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Convergence of a Block-By-Block Method for

Nonlinear Volterra Integro-Differential Equations

By Athena Makroglou*

Abstract.   The theory of a block-by-block method for solving Volterra integral

equations is extended to nonsingular Volterra integro-differential equations.   Conver-

gence is proved and a rate of convergence is found.   The convergence results obtained

are analogous to those obtained by Weiss [12] for Volterra integral equations. Several

numerical examples are included.

1. Introduction. Consider the nonlinear Volterra integro-differential equation

(1.1) y'(x) = G(x,y(x),   /**(*, t,y(t))dt\      (x>0)

given y(0). Methods applied to the integro-differential equation (1.1), seen as a dif-

ferential equation, have been discussed by Linz [7], Brunner and Lambert [3],

Tavernini [11], and Neves [10]. It is relevant to observe that the initial value problem

(1.1) can be written in the form

(1.2) y(x) = f*G(s, y(s), z(s)) ds + y(0)      (x > 0),

with

(1 -3) z(x) = f¡K(x, t, y{t))dt      {x > 0),

in which the initial condition is incorporated.  If we put F(x, t, <p) = (Fj(r), F2(t))T —

(G(t, Vy, <¿>2), K(x, t, <pl))T with y = (<¿>,, <¿>2)r, then (1.2), (1.3) can be written

(1 -4) f(x) = JoXF(x, s, f(s))ds + c      (x > 0),

where f(x) = (y(x), z(x))T and c = (y(0), 0)r. Methods applied to the integro-dif-

ferential equation (1.1), seen as an integral (or a coupled pair of integral) equation(s),

have been discussed by Day [5], and Mocarsky [9].

In this paper we too shall consider the equation (1.1) written in the form (1.2),

(1.3) and we shall extend a method first applied by Weiss [12] to Volterra integral
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784 ATHENA MAKROGLOU

equations of the form

(i.5) m = f*ftx, *>f(s))ds+¿o)   (* > °)-

This method is an implicit block-by-block method.  Such methods have the advantage

over linear multistep methods and step-by-step methods that they can be of high order

and still be self starting.  In a block-by-block method we seek approximate values of

the solution for 0 < xm ¡ < X, where xm ¡ = mh + Ujh,j = 0, 1, . . . , p, 0 < «0 <

ul < • • • < u    p integer, m = 0, I, ... ,N- I, such that Nh — X.

Weiss [12] has derived two schemes based on interpolatory quadrature rules such

that

(1.6) J^rfx)dx- ¿yk^uk),

and

(1.7) \~<Áx)dx^ £ wkÚMk),

0 k=0

p

z
fc = 0

where

(1.8) w>k = $ ¿ Lk(x)dx,

(IS) wfc = < = fl0Lk(x)dx,

and

p

(1.10) Lk(x)=      n    (* ~ "/)/("* - "/)>
¡=0j*k

see Eqs. (2.11) and (2.12) in [12], that is

(1.11)

and

(1.12)

m-l      p

fmj = hlL     £   wkF(xmj>xi,k>fi,k)
,=0   k=0

P

+ h £   "i^^m,/' Xm,fc'  /m, k)>
fe=0

m-l     P

fm,j = h   Z    £   wkF(xm,j>xi,k>fi,k)
j=0   fc=0

P / P \

+ *"/  Z   VT*m,7»*m,/,*. £  ¿r("/"fc)/m,,|-
fc=0 x r=0 /

Scheme (1.11) has the disadvantage over scheme (1.12) that it needs the evaluation of

F(x, s, y(s)) at points where s > x, where F(x, s, y(s)) might, for example, not be de-

fined; see [12]. Weiss [12] indicated that the generalization of schemes (1.11), (1.12)
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to a system of Volterra integral equations of the second kind follows immediately.

