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A Stable Finite Element Method for

Initial-Boundary Value Problems for

First-Order Hyperbolic Systems

By Ragnar Winther*

Abstract. A nonstandard finite element method for initial-boundary value problems for

first-order hyperbolic systems in one space dimension with general boundary conditions is

analyzed. The method can be considered as a generalization of the box scheme. We first

establish a stability result for the method and then derive several error estimates.

1. Introduction. The purpose of this paper is to study a finite element method for

the first-order system

u,(x, t) + A(x)ux(x, t) + B(x)u(x, t) = f(x, t),

(1-1) |*o«(0, t) = g„(/),    Kxu(l, t) - *,(/),

u(x, 0) = u0(x),

for (x, t) E I X J = [0, 1] X [0, (*], where t* > 0.

Here Aix) and 5(x) are n X n matrices. We assume that Aix) has n real

eigenvalues, Xx(x) > A2(x) > • ■ • > A„(x), and that there exist a constant t0 > 0

and an integer m, 0 < m < n, such that

(1.2) -Am+1(x),Am(x)>T0   for all xG/.

Furthermore, we assume that for each x E / there is a nonsingular matrix Qix)

such that

A = QAQ\

where A = diag(A,, A2, . . . , A„), and that there exists a constant t, such that

(1.3) \Qix)\, \Q-\x)\ <t,    for all *£/,

where | • | denotes the Euclidean matrix norm.

If yxix),y2ix), . . . ,ynix) are eigenvectors of Aix), corresponding to the eigenval-

ues X,(x), X2(x), . . . , Xn(x), we let E+(x) and E'ix) denote the positive and

negative eigenspace, respectively; i.e.,

E + ix) = span^X*).^*). . . . ,ym(x)}

and

E(x) = span{ym + x(x),ym+2(x), . . . ,yn(x)}.
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The matrices K0 and Kx in (1.1) are assumed to be independent of / and of

dimension m x n and (/i — m) x n, respectively, and they are assumed to satisfy

the condition

(1.4) ker(Äo)n £ + (0) = {0}    and   ker^,) n £-(l) = {0}.

The data in (1.1) are assumed to be given such that u0 £ (L2(/))", g0 G (L2(/))m,

g, G iL2iJ))"~m, and / e (L2(/ x J))". Throughout this paper we shall also as-

sume that B G (C(I))"*" and Q, A, A G (C*^/))"*"-

Now let vix, t) = (9 "'(*)«(*> 0- It then follows from (1.4) that there exists

matrices 500, S0„ Sl0, and S,, of dimension m X (« — m), m X m, (n — m) X m,

and (n — m) y. (n — m), respectively, such that v satisfies the diagonal system

v,ix, t) + A(x)vx(x, t) + B(x)v(x, t) = Q'\x)f(x, t),

(15) v + (0,t) = S0flv-(0, t) + S0>1 g0(t),

\v-(l,t) = SXfív + (l, t) + Shlgx(t),

v(x, 0) = v0(x),

where v0 = Qlu0, B = QlBQ - AiQ~\Q, and v+ G C" and u"G C~" are

such that

•>-(:-)■

It is also well known (see, for example, Thomée [11]) that the system (1.1) has a

unique solution u G C(0, /*; L2(I)"), under the conditions given above, and that

there exists a constant c, independent of u0, g0, gx, and/, such that

(1.6)       sup   ||u(-, Olli*/) < c{||«oll^(/) + IISolli*/) + llfilLv) + ll/lliH/x/)}-
0<r</*

Finite difference methods for general mixed hyperbolic systems of the form (1.1)

have been intensively studied (see, for example,Kreiss [8] and Gustafsson, Kreiss,

and Sundström [7]), but very little theoretical work has been done in the direction

of applying finite element methods to such problems. The reason for this is

probably that the standard Galerkin method does not yield optimal error estimates

when it is applied to first-order hyperbolic equations (see Dupont [5]) and that this

method requires special care in order to treat the boundary conditions in (1.1); (see

Gunzburger [6]).

The goal of this paper is to prove a stability result similar to (1.6) for a

nonstandard finite element method for (1.1) and then use this to derive error

estimates for the method. The finite element method, which will be precisely

defined in Section 3, consists of using continuous trial functions and discontinuous

test functions (both in space and time). The treatment of the boundary conditions

in this method is straightforward and can be considered as a generalization of the

so-called box scheme. The box scheme was analyzed for problems of the form (1.5)

by Thomée [10] and for certain nonlinear problems by Luskin [9]. The method

considered here is also closely related to a finite element method analyzed by the

author [13] for the nonlinear Korteweg-de Vries equation and it can (except for the

treatment of the boundary conditions) be considered as a dual method of the

(semidiscrete) method studied for one first-order hyperbolic equation by Baker [2].

The time-stepping part of our method is closely related to discretization in time by
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collocation, which was studied for parabolic equations by Douglas and Dupont [4],

Some local properties of the method are derived in Section 4 and the stability

estimate is proved in Section 5. L2-error estimates are given in Section 6 and some

superconvergence results are derived in Section 7.

2. Notation. We shall use < • , • ) to denote the dot product on C, and | • | will

denote the associated vector and matrix norm. If w G C, then we write

where w+ G Cm and w G C" m. Occasionally, we shall also use vv+ to denote the

vector Co ) G C", and similarly for w~. In the same way, we write the diagonal

matrix A in the block form

a = ÍA.+    JI-
LO      A".

For an arbitrary Banach space X, we let || • ||^ denote the norm on X, and, if

j > 1 is an integer, then || • ||^ also denotes the norm on Xj.

For any integer v > 0, H"(I) denotes the Sobolev space of functions on / with v

derivatives in L2(7), and, if v < 0, then //"(/) is the dual of H~"il) with respect to

the inner product on L\l). For precise definitions we refer to [1]. We shall

frequently use the notation

|| • II, = || • ||„,(/)   and    || • || = || • ||0.

Also, if vx, v2 > 0 are integers and <p G C°°(I X /), define

IMI2,„,2 -2 2
i=0j=0

We let H"'"2il X J) be the completion of C°°(7 X J) in this norm.

Throughout this paper, c will denote a generic constant, not necessarily the same

at different occurrences.

3. The Finite Element Method. In this section we shall describe our finite element

method for the equation (1.1). For any integer r > 1, let Pr denote the set of

polynomials of degree < r. Let A be a family of partitions of /; i.e., if S G A, then

8 = {*,.}f=0, where

0 = x0 < x, < • • • < xM = 1.

