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Additive Methods for the Numerical Solution

of Ordinary Differential Equations

By G. J. Cooper and A. Sayfy

Abstract.   Consider a system of differential equations x  = f(x).   Most methods for

the numerical solution of such a system may be characterized by a pair of matrices

(A, B) and make no special use of any structure inherent in the system.   In this

article, methods which are characterized by a triple of matrices (A; Bx, B2) are con-

sidered.   These methods are applied in an additive fashion to a decomposition / =

fx + f2 and some methods have pronounced advantages when one term of the de-

composition is linear.   This article obtains algebraic conditions which give the order

of convergence of such methods.   Some simple examples are displayed.

1.  Introduction.  Consider an initial value problem for a system of« differential

equations,

x'=/(x),      x(f0) = x0.

Butcher [1] showed that many methods for the numerical solution of the initial value

problem may be characterized by a pair of matrices {A,B).  Such methods make no

special allowance for any structure in the differential system, although in many cases

the system occurs naturally in a form where f=fx+f2, and frequently one term in

this decomposition is linear.  To take account of such structure, this article examines

certain methods characterized by a triple of matrices {A;BX, B2).  These methods are

used in an additive fashion with a decomposition f=fx + f2, which may be time de-

pendent.  Since the results extend to methods characterized by r + 1 matrices

{A\BX,B2, . . . , Br), used with a decomposition f=fi + /2 + •••+/., it is possible

to approximate each equation in the differential system in a different way.   For ex-

ample, special methods for certain high order differential equations may be interpreted

as additive methods used with a particular decomposition.  In this article, a general de-

composition is treated.  An alternative approach was adopted by Lawson [3].  Lawson

considered a decomposition f=fx + f2 with fx linear and integrated the linear term

before applying a numerical method to the differential system.

To indicate possible advantages in the use of additive methods, consider the

trapezoidal rule used with a step length h.  This gives

jKm) .^«-D + l/Cy-*-») + |/Ö^m)),      m = 1,2,3,...,

where >>(m) is an approximation to x{tm), with tm = f0 + mh, m = 0, 1, 2, . . . .  In
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general, each step requires the solution of a set of n nonlinear equations.  Now consider

a decomposition / —■ /, + f2.  Then the additive method defined by

y(m) _ y(«-l) + ^(yC-D) + ^/!(/"*>)

+ hf2(yC"-^ + l/OC"-1))),      m = 1, 2, 3,... ,

is also a second order method.  When/j is linear, this method is linearly implicit, re-

quiring the solution of a set of n linear equations in each step.  Although a different

decomposition may be used for each step, there is a substantial computational gain

when the same decomposition is used for several steps.  In addition, the method pos-

sesses some desirable stability features akin to those enjoyed by the trapezoidal rule.

Thus, certain additive methods may be suitable for stiff systems of differential equations.

This particular additive method may be reformulated as the three-stage method

given by

v(m) = v(m-\)
y\ y3

yim) _ y(m-t) +äfi(y(my) + */_(-(.■>),

y(m) _ yOn-l) + |/lö,(w)) + |/i(y§->) + hfiiyW),

for m = 1, 2, 3, ... .  For a fixed step length h, a sequence of decompositions

[f = f"<m) + /*m*} may be used.  Thus, a general s-stage additive method may be

formulated as

y(im) = t ««^m-1) + * ¿ 6í/1(m)0'lm)) + h ¿ ß/4m>(yfw>),
/=1 /=1 /=1

for / = 1,2,... , s and »1 = 1,2,3,....  Here y\m^ may be interpreted as an ap-

proximation to x(r„_! - ft + c,-A), / = 1, 2, . . . , s, m = 0, 1, 2, . . . , where   c =

(Cj, c2, . . . , Cj)r is some (consistency) vector.  Often it happens that
s s

Ci = __ btj = X ßij,      i = 1, 2, ... , s.
/= i /'= i

Such a method is described as an s-stage additive {A; Bx, _"2) method, where A =

{a¡:},Bx = {b¡j}, and fi2 = {ft/}» are s x s matrices.  Since it is possible to choose

f^n) = 0 or /<m> = 0 for m = 1, 2, 3, . . . , an additive {A;BX, B2) method gives

both an {A,BX) method and an {A, B2) method as defined by Butcher [1].