Equation (1.1) can be formulated as a system of Volterra integral equations of the

form (1.4).  But, because of the special form of F^f) = G(t, y(t), z(t)), simplifications

occur and thus we chose to treat each of the equations (1.2), (1.3) separately. We so

produced three schemes A, B, and C, which we called block-by-block methods after

Weiss, although they are new methods for integro-differential equations. We present

here scheme C which in Makroglou [8] was proved to be the best of all three, namely

the simplest, the least computer-time consuming and on the whole equally as accurate

as A and B.  It also can be successfully used for Volterra integro-differential equations

with weakly-singular kernels, as will be shown in a sequel to this; see also [8], scheme

GC.  The description of the scheme is given in Section 2 below.  In Section 3 is given

the convergence proof of scheme C.  Some numerical results are included in Section 4.

The results obtained by using schemes A, B, C in [8] were compared with those obtain-

ed by using linear multistep methods extended for the solution of (1.1) by Linz [7]

and by Brunner and Lambert [3], hybrid methods applied to (1.1) by Makroglou [8]

and some step-by-step methods discussed by Mocarsky [9]. We have not, however,

undertaken a systematic assessment of the relative merits of the methods on a class of

test problems.  The results of the comparisons are stated in Section 4. For detailed

results see [8].

Throughout the paper, ymj- shall denote an approximation to y(xm •), m =

0, 1, ...,#- 1;/ = 0, 1, ... ,p, and zm/- an approximation to z{xm J). Also

xm u shall denote the point mh + uv   • • • u0 h, 0 < v¡ < p, i = 0, 1, . . . , k,

v¡ integer.

2.  Description of the Method.

2.1. Scheme C. Consider Eqs. (1.2), (1.3).  For x = xm , we have

(2.1)

and

Jxm
o    G(s,y(s),z(s))ds

fxm'i G(s,y(s),z(s))+y(0),+

/xm
0   K(xmJ,t,y(t))dt

(2.2) x    .
+ )        K(xmJ,t,y(t))dt

in»0,l,...,JV-l;/-0,l,. . . ,p.

Then using the quadrature rules (1.6), (1.8), (1.10) and (1.7), (1.9), (1.10) in the

equations (2.1) and (2.2), respectively, we have
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m—1     p

ym,i = xo) + ¿ Z  Z wkG(xi,k. y¡,k>z«,*)
,=0    fc=0

(2.3)
p

+ /l   Z   MÍG(*m,fc>J'm,fc>zm,Jt).
fc = 0

m-l     P

ZmJ = h   T,    Z   w**(*m,/»*i,fc..>'<,fc)
,=0  fc=0

«^ +A"/ Z wkKlxm,i,xmJtk, £ Lr(u¡uk)ymX
\¿A) k=0 \ r=0 )

m = 0, 1,'. . . ,N- l;/ = 0, 1, . . . ,p,

where, to obtain an approximation of y(xm^k), we have used Lagrangian interpola-

tion, that is,

(2-5) y(xmj,k)^  Z  Lr("/"fcM*m,r)-
r=0

We note that in (1.2) G(s,y(s), z(s)) does not depend on x and so the evaluation of

G at points where s > x will not matter.

In the case when u0 = 0 Eqs. (2.3) simplify to

p

(2.6) ym,i=ym,o +h Z KG(xm,k'ym,k'zm,k)-
fc = 0

(We cannot make a similar simplification to Eq. (2.4), because there the sum from 0

to m - 1 is dependent on /.)

When uQ j= 0 we can still simplify (2.3), by differencing on m thus

y0,i = s(o,i)+y(o),

y m ,/■ - hs(m> í) = y m-i j + As(w -1. /)

(2.7)
p

+ ftI  wfcG(xm_1)fc,>-m_1>fc,zm_lifc),
fc = 0

m> l;/' = 0, 1, . . . ,p,

where we have put

p
s(m,ß= £ w4c7(xm)fc,7m,fe,zm,fc),      m = 0,1.N-\.

¡fc=0

At the m-stage in Eq. (2.1) ym_1j, zm_1 -, and also s(m - 1,/) are known from the

previous stage for / = 0, 1, . . . , p, and we have to compute only one term of the

sum from 0 to m - 1 on the right-hand side of (2.3), namely the one for i -m - 1.
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We may note that the scheme (Eqs. (2.3), (2.4)) is self starting and that for

p = 1, «0 = 0, ul = 1, it reduces to the scheme obtained, if we apply the trapezium

quadrature rule to the integrals occurring.