We shall use the notation /, = (*,_,, x¡), h¡ = x¡ — x,_, and h = max1</<M h¡.

For integers r > 1 and -1 < v < r — 1, define

S,(r, v) - {x G C<">(/)|xu G Pr, 1 < / < A/},

where C(_I)(/) denotes the set of piecewise continuous functions on I. Observe that

the spaces Ssir, v) have the approximation property that, for any integer j,

v + 1 < j < r, there is a constant c > 0 such that

r+l

(3.1) inf       2 *il<P-Xll,<cA>|M|,,
xess(r,p) , = 0

for all <p G HJiI).

{-^)Wt)*L2(IXJ)
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Similarly, let T be a family of partitions of /. If y = {tj}j_0 G T, we let

Jj = ({,_,, if), kj = tj - tj_x and k = ma.xx<J<N kj, and, if s > 1 and -1 < v < s —

1, then the spaces Sy(s, v) are defined in the same way as above.

We shall be interested in partitions (Ô, y) belonging to a subset Ö of A X T. We

assume that there is a constant t2 > 1 such that, for all (S, y) G fi,

(3.2) t2' < kj/h, < t2,        1 < i < M, 1 < j < N.

For the rest of this paper, we let r and s be fixed integers > 1 such that s < r + 1.

For each (ó\ y) G fi, we let %¡ = S8(r + 1, 0), 91ty = Sy(í + 1, 0), % =

58(r, -1), and 9ly = Sy(s, -1). Observe that it follows from (3.2) that there is a

constant c > 0 such that, for all x G 91^ and 0 < j < r,

(3.3) |||XM,„<{^"
«'-i [ckJ Hxll,

and similar inverse properties holds for the other spaces above.

Adopting a tensor product notation, we define

9L8>Y = 9H8 8 9iY    and   9LdiY = 9l8 ® 91,.

Observe that if {/ G 91t8y, then £/x, G 9l8_y. We shall let Ps, Py, and PSy be the

L2-projections onto the spaces 91^, 9ly, and 91^, respectively. Since the spaces 9l8

and 91 are discontinuous spaces, it follows that all the projections above are

completely local. Hence, if a G C(1)(7) is fixed, then since

ax - Psiax) - (a - Psa)X + (I ~ Ps)((Psa)x) ~ Ps((a - Psa)X)

it follows by inverse properties that there is a constant c such that, for all x G 9l8,

(3.4) ||flx - n(«x)ll < cA||x||.

A similar property holds for the projection Py.

Our finite element method for the equation (1.1) consists of finding U G 91L8jY

such that

' ['* f\u, + AUX + BU-f, x> dx dt = 0,    forx G 91" ,
■'o  •'o

KQU(0, t) = G0(t),   KXU(\, t) = Gx(t),

U(x, 0) = U0(x).

Here U0 G 9HJ, G0 G ^ÎLÇ1, and G, G 91LÇ"m will be chosen as approximations of

uQ, g0, and gx, respectively, and we always assume that KqU0(0) = Go(0) and

KxU0(l) = G,(0). We note that

dim(9H;>T) = n(Mr + l)(Ns + 1), dim(?fi"Sy) = nMrNs,

and that the initial and boundary conditions in (3.5) represent n(Mr + Ns + 1)

linear equations. We also observe that the method (3.5) is a time-stepping method

in the sense that U\j can be computed from £/(•, tj_x), G0\j, G,|y, and/|y. In fact,

if we let r = s = 1 and if A and B are independent of x, then the method (3.5) is

equivalent to the box scheme.

4. Local Properties. In this section we derive some preliminary results that will be

needed in Section 5 in order to prove stability of the method. We first prove a local

property for the method when it is applied to a single equation with a constant

coefficient.

(3.5)
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Lemma 4.1. Let r and s be integers such that r, s > 1 and s < r + 1 and let a =£ 0

be a real number. Assume that U G Pr+1 03 Pj+1 such that

(4.1) U(x, 0) = Uix, 1) = 0

and

(4.2) f f\u, + äUx)xdxdt = 0   /orX6Pr®P,
•'o ■'o

Then U = 0.

Proof. Fotj = 0, \, . . . , s - 1, define a, G Pr+1 by

a,.(x) = Cu(x,t)tj dt.

Also let a_, =0. It follows from (4.1), (4.2) and integration by parts that, for any

a f aj(x)q(x) dx = ä (   f Ux(x, t)tJ dtq(x) dx
•'o •'o •'o

= -f C U,(x, t)tJ dtq(x) dx
•'0 •'o

~jC flU(x,t)tJ-ldtq(x)dx
Jn Jn/0 J0

or

a f aj(x)q(x) dx = j ( aj_x(x)q(x) dx,
Jo Jo

foTj = 0, 1, . . . , s — 1. Therefore, since a_, = 0, we obtain that

(4.3) äaj = 70,-1,       j = 0, 1, . . . , s - 1,

and

(4.4) «,ep, + ..      j = 0,\,...,s-\.

Now let {/>,};=o C Ps+1 be such that

U(x, 0=2 A(0*'-
1=0

Then

etj(x)= 2 *' f AW *»
1=0    ■'0

and therefore (4.4) implies that

(4.5) f 'A(0^ * = 0,      7 = 0, 1, ... , min(/, s) - 1.
•'0

For each integer 7 > 0, let L,(r) be the Legendre polynomial of degree 7 on [0, 1]

such that Lj(0) = 1. Note that this implies that Ly(l) = (-iy. We now wish to show

that />, = 0 for / = 0, 1, . . . , r. We first note that if i > s, then (4.5) implies that

p¡(t) = %¡Ls(t), where %¡ is a constant. Since p¡(0) = 0, this implies that p¡ = 0.

Also note that we obtain from (4.5) that

ps.i(t) = %s_xLs_l(t)+%_lLs(t),

for suitable constants %s_x and %s_x. But, sincep,_x(0) = /?J_,(1) = 0 and L-(l)

= (-iyLy(0), this implies thatps_x = 0.
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We now prove that p¡, = 0 for 0 < i < s — 1 by induction. Assume /'„ is an

integer such that 0 < i0 < s - 1 and pi = 0. From (4.3) and (4.4) we obtain that,

for 0 < j < s - 1,

J 2 x' Çpt(t)tJ-x dt « ä 2 (/ + l)x> CpM{t)t» dt,
,=o    •'o ,=o •'o

or

jÇPi(t)tj-x dt = ä(i + 1) ÇPi+x(t)tJ dt,

for / = 0, 1, ... ,7 - 1. Therefore, sincep¡ = 0, we have

í 1P¡0-i(')tJ dt=0,      j = z0 - 1, /0, . . . , s - 2.