A case of special interest arises when {/JmH is a sequence of linear maps of R"

into R".  Then it is appropriate to choose the method {A,BX) to be semiexplicit so

that Bx is a lower triangular matrix, and to choose the method {A, B2) to be explicit

so that B2 is a strictly lower triangular matrix.  The additive method is then linearly

implicit, since each step requires the solution of a set of n linear equations for each

nonzero diagonal element of Bx.  There is a substantial computational gain if these ele-

ments can be chosen equal.

Now assume that Bxe = B2e, where e — (1, 1, ... , l)r.  Then, it happens that

the method may be used to solve a nonautonomous initial value problem x = f{t, x),
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x{t0) = x0, with a fixed step length h and a sequence of decompositions {/ = /[m^ +

/*m)}.  In this case the method is applied in the form

y(im) = ¿ vf"0 +h t Vi^Cm-i + *ry}my)
/= i /= i

+ h ¿/5///2(m)am_1+fe/.,^)),
7=1

for i = 1,2, ... ,s, where tm = t0 + mh, m = 1,2,3, ... .  Again suppose that the

additive method is chosen so that the method {A,BX) is semiexplicit and the method

(A, B2) is explicit.  For each t, let {f[m^} be a sequence of linear maps of R" into

R". Then the additive method is linearly implicit.  Again there is a substantial com-

putational gain if the nonzero diagonal elements of Bx can be chosen equal and the

corresponding elements of c can be chosen equal also.

Although examples are given, this article concentrates on establishing algebraic

conditions which give the order of convergence of additive methods.  A treatment of

certain stability features, and the derivation of special   methods, is deferred to another

article.   Recently, one of the authors [2] used an order vector to define a sequence of

norms and hence established conditions giving the order of convergence of an {A, B)

method.  Here, this theory is adapted to cope with additive methods, although the type

of method considered is restricted in order to simplify the analysis.  Instead, it would

be possible to adopt the theory developed by Skeel [4].  Skeel points out that the re-

sults are applicable when different numerical methods are applied to different equations

in the differential system, and the theory may be applied also to additive methods.

However, the order of convergence result requires the minimal polynomial of A to have

only one zero of modulus one.  This is not an intrinsic property of the methods con-

sidered here.  Further, the theory developed here leads more naturally to algebraic con-

ditions for the order of convergence of additive methods.   For these methods it is

possible to obtain algebraic conditions which are independent of the decomposition

used and which have a simple interpretation in terms of the order conditions for {A, B)

methods.

A number of assumptions, concerning the initial value problem and the decom-

positions, are stated now.  These are stronger than necessary in order to simplify the

presentation.  A more detailed treatment is given by Cooper [2].  Suppose that the

initial value problem has a unique analytic solution x: J —*■ R", where [0, 1] is con-

tained in the open interval /, and suppose that t0 = 0 and that solution approximations

are required on [0, 1].  Let /satisfy a Lipschitz condition

\\f(y)-fiz)\\<L\\y-z\\    Vy,zGR",

for a given norm on R".  Assume that / is a continuously differentiable mapping with

derivative/': R" —► L{R",R"), where L{R", Rn) is the space of continuous linear map-

pings of R" into R". It is supposed that higher derivatives exist also. The particular map-

ping f'{x): J-* L{R", R"), defined by f'{x){t) = f'{x{t)), is assumed to be analytic.
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Suppose a step length h is chosen so that Aih = 1, AI a positive integer.  Since the

decompositions used may depend on the step length and may vary from step to step,

it is necessary to consider sequences of decompositions

{/-/i^+ZSr^-i.     M=l,2,3,....

It is assumed that the components satisfy Lipschitz conditions

\\f$)iy)-f$X*)\\<Li\\y-z\\,     i=l,2,m= 1,2,...,M,M= 1,2,3,...,

on R". Further, it is assumed that each component has continuous derivatives and

that the special mappings

/SP'to- 4m'(*)>      m = l,2,...,M,M=l,2,3,...,

are analytic. It is to be understood, throughout, that the definitions refer to an arbi-

trary initial value problem and to arbitrary sequences of decompositions which satisfy

these assumptions.