3. Convergence.  In this section we are concerned with a convergence proof for

scheme C (Eqs. (2.3), (2.4)).

We shall establish a bound on the error in approximations (2.3), (2.4), see

Theorem 1. This bound is achieved in terms of certain discretization errors (Mj(/i),

TyQï), T2(h), T3(h), T4(h) in the analysis to follow) by using a lemma [6, p. 313],

given as Lemma 2 below. We shall then deduce convergence, see Corollary 1, and the

rate of convergence of the method by using Lemma 1 ([12], [1]), see Corollary 2.

Before proceeding to the proofs, we need the following preliminaries; see Weiss

[12].  In relation to the quadrature rules (1.6)—(1.10), we define

p+i
(3.1)      g(x) = (x- u0Xx -«!)••■(*-«,)=£  CjXP+ '-'',      c0 = 1.

/'=o

We denote the relation /¿ g(x)dx =£ 0 by g(x) G P0 and the relations /¿ xlg(x)dx = 0,

i = 0, 1,. . . , v- l,/¿ xvg(x)dx * 0, by g(x)GPv.  Let

f "/'                   p
(3.2) £}(*>) =   J     *(x)dx- Z "Wh*),     / = 0,1.p.

p
z

¡t=o

Then the following result is valid.

Lemma 1 ([12], [1], [8]> Ifg(x)ePv, then

(3.3) Ef(s"+1 + r)=  Qx'g(x)dx-± cfifif+i+r-*),      r = 0,l,. .. ,p,
í=i

and

(3.4) Ep(ßp+'+r) = 0   for r < v - 1.

From (3.4) we may conclude that the degree of precision of the formula (1.7)

isp + l+u-l=p + u. The following lemma gives an estimation of the growth of

the solution of nonhomogeneous difference equations.

Lemma 2 ([6, p. 313]). // \qn\ < ¿E^T,} \q¡\ + B for n = s, s + 1, . . . with

A>0,B >0and Sr}, \q.\ <¿>, then \q„\ <(B+ AP)(\ + A)"'*, n = s, s + 1,-

Furthermore, if A = hk and nh = x, then \qn\ < (B + hkP)e\p(kx).

We shall also make use of the following notation:

(3.5) r(x) = G(x,y(x),z(x)),      Kx{x, s) = K(x, s,y(s)),      0<s<x<X,

am 3m
r(m)(s) ^  0_ K<{n){x  s)^ö_  KÁx^
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We now define

L sup     \Lr(Ujuk%      A   =
<rj,k<p

Z Lfx)
i=o

W=    sup    \wk\,      W" =     sup     lu/J,
0<fc<p 0</,fc<p

A! = {(*,j>,z):0<x<X, [y|<°°, |z|<°<>},

A2 = {(x,s,y) : 0<s<x<AT, |y|<oo},

m-l     p

z z
f=0   fc=0

Mt(h) =      max
0<m<AT-l

0</<p

/xm m—1     p

0     ^i(*M,/,*)* "A   £    Z   ***1 (*„,/.*,,*)

(3.7)

M2(A) =     max
0<m«Jv-l

7\(A) =      max
0<Sm<JV-l

0</«p

/*m m-l     p

1=0   fc=0

_      *i (*«,/.*)*
'm

-AU/  ^ w**i(*«,,, *„,,,*)
fe=0

7/2 (A) =      max
0<m<A/-l

0</'<p

7,3(/!) =       max
0«m<iV-l
0</,fc<p

/m,/ p
IXx)dx-A £  u4r(*m>fc)

p

E
fc=0

X*M ,/,*)- Z  ¿r("/"fcM*m,r)
r=0

em,/=X*«,/) -^m>/,      w =0, 1, . . . ,JV- 1;/ = 0, 1, . . . ,p,

em =   max   |e    ,|
0</<p     m'7

m =0, 1, . . . ,JV- 1,

and proceed to the proof of the convergence theorems.