Also note that (4.5) implies that

Ç P¡o_x(t)tj dt = 0,      7=0, 1, ...,/0-2.

Hence, there exist constants %¡ _, and %¡   . such that

/V,(0-3C¡0-.4-.(0 + %0-,4(').

and as above this implies that/?,o_, = 0. This completes the induction argument

and hence U = 0.   □

Let 0 = ¿g < |, < • • • < |r = 1 be a partition of / and let

ij = xi-1 + iÄ,    for ! < /' < M, 0 < 7 < r.

For any function <p G C(/), define Rstp G 91L8 by interpolating <p at the points

{£„};Le"

(A8<p)(í0) = ç(fcy)   for 1 < i < M, 0 < 7 < r.

We observe that the operator Rs is defined locally on each subinterval I¡. Hence,

since aq> - Rs(a<p) = (a - Ä8a)<p + (/ — Rs)HRsa)<p), it follows, from (3.3) and

standard error estimates for polynomial interpolation, that if a G C(l)(/), then

there is a constant c, depending on a, such that, for any <¡p G SMS,

(4.6) ||<np - Rsia<p)\\ + h\\a<p - Rsia<p)\\x < ch\\<p\\.

The operator Rg will now be used to diagonalize the system (3.5). Assume that

U G 91L8?y is a solution of (3.5) and define V G 9HJiy by

(4.7) F =/<8(e "'{/),

for all / G J. We note that (4.6) implies that there is a constant c > 1 such that, for

h sufficiently small,

(4.8) c-»||K(-,/)||< \\U(-,t)\\ <c||F(-,/)||,

for all t G /.

Now observe that (3.5) implies that

f CiQiiQ-'U), + A(Q-lU)x + B(Q-lU)} - f, x> dx dt = 0,
■'o  •'o

for all x G 9^8,y> where B is defined in Section 1. Hence, it follows from (4.6) that,

for all x G 9L;>y,

(4.9) f (\q{Vi + AVx + BV + co0} - /, x> dx dt = 0,
•'o  •'o
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where co0 satisfies

(4.10) WuoWiXW) < WWW,*»*

for 1 < i < M, \ < 7 < N, and some constant c independent of V.

Define now to, G 9l8y by

['' f'<«„ PsQ*x) dx dt

(4.11) ,,-   rl
= - /     /   <K, + AVX + BV + <o0, (P8 - I)Q*x> dx dt,

for all x G 9l£y. By (3.3), (3.4), and (4.10), we obtain that to, is uniquely defined

for h sufficiently small and there is a constant c such that

(4.12) ||m,||lv,x4) < CH FH^(Ax^        1 < / < M, 1 < 7 < TV.

Also note that it follows from (3.4) that PSQ maps 9l£ onto 9l£y for /i sufficiently

small. Let (PsQTl denote (PsQ\^y and define / G 9i;>y by /= (PSQYXPJ.

Then there is a constant c such that, for h sufficiently small,

(4.13) ||/Hz.v,.x/,) < c||/||£V(XJry),       K i < M, Kj < N.

If we let w = <o0 + co,, it follows from (4.9) and (4.11) that V satisfies the equation

rr<y,
Jo   Jo

+ AVX + BV + to - /, P8Ö*X> dx dt = 0,

for all x G 91^, and by (4.10) and (4.12)

(4.14) IMLv,*/,) < CH vWl\i^JjY       Ki<M,Kj<N,

where the constant c is independent of V. Finally, we note as above that, for h

sufficiently small, PSQ* maps 9l^y onto 9l8y and hence in this case V solves the

following discrete analog of (1.5).

(4.15)

('* (\v, + AVX + BV + co - /, x> dxdt = 0   forX G 91^,
•'o   ■'o

F + (0, 0= S0fiV~i0,t)+ S0AG0(t),

V-(l,t) = SlßV + (l,t)+ S,,,G,(í),

K(x, 0) = V0(x),       where F0 = RS(Q~}U0).

The following result is now a consequence of Lemma 4.1.

Lemma 4.2. Assume that U G 91L8    is a solution of (3.5) and /e7 F ¿>e defined by

(4.7). 77ie« //tere « a constant c such that, for h sufficiently small and 1 < j < N,

ll^llwx^) < c^{||K(-, z,.!)!!2 + ||K(-, /y)||2 + ^iiyjii^^^}.

Proof. Let / and j be fixed integers such that 1 < i < M and 1 < j < N. Define

Kand/in(P,+ 18P,+ 1)"by

V(x, t) = V(x¡_x + xh¡, tj_x + tkj)

and

f(x,t)=f\xi_x + xhi,tj_x + tkj),
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for (x, t) G R , and let A = A(xt). Then V satisfies the equation

•1   /•!

IJo Jo
I V, + ^AVX + kjS(V) - kj, x\ dx dt = 0

for all x G (Pr ® Ps)", where & ( V) depends linearly on V and by (3.3) and (4.14)

\MV)\\LHixI)<c\\V\\LHlxI).

Here the constant c is independent of V and fc. Hence, it follows from Lemma 4.1

and (3.2) that there is a constant c such that, for fc. sufficiently small,

II Hlivx/) < 4II ?(•> 0)||2 + || V(-, 1)||2 + fe/H/lli^x/)}

or

Il YWhw) < c/s{ll F(-' 'y-i)H2 + IIF(-' 0H2 + fcyll/llí^x^)}.

The desired result now follows by summation from i = 1 to / = M and by (4.13).

D

5. L2-Stability. The purpose of this section is to prove an estimate similar to (1.6)

for the method (3.5). The result below will be obtained by combining the local

results from the previous section with a generalization of an argument used by

Thomée [10] in order to prove stability of the box scheme.

Theorem 5.1. Assume that U G 9U£y is a solution of (3.5). Then there is a

constant c independent of U, such that, for h sufficiently small,

max||(7(.,ô|| <c{\\U0\\ + ||G0||lV) + ||G,||lV) + ||/||Oj0).
tey

Before we prove the result above we note that, since (3.5) is a system of linear

equations with as many equations as unknowns, the following corollary follows

directly from Theorem 5.1.

Corollary 5.2. The system (3.5) has a unique solution U G 9H5J for h sufficiently

small.