The s-stage methods considered are defined by reference to the space Rs with ele-

ments w G Rs interpreted as column vectors w = (wx,w2, . . . , ws)T.  The elements

ex, e2, . . . , es are the natural basis for Rs, and e = ex + e2 + • • • + es is the unit

element.  An order vector is an element p G Rs with positive integer components p¡ =

efp, i = 1,2, . . . , s.  It is supposed that a given method has some order vector, and

hence a sequence of norms on Rs,

||w||M=   max Af'\w,\,      M =1,2, 3,...,
1«I«S

associated with it.  (The order vector associated with a method is not unique.)  Let

A = {a¡A be a real s x s matrix.  Then

\\A\\M =     sup      \\Av/\\M =   max   ¿  \atj\AfrPi.
llw||M«l 1<«»/=1

Let RN = R" x R" x ■ ■ • x R" with N = ns so that Y = yx © y2 © • • • © ys,

where y¡ G R", i = 1,2, . . . , s, is an element of RN.  A sequence of norms on RN is

defined by

\\Y\\M=   maxA!p'|[y/H,      M =1,2, 3,_

Any real s x s matrix A = {a¡¡} defines a linear map A: RN —► RN,

s s s

*Y=Z axjy, © Z Hjyt ® ■ ■ ■ ® __ <V/>
/= i /= i /= i

so that A = A ® I is the tensor product of A and the n x n identity matrix /.  It

follows that MAMat = U\\M.

The mapping /:/?"—>/?" defines a mapping F: RN —»• RN, where F(Y) =

fiyx) © fiy2) © ■ • • ®fiys)-  Thus, for each norm, F satisfies a Lipschitz condition

on RN with Lipschitz constant L.  The derivative of F is the mapping F': Rn —>

L{RN, RN), defined by F'(Y)Z = f'(yx)zx ®f'(y2)z2 © • • • ®f'iys)zs. Thus,

\\F'{Y)\\M=      sup    \\F'{Y)Z\\M=   max ||/'(y,.)||< _    VFG/?W
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Since x: J —* R" is analytic, the mapping X: ß —► RN, defined by Z(w) = x{wx) ©

x{w2) © • • • © x{ws), is analytic, as also is the mapping F\X) defined by F'(Z)(w) =

F'{X{w)).  Let c = (cx, c2.cs)T and let C be the s x s diagonal matrix with

diagonal elements cu - c¡,i - 1,2, ... ,s.  Then C = C ® / is a linear map of RN —*■

RN and, provided that w + c G Js,

X(w + c) = X(w) + CA"(w) + •••+— CtX(t)(w) + ■ • • ,
r!

F'(X(w + c)) = F'(X(v/)) + CDF'(X(w)) + ••• + - CDTF'{X{w)) + • • • .
v.

Here, for example, X'(w) = x'(wx) © *'(vv2) © • • • © x'{ws) and DF'(X): Js —»■

L{RN,RN) is defined by

Z)F'(X)(w)F = ^- /'(xfw,))^ ©^" /'(x(w2))j,2 © ■ • • ©^ ftxfy>$yr

Sequences of decompositions of / define sequences of decompositions of F

fF=F(m) + F(m))M M=l  2 3
f       ^1M   ^r2Aí;77i = l'        ™        1'¿'J' •••>

and the components satisfy properties similar to those described for F.

2.  The Additive Methods.  An s-stage additive method is characterized by a

triple of real s x s matrices {A ; Bx, B2) and is associated with sequences of decom-

positions {f = f\M) + /^L where M = 1, 2, 3,_For some M' > 0 the method

is defined by

y(m) _ Ay(m-1) + _ D   p(m)(y(>n)\ + — ß  p(r")(Y<-m))
(2 1)        M M     1    1^   *f    ^      ^/D2r2Ai^M    ''

m = 1,2, . . . ,M,M>M\

where yj^> = j^ ©7^ © • • • ® yffj is interpreted as an approximation to

*S»-*(j¡tme - e + c)

m -    +■ c,\ /»i-l + c2\ /m - 1 + cs
© x   -  © • • • ©x

M       j        \       M      ) \      M

for some c G Rs, for each m = 0, 1, . . . , M. Thus, for a given step length h = 1/Af

and a given Y]fi>, the method provides approximations on an interval [a, b] D [0, 1].

Equation (2.1) has the form Y = G{Y) with

GiY) = AZ + ±BlFl{Y) + ±B2F2{Y),

where Fx and F2 satisfy Lipschitz conditions on RN with Lipschitz constants Lx and

¿2. It follows that G is a contraction mapping and hence that the sequences {Y^}

exist and are unique, provided that Af> At', where Ai' > LjllßjHj + ¿2||_î2IIt.