Theorem 1. Let L1,L2 be the Lipschitz constants of G(x, y, z) with respect

to the second and third variable, respectively, and L 3 rAe Lipschitz constant of

K(x, s, y) with respect to the third variable on the sets àlt A2.   Then for the error

em in the approximations (2.3), (2.4) we have, for h sufficiently small, that

(3.8) em <(C' + W?'Qexp((m - \)hE'),      m = 1,2, . . . ,N- 1,

and

(3.9) e0 < (T2(h) + hW'L2(p + l)[r,(A) + hWL3(p + l)T3(h)])/(l - D(p + 1)),

where

(3.10)       C' = 0(1 - D{p + 1)),      E' = E(p+ 1)/(1 -D(p+ 1)),
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C = M2(h) + WL2X(p + 1X^1 (A) + ^(A)) + hW2L2L3X(p + 1)27*3(A)

+ T2(h) + hW'L2(p + 1)[M!(A) + r,(A) + hWL3(p + l)r3(A)],
(3.11)

D= hW'L1 + h2WWL2L3L(p + l)2,

E= WLX + W2L2L3X(p+l) + hW2L2L3L(p + l)2 + hWW'L2L3(p + 1),

and £ is such that e0 < £.

/7-O0/.  Subtracting (2.3) from (2.1) we find

(3.12) emJ = A+B,

where A=Am,B = Bm , with

;xm m-l     p

r(jc)dx-A x  Z wfcG(Jcí,k'>'í,fe'za)'
0 i=0   k=0

(3.13) p

ß = f*m•'r(x)dx-h Y. KG(xm,k>ym,k>zm,*).
J *m fc = 0

and Zf k is the approximation to the integral z(x¡ k) = f^,,Ar ̂(jc,- fc, s)ds, i = 0,

1.m; A = 0, 1.p, given from Eq. (2.4) by

f-i    p

Zi,k=h    Z     Z   wjl^(*/,fc.*X,M'^,il)
\ = 0 M = 0

(3.14)
p / p

+ A"fc    Z   WM* **,*>*/,*,*!' Z   LÁUkun)y¡,r
u=0 \ r=0 y

We shall proceed using the "add and subtract" procedure; see, for example, Mocarsky

[9].  So if we denote by z'(xik) the right-hand side of (3.14) with yx,^,y¡,r replaced

°y y(.xx,ß)> y(xi,r)>we have

<3-15) i<W<¿ wfi+¿ iÄfi,
í=0 /=0

where

m-l     p

IX*)£fc-A   Z     Z   WfclX*,,*),
1=0    k=0

m —1      p

^2 = a Z  Z wk[r^,-,fc) - £(*/,*> X*/,fc)> «'(**,*))].
,=0   fc=0

(3.16)
m—1     p

^3 = A  Z    £ w*[G!(*/,fc.X*/,*).z'(*í,*))-G(xu,^ffc,z'(*ífc))],
í=0   k = 0

m—1     p

^4= A   Z   Z   wfciG(^)k.>'f,fc'z'(^-,fc))-G(x,.ifc,^.>jfc,zI.;k)],
1=0   Jfc = 0
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Jxm,j P
Y(x)dx-h £  WfclX*m>fc),

p

L
fc=0

p

B2=h Z w'k[r(xm,k)-G(xmtk,y(xmJ(),z'(xm>k))],
k=0

(3.17) p
^3= A   Z   w'k[G(xm,k^y(xm,k)'Z(xm,k)) -G(xmk,ymk,z'(xmtk))],

k=0

P ,

54=A   £   Wk[G(xm,k>ym,k>z(xm,k))-G(xm,k>ym,k>zm,k))l
fc=0

Using the Lipschitz conditions on G and K, the definitions (3.7) and the triangle in-

equality, we obtain the following inequalities (see [8, pp. 178, 179, 197]),

lAiKM^h),

\A2\ < WL2X(p + 1)(MX(A) + rt(A)) + hW2L2L3X(p + l)2T3(h),

(3.18)

