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Estimates Away From a Discontinuity

for Dissipative Galerkin Methods for

Hyperbolic Equations

By William J. Layton*

Abstract. We consider the approximate solution of the initial value problem

du      du ,     .. .  ._ = _ „(*,0) = »(*),

by a dissipative Galerkin method. When v is taken to have a jump discontinuity at zero, that

discontinuity will propagate along x + t = 0, in the true solution u. Estimates in L^ and Lx

of the pollution effects of the discontinuity are found. These estimates show those effects to

decay exponentially in A"1 in regions a fixed distance d from the discontinuity and

exponentially in d for fixed h.

I. Introduction. In this paper the question of approximating, by Galerkin meth-

ods, discontinuous solutions to the initial value problem

/t\ au      du /    n\        i \
(1) TrTx,       uix, 0) = „(x),

is considered. Here v is taken to be an L2(-oo, oo) function, smooth, except for a

jump discontinuity at x = 0. This discontinuity will propagate along the character-

istic x + t = 0 of the true solution w(x, t) = t>(x + t) of (1).

In the usual, continuous in time, Galerkin method for (1) a subspace Sh of

77 '(-oo, oo) is chosen and the approximate solution is computed as a differentiable

mapt/*: [0, T] -> Sh by

(2) ^,^j = (Duh,^)    for<b G Sh,D = ^,

(3) uh(0) G Sh,    an approximation to v,

where (•, •) denotes the usual inner product on L2(-oo, oo).

The usual Galerkin method is not appropriate for the solution of (1) with t>(x) as

described for several reasons:

(i) The rate of convergence of the method (2), (3) depends upon the global

smoothness of u. Here u is piecewise C00 but globally only L2.

(ii) The usual Galerkin method is a strictly conservative method with an infinite

domain of dependence. Experience with such methods indicates that the approxi-

mate solution will be hopelessly polluted by the discontinuity in u even far away

from that discontinuity.
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For these reasons a dissipative Galerkin method will be considered for the

problem (1). Estimates of the error outside a neighborhood of the discontinuity will

be derived for this method. These estimates imply, for example, that the error for

(1), outside a neighborhood of x + t = 0, has two parts, the first being the error

applied to smooth solutions of (1). The second component is the pollution effect of

the discontinuity. This part is shown to decay exponentially in A-1 for regions a

fixed distance d from the shock front and exponentially in d for fixed h.

II. The Method. We shall choose as Sh the space of splines of order ¡u of at most

power growth. Define, following, e.g., Schoenberg [11] and Thomée [13], the B-

splines of order p. > 2. Let x be the characteristic function of [-\, \]. For p > 2

define <j> and <p, by <j> = x**\ <¡>¡ix) = <P(h~lx - /). Sh is taken to be the space of

splines of at most power growth

•S* = { 2 C&f- ci = 0(|/|«) as |/| -* oo for some q].

We shall consider a nonstandard Galerkin method for the problem (1). This

method is similar to a method first proposed by Dendy [5] and analyzed by

Wahlbin, [17] and [18], who proved convergence for smooth solutions of some

linear and nonlinear hyperbolic equations. This method adds dissipation to the

usual method by use of a nonstandard variational principle.

We shall seek uh: [0, r] —> Sh, as a differential map satisfying

(4) ( ^- - Duh, <¡>, - hD*\ = 0,       l G Z,

(5) «*(0) = Ihv G Sh.

By Ih in (5) we denote the spline interpolation operator, that is, Ihv is that element

of Sh satisfying (Ihv)(jh) = v(Jh),j G Z.

Next some results concerning the method (4), (5) shall be collected. Using

techniques developed by Thomée [13] and Thomée and Wendroff [15], Wahlbin

[ 17] has shown that the solution operator, Gkit), to the Galerkin equations (4), (5)

factors as Ghit) = IhFkit), where Ih is the spline interpolation operator and Fk(t) is

a finite difference operator.