Motivations for the following definitions have been given by Cooper [2].  It is

recalled that the definitions refer to an arbitrary initial value problem with arbitrary

sequences of decompositions.  It is supposed that a given method has a particular order

vector assigned to it.  This order vector defines the norms employed.
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Definition 1.  An additive {A; Bx, B2) method is order p convergent if for each

K>0 3ä:' andM' suchthat

iij£0)-i_,0)h_-<*
iv-(m) _ y(77i)|i     <K>
|A" M    "M ^ A ' m = 1,2, . . . ,M, MAt>At'.

\M 'M   "M   ^"       ""M

By choosing trivial sequences of decompositions, an additive {A; Bx, B2) method may

be reduced to either an {A, Bx) or an {A, B2) method so that each of these methods

must be order p convergent if the additive method is order p convergent.  In particular,

order e convergence of an {A, B) method is equivalent to the definition of convergence

given by Butcher [1]. Thus, order e convergence of the additive method implies con-

vergence of the {A, Bx) and {A, B2) methods.

An {A, B) method is convergent only if it is stable, and a method is defined to

be stable if A is power bounded

M"ll,<a,      v = 0,1,2.

Likewise, an additive {A; Bx, B2) method is defined to be stable if A is power bounded.

To simplify the analysis, this article is restricted to those additive methods which

may be considered to belong to a general class of hybrid methods.  For a given order

vector p, an additive {A; Bx, B2) method is defined to be hybrid with respect to p if

Pj<P max Pi
Ki<s

Ae. = 0,     j =1,2,.

This definition depends on the order vector chosen.  A method can be both order p

convergent and order it convergent but hybrid with respect to p only. (Conventional

hybrid methods are covered by the definition.)  A method which is hybrid with respect

to p uses, in a given step, only approximations of 'maximum' order p from the pre-

vious step. This has a remarkable effect.  Let If be any element of L{RN, RN). Then

||//A||M =      sup

"M «1
M Z axjVj ® Z «2/ y¡® ■ ■ ■ ® Z V/

/=! /=1 /=1 M

1/ s s
\ff( £ axjz¡ © __ a2jz¡

\/= i /= i"M
Z **/*/
/=1 M

where z¡ = 0 if pf <p.  Thus ||Z||M = MP||Z||,.  On the other hand ||1V||M <Afp\\W\\1

for any W G RN so that \\HAZ\\M < MP\\HAZ\\X.  Hence, for a hybrid method,

(2.2) ||//A||M < ll/ZAIIj < 117/11, IMI,,     At =1,2,3,....

To define order p consistency, consider sequences {Z^}, where Zffl = X^

and

(2.3)

7(771)      \Y(m - !) + —B  F(m)CZ(m)ï + — R  p(w,)f7('")'i^M ^M M     1    1M^¿M    '       M    2t2MKiM    >'
At At

m = l,2,...,M,At>At.

Again, this equation defines a contraction mapping and the sequences {Z^} exist

and are uniquely defined for all At > At', where At' > LX\\BX||, + L2\\B2\\X.  The com-

ponents of X^ - Z^ give the errors in each stage of step m, when the step is

started with exact solution values.
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Definition 2.  An additive {A; Bx, B2) method is order p consistent if Ik and At'

and an integer co > 0 such that

l'*irm)-4"%<*>

\\A»{X™-Z™)\\M<±,

m = 1,2, . . . ,M,At>At'.

Since the sequence {AM} may not have a limit, it is not possible to employ the defini-

tion used by Skeel [4]. A method may also be described as order p(co) consistent, and

an order p(co) consistent method must be order e(co) consistent.  By considering special

sequences of decompositions it follows that if an {A; Bx, B2) method is order e(co)

consistent then both the {A, Bx) and {A, B2) methods are order e(co) consistent.

Cooper [2] showed that a stable {A, B) method is order e(to) consistent if and only if

it is consistent.  Thus, if an {A; Bx, B2) method is stable and order e(cp) consistent,

both the {A, Bx) and {A, B2) methods must be consistent so that Ae = e and there

exist consistency vectors Cj and c2 such that

(2.4) Acx + Bxe = cx + e,      Ac2 + B2e = c2 + e.

The consistency vectors may be chosen equal if and only if Bxt = B2e, but it is pos-

sible to obtain additive methods (for autonomous systems) where Bxe =£ B2e.

Suppose that a stable and order e consistent additive {A; Bx, B2) method is ap-

plied to the initial value problem x' = 1 with x(0) = 0 using a decomposition fx =

1 - a and f2 = a. Since N = s, elements of RN may be interpreted as column vectors.