Proof of Theorem 5.1. First observe that because of (4.8) it is enough to show that

(5.1) max||F(-, t)\\ < c{||K0|| + ||G0||lV) + ||G,||lV) + ||/||0>0},
tey

for some constant c independent of V, where V is defined by (4.7).

Now let e G (0, 1) be fixed, where the value of e will be chosen later. Define two

piecewise constant functions d + and d~ on I by

d + (x) = (1 - e)x,_, + e for x G /„

and

d~(x) = 1 - (1 - e)x,_, for* G /,.

Observe that

(5.2) d + (x, + ) - d + (xr) = d-(x-) - d-(xi + ) = (1 - e)h.

Let D be the n X n matrix given by

D=\D+       °
0       D-
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where D + = dia.g(d+, d + , . . . , d+) and D~= diag(c/~, d~, . . . , d~) are matrices

of dimension m x m and (n — m) X (« — m), respectively. We note that

(5.3) I > D >el.

We now prove the estimate (5.1) by energy arguments. For an integer j, 1 < j < N,

let x G 9L8_y be given by

x{xt)(D(Ps,yV)(x,t)     UtEJj,

{0 otherwise.

By using x as a test function in (4.15), we obtain

(5.4) f'J f\vt + AVx + BV + u- f, D(PSyV)) dx dt = 0.
tj-\  o

First observe that, since for each x G /, Vt(x, ■) G 9ly, we have that

f'J f\vt, D(Pí¡yV)y dx dt ̂  y''j¡[\D^(PtV)f dt

= \{\\Dl/2(PsV)(-, tj)\\2 - \\D^2(PSV)(-, r,_,)||2}.

Also note that, by (4.13), (4.14), and (5.3), we obtain

f'J  ¡'{BV + co - /, D(Pa¡yV)> dx dt < c{\\V\\2Ll(IXJj) + ||/||iVxy)},

where the constant c is independent of V. Let A be the piecewise constant matrix

on / given by A(x) = A(x¡) for x G /,. Then there is a constant c such that

-u   ri ...      —. _.   _,_    ..x,    .    ,
dtfJ f <(A - A)VX, D(PSyV)) dx

< cÄII^H^/x^llKII^/x/,) < c\\V\\ii{lxJj),

where we have used the inverse property (3.3). Finally, we obtain from (5.2) that,

for any t G Jj,

f'J  f\AVx,D(PSyV)ydxdt=\ V'  [\DÂ(PyV),PyV)dxdt
Jtj-¡J0 ' ¿JtJ-lJ0

-4 f '  2 {<DA(PyV), PyV}(xr, t) - (DA(PyV), PyV)(X¡_x+, t)} dt
¿ Jlj-li-i

> \V> {(1 - e)\(A+(l)y/\PyV)+ (1, Ol2 - e|(A + (x,)),/2(i>yF)+ (0, r)|2
íi-i

+ (1 - e)\(-A-(xx))i/2(PyV)-(0, ,)\2 - e|(-A-(l)),/2(/>yK)-(l, r)|2} dt

rt   M~l

-c    '   2  hí\PyV(xl,ttdt.
"Vi 1=1

Since there is a constant c such that

rt   M~x M~]      rt
'    2  h,\PyV(Xi,t)\2dt<   2   h(    '\V(Xi,t)\2dt

Jtj-\ i-i /=i     Jtj-\

<c||K||iî(/xjry),
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it therefore follows from (5.4) and the estimates above that there is a constant c

such that

\\Dl/2(PsV)(-,tj)\\2 - WD^PsVX;^^2

+ (l-e){||(A + (l))1/2(/»YK)+(l, .)HiVy)

+ ||(-A-(0))1/2(PyF)-(0,-)ll2,Vy)}

(5'5) -e{||(A+(0))1/2(PyK)+(0, -)llív,)

+ ||(-A-(l)),/2(PyK)-(l, Olliv,)}

<c{\\V\\l*<Ixjj)+[\f\\k,ixjJ)}-

In order to obtain control over the full L2-norm of V( •, tj), we need to apply one

other test function in (4.15). First let / be the n X n matrix given by

/+       0
0      -I

where / + and / " are the identity matrices of dimension m X m and (n — m) X

in — m), respectively, and let A = I A. By using the function

/ =

X(x, 0 = ( !DV¿*> ')     «tEJP

{0 otherwiseotherwise,

as a test function in (4.15), we obtain

(5.6) f'J f '< V, + A Vx + BV + co - /, WVXI) dx dt = 0.

We observe that

1    r,     j      _

dt^ ¡iAVx,ÏDVxlydxdt = ^^t\\(ADr2Vx

= \{\\(AD)'/2Vx(-,tj)\\2 - \\(AD)x/2Vx(-,tj_x)\\2}.

Also, by (3.3), (4.13), (4.14), and (5.3),

•I,    /"I

f'   ( (BV + a-f, ÍDVXI) dx dt < ch-2{\\ K||îVx-w + ||/||i2(/xyy)),

where the constant c is independent of V. In the same way as above, we also obtain

from (5.2) that there is a constant c such that, for any t G J,,

f\v„ ¡DVxiy dx = X-pj-(\{D+y'2V,+ (x, t)\2 - \(D-)^2V/(x, t)\2) dx

>\{(\-e)\v;(\,t)\2-t\v;(0,t)\2

+ (l-£)|F,-(0,/)|2-£|F,-(l,r)|2}

-c\\V,(-,t)\\2.
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From (5.6) and the estimates above, we derive that there is a constant c such that

\\(AD)X/2VX(-, r,.)||2 - \\(AD)1/2VX(-, tj_x)\\2

+ (1 - e){||K,+(l, .)llî*/,) + 11*7(0, Olli*/,)}

-e{\\v;(o, ■)\\h(Jj) + \\v,-(\, -ni^}

<ch~2(\\V\\2LVxJj) + \\f\\2LVxJj)).

Define now a new norm, ||| • |||8 on 9HJ, by

lll^lii2 = \\Dl'2{ptw)\\2 + ä2h(ÄZ))i/2»;ii2.