For ju, > 2 and integer o, 0 < a < 2p — 2, define the trigonometric polynomials
00

*&)-*-,(-0"'2'   2   (0"-'*o. D'<t>,)e-M,
Í--00

with v = [a/2]. Note that the factor /i°_1 makes g independent of h. The next

proposition collects some useful results of [17] concerning the method (4), (5).

Proposition 1. Let Gh(t) be the solution operator to (4), (5). For X > 0 fixed,

k = Xh, consider t of the form t = nk. Then Ghit) factors as

Gh(t) = Ih(Fk)",       t = nk>0,

where Ih is the spline interpolation operator and Fk is a finite difference operator with

symbol

a(9) = exp\*Jf      *y     = exp(A7>(0)),
\   g$ + ig$J

where Re P(9) < -c92>i, for 0 < \9\ < m, and Im P'9) = 9{[ + Oi92,i)) as 9 -> 0.
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Proof. See Wahlbin [17].    □

From this one obtains that Fk is accurate of order 2p — 1, dissipative of order

2p, and stable in L2 and Lx. Further, L2-optimality of the error follows; for more

details see Wahlbin [17] or [18]:

Theorem 1. Suppose the approximate solution to the initial value problem (1) is

computed using the method (4), (5). Then there is a positive constant c such that, for

v G 77'X-oo, oo),

max ||«(/) - uhit)\\L < cA" max ||«i(/)||„,.
0<r<7" 2 o<t<r

Proof. See Wahlbin [ 17] or [ 18].    Q

In the following, the l2h norm shall denote

INi = h |   vijh)2.
j = -00

Also for t = nk we shall write iFk)" as Fkit).

III. Discontinuous Initial Data. In this section the problem outlined in the

introduction is considered. The initial data is taken to be an 7^ function vanishing

for positive x with a jump discontinuity at zero and smooth on (-oo, 0). The case

of a function smooth on (-oo, 0) and (0, oo) with a jump at zero may be reduced to

a function vanishing for positive x by subtracting a smooth function agreeing with

the initial data on (0, oo). The analogous work on this question in finite difference

theory was carried out in [1], [3], [6], and [12]. These estimates are shown to hold in

the finite element case as well. This work depends upon using spline interpolation

theory to derive estimates upon the error in interchanging spline interpolation and

multiplication by a characteristic function.

To be more specific, the true solution of (1) for such a v(x) vanishes for x > -/.

Therefore uhix, t) is estimated in terms of the distance d of x, parallel to the x-axis,

to the shock front x + t = 0. If x? denotes the characteristic function of (y, oo), we

estimate \\Xd-,u''it)\\L ana" IIX/-r"A(0llz. • The basic result is that these two

quantities decay exponentially in d for fixed h and exponentially in A-1 for fixed d.

An analogous result can be shown for functions t>(x) vanishing on the other side of

the shock front. These results, with Theorem 1, are then combined to give the result

announced in the introduction.

Theorem 2. Suppose the approximate solution of {[) is computed using method (4),

(5) with p. even. Suppose also t>(x) G l2h n L2 n Lx and that v vanishes for positive

x. Then there are positive constants C, c, and a (C and a depending upon p) such that

(6) Ilx,-,«A(*)IL2 < C\\v\\Ly/2 cxpi-ah~ld) + expi-cn min«, dt})\\v\\l2,

with t = nk > 0, d, = dr\ Also k = 2p/(2p - 1).

Theorem 3. Suppose the hypotheses of Theorem 2 hold. Suppose also l^l""^.*) G

Lxfor some a > 0. Then

(7) ||x/-,w/,(Ollz.œ<C||t;||Lœexp(-arW)

+ Ch"/K exp(-c« min{dlK, <L})\\ \x\~%\\Lk

holds for t < T, with dr C, c, a, and k as in Theorem 3.1.
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Proof of the Theorems. Note that Xd-iu>'it) — Xa-ih^ki1)1^- We would like to

interchange Ih and multiplication by Xd-r To do so the error in interchanging these

two operations must be estimated. To this end, consider the cardinal spline

interpolation problem:

For p even, we seek Lhix) G Sh satisfying Lhix) G L^-oo, oo) and

1,     if 7 = 0,
Lh{jH) = { 0,    ifj * 0.