Let Yffl = (l/A/)(c - e) for some c G Rs. Then, using the consistency condition (2.4),

the method gives

FMm) = ¿ «m - Oe + c} + ^{Am - /){(1 - a)(c - c,) + a(c - c2)},

where / is the identity matrix.  The method is order e convergent but, for an arbitrary

a, the initial value problem is integrated exactly if and only if c - Cj and c - c2 both

belong to the null space of A -I.  This occurs only when Bxe = B2e, and in this case

the method may be adapted to handle a nonautonomous problem. When Bxe i= B2e,

a nonautonomous problem should be converted to autonomous form before the method

is applied (although it is possible to consider decompositions where the time dependence

occurs only in one term of the decomposition).

3.  Order of Convergence.  In this section, it is shown that a hybrid additive

method is order p convergent if it is stable and order p consistent.  It seems to be

necessary to use certain inverse mappings and, in this respect, the argument is similar

to that used by Cooper [2].  Partly because hybrid methods alone are considered, the

argument given here is shorter and more direct.

Theorem 1. A hybrid additive {A; Bx, B2) method is order p convergent if it

is stable and order p consistent.
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Proof,   (i) It has been shown that there is an At' such that the sequences {Y^}

and {Z^} exist and are uniquely defined for At> At'.  To establish order p con-

vergence, assume that ||X^0) - ^0)IIM < K for all At > At'.  Let £$»> = Y^ -

Zjp) and V^ = _$•> - ZJJ"> for m = 0, 1, . . . , At and At > At'. Now (2.1) and

(2.2) give

m = 1,2, . . . ,M,M>Af,

W(m) = p>(m)(Y(m)}-p(m)(Z(m)} =   Ç    F(m)'(y(m) + Trj(m)\jT [Km)
iJVf riM  yIM    >      riM  y¿JM    >       J0 riM    ^M TUM    )aTUM    '

i= 1,2.

Thus Wffi = GffiUffîK where {G\"$} and {G^} are sequences of elements in

L(RN,RN) with WG^^ <_, andHG^II, < L2, m = 1, 2, . . . , At, At >At'.  Let

Gm ) = BiGÍm  + B2^ so that \\G<^\ <_1||fi,||1 + L-IIÄjll, = ß.  Let I be

the identity mapping in L(RN, RN) and suppose that At' > ß.  Then, for At > At', the

inverse mappings S^ = (I - (l/AQGJ^)-1, m = 1,2, . . . ,At, exist and it follows

that

"m        jm   n-uM °M   *yM

m

W = 4m)A • ' • spASpAlfi» - Z 5<r">A • • • SÄ+I>A_(0AF^.),
¡=i

(3.1)

lli/(m)||     < ll_(m>A • • • 5(2)A_(')AII    UTA0)!!llUM     nM ^ l|0M    A °M   AJM   A|IMI|UA/   "M

m

+ ZB«_r)A"-5S+1>A__?AFg-»)||_r.
i=i

(ii)  Consider the expression SJJ"U ••• SJ^AS^A.  Since

«?(»•) = /i - I G(r)V   = I + — GW + — ÍG^)2 + • • • ,

the expression may be expanded in powers of At. There are (m + r~1) terms associated

with M~r and a typical term is

Tr = - Kv*<#.Oa'*0$> A"2"- (WA"',
r        *jr MM M

where m > il > i*2 > • • • > ir > 1 and vr > 1.  Since the method is stable and hybrid,

inequality (2.2) gives

lt7,r||Jf<||r,||1<a(^J,      At>At'>ß.
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Since (m + \-' ) < (M+\-' ), it follows that

ii^A---^)A^>AiiM<az(M+;_1)('
(M+r-l\ (aßX

At
(3.2)

provided that At > At' where At' > 2a/3.

(iii)  Consider an expression of the form S^A • • • S^AS^AVM, where

\WM\\M<k,      IIA-^f||if<|,      At= 1,2,3,....

