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Integrating ODE's

in the Complex Plane-Pole Vaulting

By George F. Corliss

Abstract.   Most existing algorithms for solving initial value problems in ordinary differ-

ential equations implicitly assume that all variables are real.   If the real-valued assump-

tion is removed, the solution can be extended by analytic continuation along a path of

integration in the complex plane of the independent variable.   This path is chosen to

avoid singularities which can make the solution difficult or impossible for standard meth-

ods.   We restrict our attention to Taylor series methods, although other methods can be

suitably modified.   Numerical examples are given for (a) singularities on the real axis,

(b) singularities in derivatives higher than those involved in the differential equation, and

(c) singularities near the real axis. These examples show that the pole vaulting method mer-

its further study for some special problems for which it is competitive with standard

methods.

1.   Introduction.   Nearly all existing numerical methods for solving initial value

problems in ordinary differential equations implicitly assume that all variables are

real.  Normally the ability to integrate along a path in the complex plane is only of

academic interest because most problems are known to have real solutions.  When

complex-valued solutions are needed, the real and imaginary parts are usually comput-

ed separately.  In many problems, though, the computation of the solution is ham-

pered by the presence of singularities

(a) on the real axis, e.g.  (Painlevé equation)

y" = 6y2 +x,   y(0)=l,   /(0) = 0;

(b) in derivatives higher than those which appear in the differential equation,

e.g.

y' = (5/3)y/x,    y(-l) = -l,   y(x) = xs'3;      or

(c) near the real axis, e.g.

y = -2xy2,    v(- 10) - 1/101,   y{x) = 1/(1 + x2).

The technique of "pole vaulting" extends the solution to the ordinary differen-

tial equation by analytic continuation into the complex plane along a path which

avoids the troublesome singularity as shown in Figure 1.  The classical theory of or-

dinary differential equations can be given in the context of complex variables [4].
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We consider the ordinary differential equation (or system)

y'=f(x,y),  y(x0)=y0,

where both jc and y may be complex.  We give some of the possible applications of

the pole vaulting approach and indicate its promise.

2.  Analytic Continuation of Solutions to ODE's.  The technique of analytic

continuation is well known in complex analysis.   An analytic function is uniquely

determined by its values on any set with a limit point interior to the domain of anal-

yticity, but the problem of determining a function /in a region from its values in a

subset of the region is an ill-posed problem.   Miller [6] shows that an arbitrarily

small error in the data can introduce an arbitrarily large error in / at other points.

Analytic continuation is usually done by expanding / in a Taylor series about a

point interior to the domain of analyticity and rearranging the series.  Henrici [5,

p. 170] shows that using this approach for numerical analytical continuation, by

using a truncated Taylor series, is a divergent process unless the series is shortened at

each stage by a fixed reduction factor.  However, if an expression for computing

successive derivatives can be found, the divergence discussed by Henrici is no longer

present.  This is precisely the setting for the numerical solution to initial value prob-

lems in ordinary differential equations.   Standard methods are constructed to agree

with the first few terms of the Taylor series for the solution, so they can be viewed

as using derivatives computed (usually indirectly) from the differential equation to

analytically continue the solution away from the initial point.  The problems con-

sidered in [5] and [6] then appear as the familiar problems of convergence and

stability which have been well studied.

This view of numerical ODE solvers as methods for analytic continuation adds

nothing to our understanding as long as the independent variable x is real.  If x is

complex, this view helps to account for the behavior of the solution observed near

poles, branch points, and essential singularities.   For example, if the path of integra-

tion circles a branch point, the computed solution may appear on a different sheet

of the Riemann surface from the desired solution.

The technique of pole vaulting may be implemented using any standard numeri-

cal method.   Taylor series or Runge-Kutta type methods require no essential modifi-

cations to be able to step in any direction in the complex plane, although some

changes may be necessary in coding and fine tuning. Multistep methods are more diffi-

cult to convert because the direction, if not the size, of the step must be changed con-

stantly.