m-l     p

\A3\<hWL1   £   Z   M>
,=o fc=0

lA4\<hW2L2L3X(p + l)   £   Z  lex,
m-l     p

\=0  M=0

m-l    p

+ h2W2L2L3L(p + l)2   Z   Z  M'
f=0  r=0

and

151|<r2(A),

|52| < hW'L2(p + l)[Mt(Ä) + r,(A) + /iWL3(/7 + l)r3(A)],

(3-19)        \B3\<hW'Ll   Z   \em¡k\,
fc = 0

[m-l     p P

^3   Z   Z  \eitr\+hWL3L(p + l) £  |em>r|   .
i=0   r=0 r=0 J

From (3.15), (3.18), (3.19) we then find

p m-l    p

(3.20) |emJ|<C + D£  1^,1+A£ £   £  |e/>r|,
r=0 i=0   r=0

or

m-l

(3.21) em<C' + Af  £   e,..
1=0
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Applying Lemma 2 now to (3.21) for A sufficiently small and e0 < % we obtain the

result (3.8) of the theorem. The result (3.9) can be proved proceeding similarly and

taking into account the fact that for m = 0 we have Mt(A) = 0 and M2(h) = 0.

Using the result of Theorem 1, we shall now establish convergence; that is, we

shall prove

Corollary 1. Let

(i) the assumptions of Theorem 1 be valid,

(ü)y(x), z(x), G(x,y(x), z(x)), K(x, s,y(s)) be continuous for x e [0, X],

s G [0, x], and

(üi) g(x) = (x- u0)(x -«,)•■• (x - up) e Pv.

Then em —> 0, m < N as A —*• 0, A7i = X.

Proof. We shall prove that

Urn M,(A) = Urn M2(A) = Urn 7^ (A) = lim  T2(h)
,, «-,. h->0 h-K) /i->0 h-+0

= lim T3(h) = 0,      Nh=X,
h->0

and then from (3.8), (3.9) the required result follows.

From Lemma 1 we have that the degree of precision of the quadrature rule (1.7)

is p + v > p. Thus,

M2(A) < 6*(1 + Ap)cj(r; A/2p)    ([8, result 1-2.20]),

where Ap is defined in (3.7) and

oj(v?; 5) =       sup        W*i) - v<*2)l>
xl,x2&[a,b]

\x1—x2\<S

is the modulus of continuity of a function ip(x).  So ^nn^.0;Nn=xM2(h) = 0.  Also,

Af,(A) < 6*(1 + Ap)      max     w(Ki(xmj,s)\hl2p),
0<m<N-l

0</'<p

where Kx(x, s) s K(x, s, y(s)), 0 < s < x < X, is uniformly continuous in 0 < s < x

<X.  So

max     co(Kl(xm .-, s); A/2p) —>■ 0    as h —> 0,
0«m<7V-l

0</<p

which impUes that ]imh_^0.jfh=xM1(h) = 0.  For T^ih) we have

7\(A) < 6A(1 + A )       max     u(Kx{xm -, mh + m ¿s); l/2p),
0<m<AT-l

o</«;p

and therefore hm/I->0^v/i=Ar ̂i(A) = 0-  F°r T2(h), since the degree of precision of

rule (1.6) is >0 and the continuity assumption of F(x) on 0 < x < X implies the
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bounded and Riemann integrable of F(x), we have lùm„->ojfh=xT2Qt) = 0; see [5>

p. 25].  Finally, for the error T3(h) in Lagrangian interpolation, using result (i-2.7)

and (i) of (Jackson) Theorem 1-2 in [8] we have r3(A) < 6(1 + Ap)co(>; A/2p).

y(x) e C([0, X]) impUes that y(x) is uniformly continuous in [0, X], (X < °°). Thus,

lim/1-*o^v/I=Ar ^0; A/2p) = 0 and so lim^o^,,^ T3(h) = 0.