Again the expression may be expanded in powers of At, and a typical term associated

with At~r is TrVM. Since the method is stable and hybrid,

'aß"

M
IWfll*<*   77    *'      vr<">

^vmWm<^(^J^   ',><*•

When m > to, the number of terms associated with At r is

/m + r-2\    im + r - 3\ /»i + r - 1 - w\        ÍAI + r - 2\

(    mMmM      r-.      H'-l)     ''^
/m + r - 2 - «\     /m + r - 3 - _>\ /r - l\    ¡At + r - l\

\ -1  Ja r-!  /'  rvl r / "r>co'
and the results give

N5S-A ■ ■ ■ S<?>ASO>Ar„,„ <f (I ♦ ■_» J. (" + ; - lXf J

<^(1 + ojaß)e2a^,
At

provided m> u> and At > At', where At' > 2aj3.  Since the method is order p consis-

tent, this inequality gives

m—cj

__    ||_(J")A • • • SV+VAStfAVVr1^*—• M M MM        M

1=1 k
< (m - to)— (1 4- cjap>2a" < a*(l + waß)e2aP.

Inequality (3.2) may be used now to give

m

Z  \\S™A ■ ■ ■ S<¿+l)AS¡pAV^% < a*(l + co-pV"* + uake2^.
i=i

(iv)  The bounds, applied to the inequality (3.1), give the result

Ili#% < ae2a»(\\U^\\M + uk + *(1 + coa/?)).

Order p convergence follows from lll/^ll^ = IIX^0) - Y^\\M < K and from
II v-(m) _  y(m)ii      <||T/('")||      j. |ir/('")||
l|ylM JM     HAi^l|KAf     "AT        l|tyM     "AT-
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4.   Algebraic Conditions for Consistency.   Certain algebraic conditions, for order

p consistency of an additive (A; Bx, B2) method, are obtained in this section.  Since

these conditions have a simple interpretation in terms of the order conditions for

(A, B) methods, the results generalize easily.  The approach adopted is an extension of

the technique used by Cooper [2].  Preliminary conditions for order p consistency are

obtained by using bounds on the local truncation errors.

Lemma 1. An additive (A; Bx, B2) method is order p(co) consistent with p =

pe if and only if Ae = e and 3 a diagonal matrix C such that

(4.1) {CT-A{C-f)T-TBrCT~1}e=0,      r = 1, 2, t = 1, 2, . . . ,p - 1,

(4.2) A"{CP -A{C-ty -PBrCp-1}e = 0,      r=l,2.

Proof.   Suppose that the conditions hold and define the consistency vector c by

ejc = eJCet, i — 1,2, ... ,s.  Consider the local truncation error

Ê("i) = r('n)-Ai'Ki)--B F(m)(X(m))-—B 7,(m)f_'(m))
nM AM AAM ]^DitlMy-^M    >     M    2r2MKAM    >'

Let C be the linear map defined by C so that

*&<?&) = *® M^1 e) + hCDF^{mw1 e))

^F^(x(^e))+---,

+MVle)+¿ic^(^e)+--

2AÍ2

where XÍT+ 1}(w) = DTF\"£{X{w)) + DTF^(X(w)) for t = 0, 1,2,.... Thus, since

p = pe, the conditions give

and the conditions are also necessary to establish these bounds.  Let V^ = XJfi1^ -

Z[?) where At > At'.  Then
M

!/('") _ F(m) + — B   f F(m)(Ar(m)) - F(m)CZ(m))>
,.    . VM CM      ^ Mal^\MyAM    >      r\MyZjM    )S

+ —B„ ÍF(m)CX(m)) - F^mHz^m'Y\
M    2       2Jfl   M    ' 2My¿JM    >]-

Choose M'> 2flp\ where ß = Lx \\BX\\X + Z,2||_?2||l5 and a > \\Av\\x,v = §, 1, . . . ,co.

Since p = pe, the Lipschitz conditions give

ii^m)"M<2^ir)iiA/<2^

HA- Vfr% < l|A-_#% + ̂  II VfrX «1 + 2aß) ¿,

and the method is order p(co) consistent.  Now suppose that the method is order p(co)

consistent for some consistency vector c and hence define C.  Then the conditions are
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necessary, because

ll/r(",)||    <-IIK(m)ll \\AuE^mH    <IIAc0K(m)ll    +— IIK(m^ll
l|£M    "Af ^ 2 "   M    "M' l|A       M    "M ^ l|A     VM    "M       fyf "   AÍ    "AT

Suppose that an (^4; Bx, B2) method is stable and order e(co) consistent.  Then an

argument used by Cooper [2] may be applied, directly, to (4.2) to show that there

exist Cj and c2 such that Acx + Bxe = cx + e and ^4c2 + B2e = c2 + e.  Thus, the

associated (A, Bx) and (A, B2) methods are consistent.  On the other hand, the lemma

shows that, if these methods are consistent, the additive method is order e(co) con-

sistent, if for some c,

AU(A - f)(cx - c) = 0,      AU(A - /)(c2 - c) = 0.