An implementation based on long Taylor series [1], [7] was chosen for the

examples in this paper because of the ease and accuracy with which an optimal step-

size could be determined.  Chang's Automatic Taylor Series (ATS) translator [1] was

used to produce a FORTRAN code for generating the first 30 terms of the Taylor

series for the solution.  This code was converted into a complex implementation which

used the three-term test [2] to determine the location and order of the singularity

closest to the point of expansion at each step.   The length of each step of the analy-
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tic continuation along a prescribed path was taken as large as possible consistent with

error control demands.  Thus much smaller steps were taken near a singularity.  Com-

putations were done on a Xerox Sigma 9 computer in single-precision complex arith-

metic.

The three-term test was developed to estimate the location and order of a single

primary singularity by comparing the series for the solution to the series for the model

problem

v(z; a, s) = (a- z)~s,      s ¥= 0, -1, . . .  .

Theorem [2].   Let 2jlj a,- be a nonzero series such that

exists and equals L.   Then

(i)  if\L\ < 1, 2 a,- is absolutely convergent,

(ii) if\L\ = 1, the test fails, and

(iii) // \L\ > 1, 2 a,- diverges.

Let g be an analytic function, a,+ j := g('\x0)h'/i\ (where h := x - xQ), and

Rj := iai+ j/a,..   Then we can estimate the radius of convergence from

0) h/Re^Rt-Rt_1,      ,

and the order of the primary singularity by

(2) s */ty(*, -/W-/ +1.

Several estimates from (1) are then compared to estimate the error in the estimate

for h/Rc.   [2] shows that the three-term test is superior to several other well-known

methods for estimating the radius of convergence of a series for many examples.

Pole vaulting is an interesting application of this theorem. It can be viewed as

a natural generalization of the usual paths of integration.  As implemented with the

Taylor series method, the solution is available not only at discrete points but also at

any point in some region of the complex plane containing the desired path.  This

technique promises improved speed and accuracy for some types of problems.  The

remainder of this paper considers several numerical examples showing how to apply

the pole vaulting technique to problems with singularities on the real axis, with sin-

gularities in derivatives higher than those appearing in the differential equation, and

with conjugate pairs of singularities near the real axis.

3.   Poles on the Real Axis.  The problem of extending the solution of the

first Painlevé equation,

(3) y" = 6y2 + x,    v(0) = l,   /(0) = 0,

beyond its first singular points (poles of order 2) on the real axis was considered by

Davis [3, p. 245]. He outlined two methods by which this can be done. The first

method of pole vaulting is specific to this equation, but the second method extended
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the solution by analytic continuation around the path shown in Figure 1.  We will

follow the latter approach.  Davis' two approaches gave y(\ .5) = 11.63 and v'O -5) =

-79.46, or y( 1.5)= 11.78 +0.11 i and /(l. 5) = -79.50 + 0.59 ^respectively.  One

measure of the error is the imaginary components of these estimates, both of which

should be 0.

1.20

-1-*-

S l.C 1.5

REAL AXIS

Figure 1

Pole vaulting for the Painlevè equation

We solved the Painlevè equation using 30 terms and a variable stepsize instead of

5 terms and constant steps of 0.01 used by Davis.  The results are summarized in

Table I.  Since the exact value of >>(1.5) is not known, the error in these computa-

tions may be estimated by the magnitude of the imaginary part of the computed solu-

tion at 1.5.

Table I

Pole vaulting for the Painlevè equation

Number             X0-5 + 0.5/) y(1.5)
Step         Steps               y (0.5 + 0.50 >>'(1.5)

0.67?c             9             0.3462+1.2075/ 11.6160 + 5E-4 i

-0.7405 + 3.4193 / -79.4260 - 7E-3 i

0.2RC          24            0.3462 + 1.2075 / 11.6136 - 1E-4 /

-0.7408 + 3.4200 / -79.4025 + 9E-4 i

0.01*         250            0.3289 + 1.2119/ 11.7796 + 0.1152 i
-0.7011 + 3.4670 i -79.5588 + 0.5880 i

*Davis' results using a 5 term-series.