We note that it follows from (3.3) and (5.3) that, for h sufficiently small, ||| • |||8 is

uniformly equivalent to || • || on 9Tt8. If we add (5.5) and h2 times (5.7) and use the

boundary conditions in (4.15), then we obtain, by choosing e sufficiently small,

e = E(So,o> 5i,o» A)>that

lllK-.'/)lllî-|llK-.'/-»)lllî

< c{\\V\\2LVxJj) + ||G0||iaW) + IIG.II2^) + \\f\\2LVxJj)},

where the constant c is independent of V. Hence, it follows from Lemma 4.2 that

there is a constant c such that, for h sufficiently small,

\\\v(-, tj^w2 < (i + ckj)\\\v(-, tj^wi2

(5'8) +c{||(?oHÍv,) + Watt) + 11/11 ivx/,)}-

Since (5.8) holds for j = 1, 2, . . . , N, (5.1) follows by the discrete analog of

Gronwall's lemma.    □

6. L2-Convergence. In this section we shall use Theorem 5.1 to prove £2-error

estimates for the method (3.5). These estimates will be derived under certain

smoothness assumptions on the solution u of (1.1), and hence the data in (1.1) has

to satisfy certain compatibility conditions at t = 0. We shall, particularly, in the

rest of this paper assume that /^«„(O) = g0(0) and AT,m0(1) = g,(0) and that
Q, A, A G(C(r+1)(/))"x".

Lemma 6.1. Assume that W G 911^ is such that WiO) = 0 and

\\aWx + QAiQ~x)xW, x> dx = 0,
-'o

for all x G 915. Then, for h sufficiently small, W =0.

Proof. Since A = Q AQ~\ we have, for any x G 9l£, that

f\A(Q'iW)x, Q*x> dx = 0.

Therefore, since (Q _1fF)+(0) = 0, there is a constant c > 0 such that

-\\(Q-XWy \\2 < \\A(Q-xW)x,(Q-xW)+xy dx
c J0

=   inf   ¡\A(Q'iW)x,(Q-lW)+x - Q*x) dx
v e 9!l Jnxe9tJ/o

< \\A(Q-lW)x\\  inf J\(Q-lW): -Q*xl
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Note that, by (1.3), (3.1), and (3.3), there is a constant c such that

inf J(Q-XW)+X - Q*x\\ =   inf  \\Q*{{Q*T\Q-XW)* - X)||
xe9i« xe9t«

M

< ch"2 hr{\\(Q*r\Q-lwyx\\HV¡)
i=i

<ch\\W\U.

Hence, we have

\\(Q-lw)+\\2 < ch\\w\\i

A similar result holds for (Q~XW)~, and therefore there is a constant c, independent

of W, such that

llß-'wil, <ch[[Q-*W\\x.

This implies the desired result.    □

Define Ts: (//'(/))" -» 9H^ by (7»(0) = w(0) and

f'</l(wx - (7»J + QA(Q-\(w - Tsw), x> dx = 0,
•'o

for x G 9l£. We note that it follows from Lemma 6.1 that Tsw G 9112 is well-

defined for /i sufficiently small.

For any integer v > 0, let //"(5) denote the piecewise Sobolev space given by

H*(8) = {w G L2(/)|w|; G tf"(/,.), 1< i < M),

and let ||| • |||„8 be the associated norm; i.e.,

M

IIIHII2,,8 = 2 IMI¿'(/,).
í=i

If v < 0 is an integer, then we define H'iS) by duality with respect to the inner

product on L2(I); i.e., H"(8) is the completion of L2(/) in the norm

IIML,« =       sup      -r¡r-TTi—•
o*<p£H'(S) IIItIII-m

In the same way as above we define the spaces H"'y), with norms j|| • ||| ,

consisting of functions defined on J. We observe that if w G H'iS) for some v < 0,

thenwGi/'(/)and||w||, < ||MII„,4.

The following error estimate for the "projection" Ts now follows by a standard

duality argument.

Lemma  6.2.   There  is a  constant  c such  that,  if h  is sufficiently small and

w G (Hr+ '(/))",

Ilk - 7>IIL,8 < chr+"+x\\w\\r+x   for-\<v<r-\.

Proof. Let i = w — Tsw. It follows from the definition of Tsw that, for any

XG 91^,

(6.1) [\A(Q-i£)x,Q*x>dx = 0.
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Assume that v is an integer such that 0 < v < r — 1 and let 17 G iHv'8))". Define

*€(#'+'(*))• by

(At//)x-i)   and   «K1)«0.

Note that there is a constant c, independent of tj, such that

(6-2) 111*111,+,,« < c|||i||Í|M.

From (3.1) and (6.1), we now obtain that

\\q-% ir> dx = (\q-% (A*),) dx

=   inf   Ç(A(Q-xi)x,Q*x-^dx

< cA'+,||(ß->£)x||||M||,+ I)i.

Hence, it follows from (1.3) and (6.2) that

(6.3) infills < cA'+,||É||,    forO<r<r-l.

The proof will be completed by showing the desired result for v = -1.

By (1.3), (3.1), and (6.1), we obtain that there is a constant c > 0 such that

7ii(ô-'rn2< f\MQ-ii)x,{Q-ii):>dx
C J0

=    inf    (\a(Q-1S)x, (Q-lw)+ - ß*X,> dx
x,e9LS^o

+   inf    [\A(Qxt)x, Q*X2 - (Q~\Tsw)yxy dx

<^r|ia.{l|w||f+, + |||r8w|||ri8}.

Observe that if we choose x G 9LJ such that

Í*J\\\w-X\\\j¿<ch'[[w[\„
7=0

then it follows from (3.3) that

ll|7>|||r,8< HlxllLs + ll|7>-xllU

< 111X111,,« + cA-<'-1>{|||w-x|||1>i +11*11,}

<c{||w||r + A-('-,>||í||1}.

Hence, it follows from the above that there is a constant c such that

||(ß-,l)+||2<c||i||1(An|H'||r+, + A||i||1).

By a similar argument we obtain an analog estimate for (Q "'£)" and therefore there

is a constant c such that

llß-'ill, <c||i||1(AniHL+, + AHill,)-
Note also that it follows from (6.3) that

mil, = iißß-U < cOiß-u + u\\) < cOiß-'m, + AHill,).
Hence, there is a constant c such that

Hill. <cA'|M|r+I,

for h sufficiently small. Together with (6.3) this implies the desired result.    □
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The following superconvergence result for the operator 7"8 now follows directly

from the result above.

Lemma  6.3.   There  is  a  constant  c such  that,  if h  is  sufficiently  small and

w G(77r+,(7))",

max|w(x) - (7»(x)| < cA2'|M|r+1.
ïei

Proof. For a fixed x G 8, define G(x, •) G (L2(7))n by

Gix, x),. = ((¥*))"'     lix<*>

[ 0 otherwise.