The following basic result is known about this problem [10], [11].

Theorem 4. For p even, there is a unique Lh in Sh. Furthermore, there are positive

constants A and a, depending upon p, such that

\Lh(x)\ < A exp(-aA"'|x|),       x G R.

Also, for C = icj) G lx, the unique function Sh(x) in Sh satisfying Sh(jh) = cJt

Sh(x) G Lx is given by
00

■**(*)«    2   CjLh(x-jh),
7 =-oo

the series converging absolutely and uniformly on each compact interval.    □

This shall be used to produce the desired estimate. For a function fix) G Lx,

expand 7,,/and Ih(xyf) using Theorem 4:

(V)<*)«    I  f(jh)L„(x - jh),
7 = -oo

h(Xyf)(x)= S f(Jh)Lh(x - jh),
j=J

where/ = min{7':7'A >y). Thus,

y-i

2   f(jh)Lh(x - jh)

j-i
<A\\f\\L„   2    cxp(-a\xh-x - j\).

7 = -oo

Setting y = d/2 — t and considering only x > d — t gives

\U(X) - h(Xä/2-J)(x)\ < Cll/H^ expí-ojcA-1)   f    exp(«7)
(8) 7—80

<C||/||Looexp(-«A-1(x-(i7/2-/))).

Thus, (8) gives a pointwise estimate and an L2 estimate

IIV- '»(x^-r/)!!*..«/-«.») < c 11/11 l.«p(-|a-'4
(9)

IIV- /*(x*/2-.y)llirf*-..«) < CH/II^A'/2 exp(—|A-»rf).

Now return to the problem at hand. For d > 0 andp = 2, oo, there follows

(10)    IIAXrf-/']fc(0»llzf(-oo,oo) < \\ih(Xd-,Fk(t)v)\\h(d_t¡x)

+ \\Xd/2-,(hfk(t)v) - /*(Xl/2-,^(0o)ll^-«.»)-
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These two terms shall be estimated separately. Since spline interpolation is a

bounded linear operator between Lx and Lx and between L2 and l2h (but not L2

and L2) [8], [11] we have

(n) l|/*(Xí-r**(Ot>)lli, < C\\Xj-,Fk(')v\\iih,

IIAOo-^CMlk < cwxt-MMi.'
Finite difference theory shall be used to estimate the above two quantities.

The finite difference problem has been addressed in [1], [3], [6] or [12]. In [3]

estimates on \\Xd-iFk(t)v\\, are derived for/? = 2 and oo using inequalities for the

symbol a(9) of Fk in a neighborhood of the real axis. If Fkit) is considered as a

Toeplitz matrix active between l2 and l2 instead of L2 and L2, these estimates on

a(9) may be used to derive l2 estimates on Xd-,Fk(t)v. Specifically, using the

notation of Theorems 1 and 2, there follows

(12) \\Xä-,Fk(t)»\\iM < exp(-c« min«, d,})[[v\\lv¡.

The corresponding Lx estimate in [3] reads

(13) IIXrf-^i'ML. < Ch"/" exp(-cn min«, d,})\\\x\-<>v\\L^.

The theorems now follow by setting/ = Fk(t)v in (9), (10), using the fact that Fk

is stable in Lx and using inequalities (9), (10), (11), (12), and (13).    □

Remarks. A corresponding analysis may be carried out for fully discrete schemes

and for other methods of introducing dissipation into the Galerkin method. For an

analysis of either case or more details upon the present method see Chapter 3 of

[7]. Also, corresponding results may be shown for p odd by posing the interpolation

operator and the finite difference operator at midpoints rather than at the knots.
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