The pole vaulting approach can also be used in conjunction with the three-term

test to accurately locate a sequence of poles.  In Figure 2, the first six poles of (3)

on the negative real axis are found in 33 steps using a stepsize of 0.6RC.  As a test

of the accuracy of the solution, which was being analytically continued past a sequence

of poles, these values were also computed:
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After passing 3 poles,

y(6) = 2.16 + 2.6E-4 /,    v'(6) = -0.53 - 2.0E-3 /.

After passing 6 poles,

7(10.5) = 5.59 + 2.5E-3 /,   y(10.5) = 23.50 + 1.8E-2 /,

where the true values must have imaginary part 0.  The computed location of the

sixth pole was - 10.0679 -0.0001 i

-12
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0
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Figure 2

Negative poles of the Painlevè equation

Since this method can vault over poles on the real axis, we ask whether it is

better to stay far away from the pole or to approach it closely before integrating

around it.    y = x~2, the solution to y' — - 2y/x, y(-10) = 0.01, has no secondary

singularities like those which complicated the solution of the Painlevè equation.

A
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Figure 3

Possible paths of integration
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This problem was solved along each of the four paths shown in Figure 3 using 30 terms

of the series and a variable stepsize of 0.6RC.  If a fixed stepsize were used, the short-

est path, A, would require the fewest steps, but if the stepsize is proportional to the

series radius of convergence, the same number of steps are required for the vaulting

part of the path regardless of how close to the pole that path is taken.  As Table II

shows, paths further away from the pole require fewer steps and yield more accurate

results. Hence, any step approaching the pole on the real axis is wasted.  The stepsize

on a circular path centered at the pole is constant, so a considerable savings on pro-

gram overhead compared to the rectangular path is possible.  For this problem, the

worst relative error for each path occurred at x = 10, and the imaginary part of .y(lO)

was typically about 5 x 10~8.

Table II

Comparison of several paths for y = x

Path        Number of Worst Relative
Steps Error

A 15 6.6 x 10~s

B 7 1.2 x 10_s

C 16 4.5 x 10~5

D 8 1.6 x 10-5

4.   Singularities in Derivatives.   We have shown that it is possible to integrate

around a pole on the real axis.   For most problems of interest, however, a pole in the

solution has a physical significance, and the solution computed past that pole has no

physical relationship to the solution being computed before the pole was encountered.

If the pole vaulting technique is to be useful in practice, it must be applied to other

types of problems for which solutions exist but are difficult for standard methods to

compute.

One such class of problems has solutions with singularities in higher order deriva-

tives not appearing in the differential equation.   For example, y = f(x, y) = (5¡3)y/x,

y(- 1) = -1, has solution y = x5'3, which is defined on the entire real line, but y"

= (10/9)x~1/3 has a branch point at x = 0.   The singularity at x = 0 in f(x, y) and

in y" makes this problem difficult, so we view x as a complex variable and vault

around the singularity.

Although the solution is known to be real on the entire real line, integrating

along paths similar to those shown in Figures 1 or 3 does not yield a real estimate for

the solution because the Riemann surface for y = Xs'3 has three sheets (see Figure 4).