Observe that for any \p G (77 '(/))", such that ^(0) = 0, we have

V/(x) = f'<A^, G(x,x)ydx.

Therefore, since G(x, ■) G Hr~'(5), it follows from Lemma 6.2 that

\w(x) - (7»(x)| = \[\a(wx - (7»J, G(x, x)y dx
Ko

<cA2'||w|U,.    D

Similar to the operator Ts, define Ty: (Hl(J))" -► 91Ly by (rycp)(0) = tp(0) and

f   <<Pi - (Ty<p),> M> dt = 0   for ft
•'o

91".

It is easy to see that Ty<p G 9HÇ is well-defined, and, by using arguments similar to

the ones given in the proofs of Lemmas 6.2 and 6.3, we obtain that there is a

constant c such that, for k sufficiently small,

(6.4) M? - 7>||L,Y < c**+"+1||«p||„,+1(/)   for -1< v < s - I,

and

(6.5) max|<p(Ô - (Ty<p)(i)\ < ck3*\\<p\\H.+x{Jy
rey

Define TSy: (77 ,0(7 X7)n 77°'(7 X J))" -* 9ft£y by r8y = Ts ® Ty. We ob-

serve that it follows from the identity

(6.6) / - r8>y - / - Ts + / - Ty - (I - Tg) 8 (/ - Ty)

and from Lemma 6.2, (6.4) and (6.5) that there is a constant c such that, for any

w g (77r+10(7 x y) n Hu+l(l x j))",

(6-7) ||(/ - r8>||0,0 < c{A'+1||»v|U,,o + fc,+ I|MI,.,+ ,}

and

(6.8) max||((7 - TsJw)(-, ,')\\ < c{A'+1|MU,.o + **|M|U+I}.
tey

If u and U are the solutions of (1.1) and (3.5), respectively, then we let e = u — U.

We have the following convergence result for method (3.5).
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Theorem 6.4. Assume that u G (77r+M(7 X J) n 77u+l(7 x J))". There is a

constant c, independent of u, such that

maxlKÖH < c{A'+,||«IU,,, + fci+1||«||,,J+1
tEy

+ \\tsu0 - u0\\ + nrygo - G0||£V, + ||rYg, - gx\\lHJ)).

Proof. Let W = TSyu. Because of (6.8) it is enough to estimate 9 = W — U.

Note that for any x G 9LJ   we have

V  [\w, + AWX + BW + p-f,x> dx dt = 0,
•'o   •'o

where

p = (7 - Ts)u, + (I - Ty)(Aux + QA(Ql)xu) + (B - QA(Q~l)x)(l - Ts>y)u.

By Lemma 6.2, (6.4), and (6.7), there exists a constant c such that

(6-9) HPlko < c{A'+I||a||r+u + ä,+1H«IIm+,}-

Therefore, 6 satisfies the system

f [\o, + A9X + B0 + p, x> dxdt = 0   for x G 91^,
-'o   •'o

K09(0, t) = (Tygo)(t) - G0(t),

kx9(\, t) = (Tygl)(t) - G,(r) - (ry7C,(7 - r8)M)(i, t),

9(x,0) = (Tsu0)(x)- U0(x).

Hence, it follows from Theorem 5.1, Lemma 6.3, and (6.9) that

max||0(-, ÔH < c{^+1||«||r+1,, + k*+i\\u\\hs+x
tey

+ \\Tsu0 - (70|| + ||Tygo - G0\\LHJ) + \\Tygi - GX\\LHJ)),

and this implies the theorem.   □

We observe that Theorem 6.4 implies that, if we choose U0 = Tsu0, G0 = Tyg0

and G, = Tygx - 7C,((7 - Ts)uQ)i\) in (3.5) and if u is sufficiently smooth, then

max||e(Ô|| = 0(Ar+1 + ^i+1)-
ley

In the next section we shall show that if G0 and G, are chosen more carefully,

then we can obtain a convergence estimate of the form

(6.10) max||e(/)ll = 0(Ar+1 + k2*)-
tey

7. Superconvergence. The purpose of this section is to prove certain superconver-

gence results for the method (3.5). In addition to the result mentioned at the end of

Section 6, we shall also show that, if U0, G0, and G, are all chosen properly, then

we obtain that

max( 2 h,(\e(Xi)\2 + \e(Xi_x)\2))     = 0(h2' + k*).
ley  \l = l /

The arguments that we shall use to obtain these superconvergence results are

similar to the ones that were used by Douglas, Dupont, and Wheeler [3] in order to
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prove certain superconvergence results for the standard Galerkin method for

second order parabolic and hyperbolic equations. In the case of parabolic equa-

tions, some of these results were improved by Thomée [12].

We shall first show the estimate (6.10). Let Wm = -(7 - Ty)u and for j =

1,2,... define Wu) G (L2(7) 8 91LY)" by W(j\x, 0) = 0 and for each x G 7

(7.1) f'\fvy\ pydt = - f<p<J-l\ py imp. g 9iy,
■'0 -'o

where

(7.2) pU) = A Wx» + BW(j\      7 = 0, 1,_

For all integers 7 > 0, we also let

j
eu) = ^m + 2 w(i) - V-

1 = 1

We observe that it follows from (1.1), (3.5), (7.1), and the definition of Ty that 9(J)

satisfies the equation

(7.3) ['' f\9jJ) + A9XJ) + B9U) - pU), X> dx dt = 0   for X G 9lï  .
-'o  •'o

Lemma 7.1. Letj be an integer such that 0 < j < s. Then there is a constant c such

that

\\W0)\\LHi;«-'M)<ck'+'+J+l\\»\\js+i

for -I < v < s — j — 1.

Proof. The result is obtained by induction on j. By (6.4), the result holds for

j = 0. Assume now that the desired estimate holds for j — 1, where 1 < j < s, and

let v be an integer such that -1 < v < s — j — 1. For a given 17 G iH"(y))", define

>// G (77"+'(y))" by ^, = 7j and t//(f*) = 0.

We note that there exists a constant c, independent of 17, such that

(7-4) IIWL+1.T < clltoHkv

For each x G 7, we now have

f'\rVu\ ij> dt = /"'*< W™, *,> dt

=   inf   f- f '\w¥>> *-ii>*- f '*<P0_1), * - M> dt
ME9LJ I    •'0 •'0

+ f'\p^-1\^ydty

Hence, we obtain from (3.3) and (7.4) that there is a constant c such that

/'V0), t)> dt < c{(||»*»||iV) + ||p0'-1)||Lv>K+,IIMII,,.
•'o

(7'5) +lllp0-,)lll-(,+.),Yll|T?IL,Y}.