Having examined convergence, we shall examine the rate of convergence; that is,

we shall prove

Corollary 2. Let

(i) the assumptions of Theorem 1 be valid,

(ii)gix)GPv,

(iii) K(x, s, y) is p + v + 2 times continuously differentiable with respect to x,

s and y, respectively, on 0 < s < x, 0 < x < X, \y\ <y, where y = max0<x<x\y(x)\,

(iv) G(x, y, z) is p + v + 2 times continuously differentiable with respect to x,

y and z, respectively on 0 < x < X, \y\ < y, |z| < z, where y is as in (iii) and z =

maxo<x<;dz(*)l.

(v) y(x) is p + 2 times continuously differentiable on 0 < x < X.

Then, there are constants Cv C2, C3 such that,

e0 < C,Ap+ 2

(3.23) em<C2hP+1,

em<C3hP + 2,

m = 1,2, . . .,N- l,ifv = 0,

m 1,2, . . . ,N- l,ifv>0.

Proof.   Consider the definitions in (3.5), (3.6). Then for the errors M2(h),

^i(A), 7\(A), 72(A) in (3.7), extending the analysis of Weiss [12], we find

M2 (A)
hP + V + 2

max
0<m<AT-l (p + v + 1)!

m-l
ep(sp+v+1) Y r<-p+v+1Xxi)

1=0

+ OQip + u+3
).

or

nP+v+i
M2(h) =      max      -

(3.24) 0<m<N~l (p + v + 1)!

+ 0(hP+v+2),

Ep(sp+v+1)j       r(P+v+i\s)ds

where we have used Taylor series expansion for V(x¡ + As), r(xf + ukh) and that

Ep(sp+ 1+r) = 0ifr<u-l (Lemma 1).  Similarly we find

ftP+V+l
Mj(A) =      max      -

0<m«JV-l (p + v + 1)!
(3.25) 0</<p

+ 0(hP+v+2).

Ep(sp + v+1)íom'ÍK\P + ̂ \xmJ,s)ds

For  T2(h),   using Taylor series expansion for   r(xmJ- + h(s - ujf)   and
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T(xm ¡ + h(uk - iij)), we find

(3-26)     T2(h) =      max      h
0<m<N-l

Z    -V^x^E^s-u^
r=p+l r-

4- 0(hP + v+2),

(E.(sr) = 0forr = 0,l,...,p).

For T^Qi), using Taylor series expansion for K1(xm ¡, xmj- + u¡h(s - 1)) and

Ki(xm,f xm,j + "/A("fe - 0), we find

Tx(h) =      max      uJi
0«m«JV-l

(3.27) °</'<p

+ 0(/iP+u+2),

p + u     M;Ar

Z   -7-M,)(*W(/.**Ä((s-i)0
r=p+l     "

(£#') = 0 for r = 0, 1.....P).

For the Lagrangian interpolation, using the well-known error formula, we have

MKi    r3(A)=      max     Ap+1[y(p+1)(r)?("/"fc)l/0' + l)!+O(AP+2),
W-^öJ 0<m<JV-l

0</,fc<p

where f lies between xm 0, xm>p and ^m>/)fc.

Combining now the results above with (3.8), (3.9), we obtain the required result

(3.23).
The same rate of convergence was found in [8] for the other two schemes men-

tioned in the introduction, but for scheme A under the additional assumption that

z(x) is p + 2 times continuously differentiable on 0 < x < X.

4.  Numerical Results.  We now display some numerical results obtained by

testing scheme C on three examples ((a), (b), (c) below) for the cases p = 2, p = 3,

w0 = 0, u¡ = /'/p, i = 1, . . . , p, with v = 1 and v = 0, respectively. The results verify

order of convergence 0(AP+2) = 0(A4) and 0(hp+l) = OQi4), respectively.  Example

(c) is a "stiff (constructed) example.  In general, Eqs. (2.3), (2.4) form a nonlinear

system for^m>0,ym>1, . . . ,ymp; zm0, zml, . . . , zmp, which we solved by

applying a Newton iteration.  It might seem preferable to use the method with

zm0, . . . >zm>p eliminated (see [8], methods "with elimination of the z-variable") in

order to reduce computing time; a sample of actual computing time (see [8, p. 146])

though, shows this to be false.