Hence we integrated 1 l/i times around x = 0 along the path shown in Figure 5 in 17

steps using a stepsize of 0.6RC.  Some of the results are given in Table III.
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Figure 4

Riemann surface for xs¡3

Figure 5

Integration path for y = x5^3

Table III

Integrating y = (5/3)y/x ltë times around x = 0

Computed Solution lErrorl

-1.0

0.36 - 0.93 i

0.90 + 0.44 /

-0.96 + 0.28 /

0.52 - 0.85 i

1.0

-1.0

0.416 - 0.909 /

-0.960 + 0.279 /

0.839 + 0.544 /

-0.137 - 0.991 /

1.000-9 x 10-6 /

0.0

3 x 10~7

3 x 10~6

5 x 10~6

9 x 10~6

9 x 10~6

At each step of the analytic continuation, the three-term test yielded the radius

of convergence of the series with relative error at most 7 x 10-6 and the order of the

singularity with relative error at most 3 x 10-4.  Here the ability to recognize the

fractional order accurately is important because this estimate is used to determine the



1188 GEORGE F. CORLISS

number of sheets of the Riemann surface for the solution and hence the number of

times the singularity must be circled in order to return to the real branch of the solu-

tion.

5. Conjugate Pairs of Singularities.   Another class of problems, which are costly

to solve by standard methods, contains problems with conjugate pairs of singularities

near the real axis.  Very small steps are required near the singularities.   For example,

[ 1 ] solved a celestial mechanics problem which required stepsize changes of 7 orders

of magnitude.   In this section, we consider two examples in which we vault over the

singularities without approaching them closely enough to require a substantial stepsize

reduction.

The equation y = ~2xy2, y(x0) = 1/(1 + x2,), has solution y = 1/(1 + x2) with

a pair of simple poles at x = ±i. To integrate directly from -104 to 104 using a stepsize

of 0.6RC requires 33 steps ranging in size from 6 x 103 to 6 x 10_1.  The solution com-

puted in this manner has a relative error at x = 104 of 10_s, but near 0 the relative

error is nearly 100%!   By contrast, integrating around a semicircle requires only 7 steps

regardless of the diameter.   Using the pole vaulting technique to integrate from -104

to 104 along a semicircle yields the largest relative error at x = 104 of 10~5.  If it is

necessary to determine the behavior of the solution near x = 0, the direct path of

integration must be taken, and small steps must be used.  However, if the solution near

x = 0 is not of interest, pole vaulting at a distance can yield sufficient accuracy, with

few enough large steps, to more than compensate for the additional cost of computing

in complex arithmetic.

6. Relative Merits of Pole Vaulting.  We have given examples to show that a

solution to a differential equation can be analytically continued along a path in the

complex plane of the independent variable.  This technique can be used (1) to extend

a solution past a pole on the real axis, (2) to avoid singularities on the real axis in

higher derivatives of the solution, or (3) to avoid taking very small integration steps

to pass between a conjugate pair of singularities.  Taylor series methods work well for

this analytic continuation because their high order yields high accuracy, and the

radius of convergence can be readily determined so that optimal length steps may be

taken.  Taylor series methods can be easily adapted to any path, and since the coeffi-

cients of the series are computed at each step, the solution may readily be computed

not only at the points of expansion but also at any point within the region of conver-

gence of the series.

The pole vaulting technique holds promise for some types of problems, but its

efficiency limits its general purpose usage.   Complex arithmetic is roughly 4—8 times

as expensive as real arithmetic, so its use is justified only if the number of steps re-

quired can be substantially reduced.  Unless the stepsize used following the real axis

varies by several orders of magnitude, pole vaulting should probably not be attempted.

For the first example in Section 5, pole vaulting along a semicircle reduced the num-

ber of steps from 33 to 7, so the increased cost of complex arithmetic may be justi-

fied.
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Pole vaulting cannot be attempted without some knowledge of the location and

order of the singularities encountered.   If this information is available a priori, the path

to be followed and even the radius of convergence of the series at any point may be

provided.   If this information is not available, the estimates from the three-term test

may be used to construct the path.   In the case of branch points, the structure of the

Riemann surface must be determined so that a path may be taken which returns to the

real branch of the solution.

The pole vaulting method, using Taylor series for the analytic continuation of

the solution along a path in the complex plane, is competitive with standard ODE

solving methods for some special problems.  Its use for these special applications merits

further study.
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