From (7.1) it follows that

l|H/F)HiV)< \\pu~1)\\imj)
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and, by (7.2) and the induction hypothesis, we have

iip0_,W*-%» < <*,+'+7ll«lU.+I
for -1 < i < s — j. Hence, the desired result follows from (7.5).   □

From Lemma 7.1 we immediately obtain the following superconvergence esti-

mate for the functions Wu\

Lemma 7.2. Letj be an integer such that 0 < j < s. For each integer v > 0, there is

a constant c such that

maxH^O.ÔH, <<**||-W+|.

Proof. By (7.1) we have for /' > 0

Therefore, there is a constant c such that

(-r)W.O <c(-r)'p(J-l)
\ OX I \ dX j L\l;HJ-\y))

for all /' > 0 and / G y. But from Lemma 7.1 and (7.2) we obtain

(£)'
(7-1) <ck2s\\u\\J + ,s+x

|| L\l;HJ-(y))

and this implies the lemma,   fj

We also note that it follows from Lemma 7.1 that, for all integers v > 0, there is

a constant c such that

(7-6) || W°>||,,o < ^^'IMI,.^,    forO < 7 < 5-

The following superconvergence result will now be derived for the method (3.5).

Theorem 7.3. Assume that u G (Hr+S\l X J) n Hss+l(I X J))n. Then there is

a constant c, independent of u, such that

max||e(Ö|| < ci hr+l\\u\\r+s¡x + fc2í||«||w+1 + ||7>0- £/0||
tey {

+ 2 Tyg, + 2 KtW^(i, ■) - G,
i=\

Proof. Write the error in the form

L\J).

7-1

Note that the term (7 - TSy)u can be estimated by (6.8), and from Lemma 7.2 we

obtain

e = (7 - T.y)u - Ts\ £ W<J>\ + T,0<-lK

(7.7) max
tey

Ts{ S w"-
7=1

i-l

<cmax 2 ||^0)||. <cA:2s||M||i,J+,.
<eY 7-1
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In order to estimate T80(i_1), let

5-1

p = P<i-'> + (r8-7)\u,+ 2 wy>
7-1

+ (B - QA(QX)X)(TS - 7)  r,ru + 's W<A.

First, observe that Lemma 7.1 and (7.2) imply that

(7.8) llp(,_%o < <**II-1Im+i-
From (7.1) it follows that, for each integer v > 0, there is a constant c such that

(7-9) II^IU^INUy.!-
Therefore, since W,U) = -Pyp^J~X), we obtain from Lemma 6.2 that

(7.10) llpllco < c{hr+l\\u\\r+SiX + k"\Mv+l).

Note also that, by the definition of Ts and (7.3), we have

(7.11) f [\(Tt9i-»), + A(Ts9<°-»)x + B(T,9<'-») - p, x> dx dt = 0,
■'o   -'o

for all x G 9l8  . Finally, we observe that Ts9(s~l) satisfies the boundary conditions

K0(Ts9(*-»)(0, t) = (Tygo)(t) + 2 KoW^(0, t) - G0(t)
7-1

and

s-\

K,(r80<-»)(1, /) = (Tygx)(t) + S KXWV>(\, t) - Gx(t)
7=1

j-1

+ (ry7c,(r8 - /)«)(i, 0+2 kx((ts - /)»*»)( 1, t).
7-1

Since Lemma 6.3 and (7.9) imply that

(7.12)

í- i

(TyKx(Ts - 7)»)(1, 0+2 Ki((Ta - 7)^>)(1,   )
7-1

< ^2'||"||r+J,„

¿V)

it now follows from Theorem 5.1, (7.10), (7.11), and the boundary conditions above

that

max||(r8^-'))(.,/)||<cfA-'||M||r+i,, + k»\\u[\„+l + \\TtUo- U0\\
tey I

+ 2
/ = 0

J-l

Tygi + 2 a;w*»(i, ■)-Gi
7=1 Z.2(7)

Together with (6.8) and (7.7) this implies the theorem.    □

We note that for i = 0, 1 the functions K¡u(i, ■) = g¡ are given and hence the

functions K¡ W°\i, ■) can be computed from (7.1) and (7.2) (by using the fact that

u satisfies the equation (1.1)). Therefore, if we choose
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l/0 = Tsu0,    G0 = Tyg0 + 2 K0W^iO, ■)
7-1

and

<?, = 7;g, + 2 kxwv>(\, ) - *:,((/ - 7>o)0),
7-1

then Theorem 7.3 implies (6.10).

Finally, we want to show the superconvergence property at the knots of the

partition 8 mentioned in the beginning of this section. Let Z(0) = -(7 — Ts)u and

for each integer 7 > 1 define ZU) G (911, 8 7.2(J))n by Zu\0, t) = 0 and for each

t GJ

(7.13) \\aZx» + QA(Q-*)XZV\ Xydx = - (\^~x\ X> dx,

where

(7.14) &> = Z,j) + (B - QA(Q~l)x)ZU)   forj = 0, 1, . . . .

We note that it follows from Lemma 6.1 that Z(j) is well-defined for h

sufficiently small. Now let \¡/ denote the function

+ (B- QA(Q\)(TS - I)l(Ty - I)u + 2 nrm.

Observe that it follows from Lemma 6.2 and (7.6) that, for 0 < j < s — 1,

||(78-7)^>||0,0<cA'+1||^>||f+1>0

<c(A2<-') + A:2(-'))||M||r+I,J+,.

Hence, since IV,U) = -Pypu~ '', it follows from Lemma 6.2 and (7.8) that there is a

constant c such that

(7.15) 11*11«* <c(A*+^)IMI,+m+i-
Define for each integer 7 > 0

j
£(7)= Ts9^~l)A- 2 Z(,)

/■ — 1

and let co0) = \f, + xpu\ Note that it follows from (7.11), (7.13), and (7.14) that

(7.16) f '* f '<#» + A£XJ) + Ä£0) - co°>, x> dx dt = 0,
•'o  •'o

for all x G 9lJ . In exactly the same way as the corresponding results were proved

for the functions W(J), we have that if j is an integer such that 0 < j < r, then the

functions Z(7) satisfy the estimates

(7.17) \\Z^\\lHJ[H-W) < cA'+^+1||u||r+,,,,       -1< p< r -j - 1,

(7.18) max||Z">(*. Oll-V) < ^"Hlr+u+r.        " > 0,



84 RAGNAR WINTHER

and

(7.19) ||ZO>||a, < cA'+;+1||«||,+ v+„       v>0.