(a) y(x) m 1 + y(x)- x exp(-x2) - 2/Jxs exp(-j>2(s))ds, 0 < x < 1, y(0) = 0,

y(x) = x (Mocarsky [9, p. 239], Linz [7, p. 301], Makroglou [8, Example 2, p. 93]).

0>)/(x) - 1 + 2x- X*) + /o*0 + 2x)exp(s(x - s))y(s)ds, 0 < x < 1,y(0) =

l,y(x) = exp(x2) (Linz [7, p. 300], Makroglou [8, Example 6, p. 94]).

(c) y'(x) = y'(0) + /* - 20^(s) ds + 2 ly(0) - 2 ly(s), y(0) = 1, /(0) = 1,

y(x) = (21/19)exp(-x) - (2/ 19)exp(-20jc) (Makroglou [8, Example 7b, pp. 94, 95]).
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Example (a)    Scheme C

u0 = 0,u, = ilp      (i= 1,2, . . . ,p)

p = 2                                                p = 3
x-

A = 0.1 A = 0.05 A = 0.1 A = 0.05

0.1   3.56 x KT11 2.26 x 10"12 1.38 x1o-11    9.63 x ÎO"13

0.2   5.77 x 10~10 4.29 xlO""11 2.46 x lO"10    1.88 xlO-11

0.3   3.22 x 10~9 2.29 x 10"10 1.41 x 10~9      1.01 x 10-10

0.4    1.06 x 10-8 7.29 x 10"10 4.66 x 10-9      3.22 x 10-10

nc    ico»  in-8 i ha ~  in-9 1  1/1  v,  m-8       n TX v  in-10

0.3 3.22 x 10-9 2.29 x 10""10 1.41 x 10"9 1.01 x 10-10

0.4 1.06 x 10-8 7.29 x 10"10 4.66 x 10-9 3.22 x 10-10

0.5 2.59 x 10-8 1.74 x 10-"9 1.14 x 10-8 7.73 x 10-10

0.6 5.26 x 10-8 3.48 x 10"9 2.32 x 10-8 1.54 x 10-9

0.7 9.37 x 10-8 6.13 x 10-9 4.15 x 10-8 2.72 x 10-9

0.8 1.52 x 10"7 9.85 x 10"9 6.73 x 10-8 4.37 x 10-9

0.9 2.29 x 10-7 1.48 x 10~8 1.02 x 10-7 6.56 x 10-9

1.0 3.28 x 10-7 2.10 x 10-8 1.45 x 10~7 9.32 x 10~9

1.5 1.24 x lo-6 7.85 x 10~8 5.52 x lO"7 3.49 x 10-8

2.0 3.43 x IP"6 2.16 x 1Q-7 1.52 x IQ"6 9.61 x 10~8

Example (b)   Scheme C

u0 = 0,Uf = i/p      (/= 1,2, ... ,p)

x P = 2_P = 3

A = 0.1 h = 0.05 h = 0.1 h = 0.05

0.1 2.20 x 10~7 1.38 x 10-8 8.98 x 10-9 5.66 x 10"10

0.2 4.71 x 10-7 2.95 x 10-8 3.63 x 10-8 2.28 x 10-9

0.3 7.68 x 10-7 4.81 x 10-8 8.44 x 10-8 5.29 x 10-9

0.4 1.12 x 10-6 7.04 x 10"8 1.60 x 10-7 9.99 x 10-9

0.5 1.56 x 10-6 9.75 x 10~8 2.73 x 10-7 1.71 x 10~8

0.6 2.08 x 10-6 1.31 x 10"7 4.45 x 10~7 2.78 x 10~8

0.7 2.72 x 10-6 1.71 x 10~7 7.06 x 10~7 4.40 x 10-8

0.8 3.46 x 10-6 2.17 x 10"7 1.11 x 10~6 6.91 x 10-8

0.9 4.26 x 10-6 2.68 x lO"7 1.74 x 10-6 1.08 x 10-7

1.0 4.98 x 10-6 3.14 x lO"7 2.75 x 10~6 1.71 x 1(T7

1.5 3.14 x 10-5 1.90 x 10~6 3.18 x 10-5 1.96 x 10-6

2.0 1.71 x lO-3 1.05 x 10~4 5.19 x 10-4 3.17 x 10_s
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Example (c)   Scheme C