This is certainly true when cx = c2, but may also be true when Bxe =£ B2e. The

lemma also shows that, if the additive method is at least order 2e consistent, the con-

dition Bxe = B2e must hold.  That is, this condition must hold for any method which

is order p consistent with erp > 2 for i = 1, 2.s.  Thus, methods with Bxei=

B2e are comparatively difficult to obtain.

The lemma gives necessary and sufficient conditions for a method to be at least

order pe consistent, and these conditions imply that

k k
||£(77i)|i   ^__. ||F(m)ll   <—-"£Af  h^MP •      " vm  h*MP >

for some constant k.  These bounds are used in the proof of the following theorem to

give the order of magnitude of certain remainder terms.

Theorem 2. Let p = (px, p2, . . . , ps)T be a given order vector with

p <Pi<2p, i = 1,2, ... ,s, for some integer p > 1. An {A;BX, B2) method is

order p(co) consistent if and only if Ae = e and there is a diagonal matrix C such that,

for i = 1,2, ... ,s,

ejBr C7^1 ■ ■ ■ B.CTl~1 {CT° - A{C - f)T° - r0Br CT°_1}e = 0,

(4.4)

(4.5)

'o + T, +--- + rM<p<-l,

eTAuB   C*"     ■•■ BrCTl~l {CT° - A{C - f)T° - t05   CT°"!}e = 0,

T0  + TX   +  ■  ■  ■ + Tu< p¡,

for p = 0, 1,2, ... , where t„, tx, t2.take all possible positive integer values

and where rß = 1, 2 for ¡i —0,1,2, ... .

Proof,   (i)  Suppose that the conditions hold and suppose that a decomposition

/= /j + f2 is used in step m of an integration.  Let E = E^ be the local truncation

error in step m and let V- X^ -Z^\ Since the conditions imply that the method

is at least order pe consistent,

Fr{ZW) = FriX^) - F'r(X^)V + 0(At-2p),     r = 1, 2.

Define G' = B^X^) + B2F2'(^>).   Then (4.3) gives the relation V = E +

(l/Af)G'V + 0(At~2p~l), and this may be used recursively to give
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jy=/í + J_G' + . .. + — (G')p\e + 0(M-2p-1).
\      M At" )

(ii) Each term in this expansion is treated separately, using the Taylor series

G'= ¿ —~[BXCTDTF'X(X) + B2CTDTF'2(X)],
r=0 t\Mt

E= £ — [{C^-AÍC-ir-TB.C7-1}-)7-^.^
t= i r!AT

+ {CT-A(C-I)T-rB2CT-1}/)T-1F2(jr)],

where X = X(((m - 1)/M)e).  Let X = x © x © • • • © x and let W be the linear map

defined with respect to a real s x s matrix W = {w;J.  Then

S S

F'r(X)Y¡Fp(X) = /,'(x) £ w,./p(x) © • • • ®f'r(x) __  wsjfp(x) = YIF'r{X)Fp{X),
/= i /= i

so that a term At~ß{G'YE gives expressions of the form

M

—- Br CT"_I      • Br CT,_1 {C7" - A(C - I)r° - r0Br Cr°_1}
rM+- + r1+T0     ru rl r0

■DT^F'r {X) • ■ ■ DTl~lF'ri(X)DTo~lFro(X).

Hence conditions (4.4) and (4.5) imply that

\\At^{G'YE\\M < k,      \\At-^A^{G'YE\\M < ^,

for some constant k. Thus, || V\\M < k and HA" V\\M < k/M for some constant k, so

that the conditions are sufficient for order p(co) consistency.

(iii)  Suppose the method is at least order pe consistent, where p > 1, and con-

sider the expressions that arise from each term in the expansion for V.  Since each ex-

pression involves a product of differing function and derivative elements, the given

conditions are necessary.

The theorem may be extended, but there are further conditions to be taken into

account. However, the conditions given in the theorem may be interpreted simply as

the order conditions for an (A, Bx) method, or for an {A, B2) method, plus all possible

'mixed' conditions that can arise if 5, and B2 may be interchanged.  This is true in

general.