First note that, since r, s > 1, it follows from (7.15) and (7.17) that

(7.20) \\^r~l\o<c(h2r + k^MU,^.

Observe also that (7.18) implies that, for 0 < j < r — 1,

(7.21) max     \(TyZ^)(x, t')\ < c\\Z^(x, 0||„V) < ^2'IMIr+,,r
(x,t)eSXy

Similarly, it follows from Lemma 7.2 that, for 0 < j < s - 1,

(7.22) max     \(TsW^)(x, i)\ < ck^\\u\\s^+l,
(x, l)£SXy

and, by Lemma 6.3, (6.5), and (6.6), we obtain

(7.23) max     |((7 - 78»(x, i)\ < c(h2r + k^)\\u\Uhs+l.
(x.t)eSXy

Now write the error e = u — U in the form

i-l r-\

2 Ttww- 2
7=1 7=1

(7.24) e = (7 - TSy)u - 2 TSW^ - 2 TyZ"> + TyZ<r~l\

By (7.21), (7.22), and (7.23), all terms in this expansion have been estimated at the

knots, except for Ty^r~x\ Let £ = Tyè(r~X). Then £ G 91LJy and, by (7.16) and the

definition of Ty, £ satisfies the equation

{'   f <|, + Aix + 7?| - co, x> dx dt = 0    for X G 91$
•'o  •'o

where

co = co1'-1' + (Ty - I) 2 (AZ^ + BZ(J\
7=1

The relations (6.4), (7.13), and (7.19) imply that

(Ty - ife (AZ</> + BZ^)
7=1

<c(/t2<-> + /c2^ + 1>)||«||r+,,r+i

0,0

Hence, from (7.20) we obtain

IMIo.o<<^2, + *2,)IMU,,+,.

We also note that £ satisfies the initial condition

t(x, 0) = (7>0)(x) + 2 Z<J>(x, 0) - U0(x)
7=1

and the boundary conditions

K¿i0, t) = (Tyg0)(t) + 2 ^^'(O, t) - G0(t)
7=1
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and

K¿(1, i) = (ryg,)(0 + 'S KXW^(\, i) - G,(/) + (TyKx(Ts - I)u)(\, t)
7-1

+ 2 KMT* - I)WU))(\, t) + Kx2(TyZ<J>)(l, t).
7-1 7-1

Since (7.18) implies

r-l

*, 2 (ryz<»)(i, )
7-1

<c/t2'|M|r+,,r,

r.2(7)

it follows from Theorem 5.1 and (7.12) that there is a constant c such that

/eY

max||£(-, Oil < c   (¿2r + rc2s)\\u\\r+s¡r+s

(7.25) +
r-l

?>o + 2zw(-,o)-tv0
7=1

+ 2
( = 0

J-l

Tygt+ 2 *,Wo)0", 0 - G\\
J=i II ¿V)

Finally, note that, since £ G 91L8>y, there is a constant c, independent of 5, such that

/   M \'/2

max   2 A,(|É(*/. Ol2 + l*(*/-i> Ol2)        < rmax||£(-, Oil-
/ey V /=! / tey

Hence, the following superconvergence result follows from (7.21)—(7.25).

Theorem 7.4. Assume that u G iHr+sr+s(I x J))". Then there is a constant c,

independent of u, such that

IM \l/2

™X 2MK*.'0i2 + K*.-.'0i2)
/ey  \¿=1 /

<c{(h2r + k^)\\u\\r+Sir+s +

r-l

Tsu0+ 2 Z<J>(-,0)- i/0
7-1

+ 2
1 = 0

i-1

Ty&+ 2 KiW^(i,-)-Gi
7-1 ¿V)

In the same way as above, we observe that, since u satisfies (1.1), the functions

Zu\-, 0) can be computed from (7.13) and (7.14). However, this requires that the

matrix ßA(ß_1)x be computed. We also remark that the regularity assumption in

Theorem 7.4 is stronger than necessary. Weaker conditions can be derived if we are

more careful in obtaining some of the estimates above.

Department of Mathematics

University of Chicago

Chicago, Illinois 60637



86 RAGNAR WINTHER

1. R. Adams, Sobolev Spaces, Academic Press, New York, 1974.

2. G. A. Baker, "A finite element method for first order hyperbolic equations," Math. Cony)., v. 29,

1975, pp. 995-1006.
3. J. Douglas, Jr., T. Dupont & M. F. Wheeler, "A quasi-projection analysis of Galerkin methods

for parabolic and hyperbolic equations," Math. Comp., v. 32, 1978, pp. 345-362.

4. J. Douglas, Jr. & T. Dupont, Collocation Methods for Parabolic Equations in a Single Space

Variable, Springer-Verlag, New York, 1974.

5. T. Dupont, "Galerkin methods for first order hyperbolics: an example," SIAM J. Numer. Anal.,

v. 10, 1973, pp. 890-899.
6. M. D. Gunzburger, "On the stability of Galerkin methods for initial-boundary value problems

for hyperbolic systems," Math. Comp., v. 31, 1977, pp. 661-675.

7. B. Gustafsson, H.-O. Kreiss & A. Sundström, "Stability theory of difference approximations

for mixed initial boundary value problems. II," Math. Comp., v. 26, 1972, pp. 649-686.

8. H.-O. Kreiss, "Stability theory for difference approximations of mixed initial boundary value

problems. I," Math. Comp., v. 22, 1968, pp. 703-714.
9. M. Luskin, "An approximation procedure for nonsymmetric, nonlinear hyperbolic systems with

integral boundary conditions," SIAM J. Numer. Anal., v. 16, 1979, pp. 145-164.

10. V. Thomée, "A stable difference scheme for the mixed boundary value problem for a hyperbolic,

first-order system in two dimensions," 7. Soc. Indust. Appl. Math., v. 10, 1962, pp. 229-245.

11. V. Thomée, "Estimates of the Friedrichs-Lewy type for mixed problems in the theory of linear

hyperbolic differential equations in two independent variables," Math. Scand., v. 5, 1957, pp. 93-113.

12. V. Thomée, "Negative norm estimates and superconvergence in Galerkin methods for parabolic

problems," Math. Comp., v. 34, 1980, pp. 93-113.

13. R. Winther, "A conservative finite element method for the Korteweg-de Vries equations," Math.

Comp., v. 34, 1980, pp. 23-43.


