s L2SU°.   Then, for some

constant C = C(t*) we have that

max      \W" - u(nk)\
0<M<[/*/fc]

(3.22) < C{7(A)(||ii°Hs0 + IK°||So_t) + A'(||ll°||2s+r+1 + IK°ll25 + r)

+ ^(ll«0|l25 + .+ l+ll"í°ll25 + ,)>-

If in addition (1.18) is satisfied, and k/h < C for any C <°°, then

max       \W^-Dtu(nk)\
0<n<[t*/k)

(3.23) <C{7(A)(||u°|ls0+, + ll«?lls0) + A'-Hll^W+i + U"Xs + r)

+ k»-1(\\u°\\2S+v+1 +\\uXs+v)}-   D

We now analyze the error in the fully discrete approximation obtained with

initial condition of the type (1.20).  As in the semidiscrete case, we need no additional

conditions for the estimate of the error in the second component.  We first need a

preliminary stability lemma.
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Lemma 3.4.  Let r(z) and the integer S satisfy the hypotheses of Lemma 3.2.

Then there is a constant C = C(t*) such that for I£L2:

l(F„(Ä:LJTf+/+1^)I.| < Ckl-l\\\X\\\h,    i m 1, 2, 1 <1 < v + 1,
(3-24)

n = 0, 1,2, ...,[t*/k],

and

(3.25)  \(Fn(kLh)T2hs + 1X)f\ < C|||X|H„    i = 1, 2, n = 0, 1, . . . , [t*/k].

Proof.   As in the proof of Lemma 3.2, we have for i = 1,2,

\(Fn(kLh)T2hs+l+lX){\ < c/ç li?l,(*ii/-1)ll%lM+,+*-'l*/,MBJCBU

<C^-^£|r?/|("+2-''-2^2/o)+"o\|||X|||fi.

Hence, the condition 5 > 7Í + /0 is sufficient to estabhsh (3.24). The proof of

(3.25) also follows easily.    D

The analog to Lemma 3.3 is now

Lemma 3.5.   7>er r(z) and S satisfy the hypotheses of Lemma 3.2 and W° =

v@) = T¿S+1L2S+1U°.   Then, for some constant C = C(t*) we have for i = 1,2,

max       | WP - V.(nk)\ < C{Ar(||ii0||2s+r+2 + ll«f°ll2S+r+1)
0<n<\t*/k]

(3.26)

+ mi«°ii2S+,+2 + U»Xs+V+l)}-

Proof.   We have

W" - V(nk) = Fn(kLn)T2ns+1L2S+1U°

= Fn(kLh)T2S+1L2S+1(U° - C/°<fc>)

+  t Fn(kLh)T2hs+t+1(T -Th)L2S+l+2U°W
1=0

+ Fn(kLn)T2S+v+2L2S+v+2U°(k\

from which, by Lemma 3.4, it follows that

Iff» - V;(nk)\ <c(\\\L2S+1(U° - U°W)\\\h + \\\(T - Tn)L2S+2U°(k%

+ t fc/-1lll(T-T,)L'+2S+2t/0(fc)|||,
/=i

+kv\wL',+2s+2uo^\\\hy,

and (3.26) follows by using entirely similar techniques of estimation with the ones of

Lemma 3.3.    D
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Combining the results of Theorem 2.2 and Lemma 3.5, we obtain

Theorem 3.2.  Let r and the integer S satisfy the hypotheses of Lemma 3.2,

and let 50 be defined as in Theorem 2.1 and let V(0) = T2S+1 L2S+l U°.   Then, for

some constant C = C(t*):

max       \W"-u(nk)\
0«n«[f»/fc]

(3.27) < C{7(A)(||ii°Hs0 + IK°Hs0_i) + A,(ll«°ll3s+r+2 + K%S+,+ 0

+ k"(\\uXs+l,+2+\\»XS+u+i)},

and

max       IW" - Dtu(nk)\
0<n<[r*/fc]

(3.28) < C{7(A)(ll«°lls0+1 + IK°Hs0) + Ar(ll«°ll2s+,+a + Il«?ll25+r+l)

+ ^(H«0|l25 + , + 2+ll«f°ll25 + ,+ l)}-     °

We now turn to convergence results when rational functions of class i-I are used.

Since the proofs of the results are entirely analogous to those for class i-II, we shall

merely point out the major technical changes, and conclude by stating the results.

Theorem 3.3.  Let r be of class i-I and suppose that condition (1.18) holds.

Then, there exists a constant ß = ß(a), where a is as in Definition I, such that if k/h <

ft the following estimates hold.

(a) 7/5 > [N/2] +J0 + l,andW°= V(0) = T¿SL2SU°, then the estimates

(3.22) and (3.23) hold.

(b) // W° = Tls+1 L2S+'U°, with S > [N/2] +J0 + \, then the estimates

(3.27) and (3.28) hold.

Proof.   From [2, Lemma 3.1], if r is of class i-I, the inequality (3.10a) holds for

/ such that k\T¡A~l < a.  Thus, under the condition (1.18), if ß(a) = aCv\ with C

the constant of (1.18), andkh"1 <ft then, for all /.fclttyi-1 < C~^kh~l < a.   Hence,

(3.10a) holds for all/. The remainder of the proofs of (a) and (b) are the same as for the

corresponding results of Theorems 3.1 and 3.2, respectively.    D

4.   Remarks.   The convergence results of Section 3 rely implicitly on the asymp-

totic distribution of the eigenvalues of the elliptic operator L on Í2.  More specifically,

our results assert that for optimal convergence in L°°(Sl) of the error, it is sufficient

to choose W° = TlsL2SU° with 5 = [N/2] + J0 + 1 (Theorem 3.1), where /„ is

any integer satisfying (1.27).  Thus, for actual implementation, one must find a con-

venient J0.  This we do in the present setting as follows:

It is known from the work of Browder [5], among others, that under the condi-

tions we have imposed on Í2 and L,

(4.1) Urn j/Xfl2 = o>N f    [DETÍ^Í*))]l'2 dx,
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where

It is also well known that in the canonical example of the standard Galerkin

method (1.12) there is a rearrangement of the indices/ such that

(4-2) nfOf1*

From (4.1), (1.27) and (4.2), a simple computation shows that we may choose

J0 = /„(Í2) = N.

Thus, for optimal 7>°°(£2)-convergence of the error, it suffices to choose

(4.3) h/" = T2ûL"î/u =2S i 2STT0 _|
ft*

.tW<

with 5 = [A^/2] + TV + 1.  As pointed out before, the choice (4.3) is accomplished

with the solution of

J3/V + 2, TV even,

(3/V+ 1, TV odd,

linear systems of equations initially, using the same real matrix.

For a survey of results of the type (4.1) we refer to [6].
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