In particular, the theorem gives conditions for p = 2 and ||p||j = 4. Since

llpllj > 2 and Bxe = B2e imply p>2, the case Bxei^ B2e may turn out to be of little

interest.  It may also be recalled that this case cannot be adapted to nonautonomous

problems with arbitrary sequences of decompositions.   For this case the theorem gives

conditions only for ||p||j < 2.

5.  Examples of Additive Methods.  The conditions for order p consistency cover

a considerable variety of methods which may be represented by arrays of the form

pU \BX\B2 |c
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Pi

Pi

a,, a11  "12 'Is

h s

asl as2

bxx bx2

b2X b22

uls

b2s

Kxbs2

011012   •■■ßls

02 1  $22   '     ' ß2s

ßslß s 2 I-

Such an array gives two {A, B) methods which may be represented by the arrays

p\A\Bx \cx and p \A \ B2 I c2.   Only one example with Cj ¥= c2 is given here.

The following examples are intended to indicate some of the possibilities. Meth-

ods which are more competitive with existing procedures will be discussed in another

article.  It is also remarked that the efficacy of an additive method depends on the de-

compositions chosen. It is expected that the principal application of additive methods

will be to handle stiff problems.

Order pe convergent methods are particularly easy to derive, since all such meth-

ods are hybrid, and Lemma 1 gives the only consistency conditions required.  Indeed,

any pair of stable linear multi-step methods of order p yield an order pe additive

method.  For example, the 3-step Adams-Moulton method and the 4-step Adams-

Bashforth method give the additive method described by the following array.

4

4

4

4

4

0 10   0   0

0 0    10    0

0 0    0    10

0 0    0    0    1

0 0   0    0    1

0

0

0

0

0

0

0

0

0
1

24

0

0

0

0

0

0

0

0

J.   ii
24      24

0

0

0

0

9

24

0

0

0

0

.JL   11
24      24

0 0

o o

0 0

0 0

0 0

0 0

o o

0 0
59      55      Q

24      24

-3

-2

-1

0

1

This method may also be written in conventional linear multi-step form as

^m + 4 =ym+3 +Ta {/l077I+l)-5/lOm + 2)+  19/lOm + 3) + 9AOm + 4)}24

h
+ 24 {-^OtJ + 37/2(ym + 1) - 59/2Om + 2) + 55/2Om + 3)},

and the method is inefficient, unless the decomposition / = fx +/2 is independent of

the step. Such methods are order p(0) consistent and have Bxe = B2e. When {f\m^}

is a sequence of linear maps, these methods require the solution of one set of n linear

equations in each step.

Certain pairs of Runge-Kutta methods also yield additive methods.  One example,

already discussed in the introduction, may be represented by

0 0 1

0 0 1

0    0    1

0    0    0

y2 0   0

V2   0    Vi

0 0 0

lk 0 0

0    1    0

0
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and is order p(l) consistent and may be applied to nonautonomous systems.  The

{A, Bx) method is equivalent to the trapezoidal rule and is >i-stable. Other examples

of additive methods with Bxe = B2e are given by

0 0 0 1

0 0 0 1

0 0 0 1

0 0 0 1

0
1 -A.

2

2X + p - 1

1
6

0
\
2

2(1 - X - p.)
2

3

0

0

P

1
6

0

0

0

0

0 0 0 0

%   0 0 0

-12 0 0

1 1 I 0
6       3 6

0

Vi

1

1

and these methods are also order p(l) consistent.  The {A, Bx) method is A -stable when

A = 3/2 and p = 5/6.  In this case the method may also be written as

v(77¡) _ v(m-i) \ hf\mW3m^) +1 v<->G'('»>) + \ hf\mW™-l)),

7" = y\—> + ^ Vfm>(y<m-1>) -1 hf\m>(//">) + | ä/<m>o2m>)

- hf¡m^(y3m-^) + 2fc/<m)0(1m)),

y{m) _, y(m-l) + I hfyy(m-i)) + | hfiy^) + \ hfiy™),

where a sequence of decompositions {/ = f^m^ + f^} is used.

The final example is the additive method represented by the array

0 0 1

0 0 1

0    0    1

Vi 0 0

0^0
„   lâ   0

0 0   0

1 0    0

„   „   0 1

which is order p(l) consistent.   The (/4, 5X) method is equivalent to the implicit

mid-point rule and is ,4-stable.  In this example, Bxei= B2e.  In essence, information

lost in the first stage is regained in the second stage.
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