«0=0,«f = i/p      (i= 1,2, . . . ,p)

A = 0.4 A = 1.0

p = 2 P=3 P=2 P=3

0.4   2.37 x 10-2    7.95 x 10~3      1.0 5.72 x 10~2 3.53 x 10-2

0.8    5.35 x 10~3   5.96 x 10-4     2.0 3.13 x 10-2 1.20 x 10-2

1.2    1.20 x 10"3    4.31 x 1(TS      3.0 1.72 x 10-2 3.98 x 10-3

4.0 9.43 x 10-3 1.36 x 10-3

3.2    4.46 x 10-6    5.80 x 10-7      5.0 5.19 x 10-3 4.48 x 10-4

3.6   3.74 x 10-6    4.37 x 1(T7      6.0 2.85 x 10~3 1.56 x 10-4

4.0   2.87 x 10-6    3.26 x 10-7      7.0 1.57 x 10-3 5.02 x 10_s

4.4   2.14 x 10-6    2.40 x 10-7      8.0 8.63 x 10-4 1.78 x 10_s

9.0 4.74 x 10-4 5.61 x 10-6

6.0   5.90 x 10-7    6.61 x 10-8    10.0 2.60 x 10-4 2.04 x 10-6

6.4   4.22 x 10-7    4.73 x 1(T8    11.0 1.43 x 10"4 6.24 x 10"7

12.0 7.86 x 10-5 2.36 x 10~7

8.0    1.06 x 10-7    1.19 x 10"8

8.4   7.49 x 10-8    8.40 x 1(T9    15.0 1.30 x 10_s 7.57 x 1(T9

11.6   4.22 x 10~9    4.73 x 1(T10

12.0   2.93 x 10-9    3.28 x 10-10 20.0 6.48 x 10"7 4.42 x 10-11

All the above results were obtained on a CDC 7600 and represent absolute errors

y(xn)-yn>n = 0, 1,-

In Makroglou [8], scheme C was tested on one more example for p = 1, 2, 3, 4,

5, u0 = 0, Uj = i/p, i = 1, 2, . . . , p. In the same reference are also included results

with u. being the Lobatto points (p = 2, u0 = 0.5(1 - 0.2(1 + y/6)), Uj =

0.5(1 + 0.2(V6 -1)), u2= 1), (p = 3, ti0 = 0, ul = 0.5(1 - y/02), u2 =0.5(1 + y/02),

"3 = 1). (P = 4, "o = 0, «i = 0.5(1 - V3/7 ), u2 = 0.5, u3 = 0.5(1 + v^7), u4 = 1).

Using these points, order of convergence, higher than the expected from the convergence

proof given here, was observed. Weiss [12] has proved an 0(hp+v+1) order of con-

vergence for emp in solving equations of the form (1.5) by (1.11) and (1.12). The

adaptation of his work to equations of the form (1.1) solved by scheme C will be

tried next.

In [8] some examples were also tested for p = 5 and u¡ equidistant. This case

though, did not seem to have any advantage over the one with p = 4; for some cases

it was even worse in accuracy.  This is perhaps due to increased round-off errors

because of the increased size of the algebraic equations to be solved.
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Compared with the methods mentioned in the introduction of the same order,

tested on the same examples, scheme C was found the most accurate.  Especially on

the "stiff example (example (c)) we obtained very accurate results with errors de-

creasing as x increases, even with a stepsize as big as h = 1.  For some of the other

methods the error grows catastrophically as x increases; see [8, Tables 35, 36].

For stability results obtained for the linear test equation y'(x) = %y(x) +

V Jo y(s)ds, y(0) given, £, i? real constants, see [2], [8].
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