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The Lagrange Multiplier Method for

Dirichlet's Problem

By James H. Bramble

Abstract. The Lagrange multiplier method of Babuska for the approximate solution of

Dirichlet's problem for second order elliptic equations is reformulated. Based on this

formulation, new estimates for the error in the solution and the boundary flux are given.

Efficient methods for the solution of the approximate problem are discussed.

1. Introduction. The purpose of this paper is to consider a method introduced by

Babuska [3] for approximating the solution of Dirichlet's problem for second order

elliptic operators. An important aspect of this method is that the approximate

solution involves only natural boundary conditions. The point of view here is

similar to that taken by Falk [7] in that a family of solutions u{a) of the differential

equation is introduced, where o is a function defined on the boundary. In fact

a = du/dv + au. For each such function a, u{a) satisfies the given differential

equation, and we seek to determine a so that u(a) takes on specified boundary

values. By approximating the space in which a lies and that in which u lies we are

led to a method of approximation which is a reformulation of Babuska's method.

The advantage of this formulation is that we obtain new optimal error estimates for

the error in u in norms weaker than the energy norm. We also obtain new estimates

for the boundary flux approximation. It is finally shown how the approximation ok

to a may be obtained numerically as a limit of a rapidly convergent sequence of

solutions to problems with natural boundary conditions. This is done by introduc-

ing a "discrete surface Laplacian" with the help of which we may formulate our

equations in terms of a well-conditioned matrix problem which may be solved

efficiently by the conjugate gradient method.

An outline of the paper is as follows. In Section 2 we introduce the Dirichlet

problem and its decomposition into solutions of natural boundary value problems.

Relevant a priori estimates are there given. Section 3 concerns the spaces of

approximating functions in our domain il and Section 4 introduces spaces of

approximating functions on the boundary 8fi. Section 5 contains a reformulation of

Babuska's method and there the a priori estimates which are the basis for the error

estimates and computational methods are proved. The error estimates are proved in

Section 6, and finally in Section 7 the "discrete surface Laplacian" is introduced

and the estimates of Section 5 are used to develop efficient computational proce-

dures.
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2. Notation and Preliminaries. We shall be concerned with the solution u of the

problem

Lu = f    in ß,
(2.1) J

u = g   on dil,

where ß is a bounded domain in ¿/-dimensional space Rd with smooth boundary

3ß. The operator L is given formally by

d

lu=- j.M^)+au'

where atj is a uniformly positive definite matrix of smooth functions in ß and a > 0

is also smooth. We shall not consider the exact amount of smoothness necessary

but will assume that the solution u E Hs(il) provided / G Hs~2{&) and g E

/r"-|/2(30). Here Hs(il) and Hs{dil) are the usual Sobolev spaces of functions

defined on ß and 3ß, respectively, with s a positive real number, and H 5(ß) and

Hs(dil) are the respective duals of H~s{il) and H~s(oQ) for 5 < 0. The norms in

Hs(il) and Hs(dii) will be denoted by || • ||, and | • |„ respectively.

The above statement is expressed here by the well-known a priori estimate (cf.

[9])

(2-2) ||«||, < C(||Z*||,_2 + K_1/2).

For the purpose of this paper we wish to consider the boundary value problems

with natural boundary conditions

Lv = 0 in ß,

(2-3) dv „
av + -r- = a    on ail,

av

and

Lw = / in ß,

(2-4) aw + ^ = 0    onöß.
av

Here a > 0 is a constant chosen so that a + a > 0 and 9/3»' is the outward

conormal  derivative on  3ß  relative  to  L. The introduction of a  avoids  the

appearance of semidefinite forms or the requirement that a > 0 in order that (2.3)

and (2.4) have unique solutions. Let <</>, i|/> be the ßj inner product on the

boundary and also the pairing between Hs(dil) and //_i(3ß), and let (<j>, -<p) be the

£2 inner product on ß and also the pairing between Hs{il) and H~'{iï). We shall

denote the generalized Dirichlet integral by Aa(-, • ); it is given by

d

¿Â*> *) - 2   JU7 J£ fj: dx + ("t* *) + «<* *>■

It is defined on H '(ß) X H '(ß) and is positive definite.

In this notation we may formulate (2.3) as follows: v E //'(ß) satisfies

Aa(v> X) = <o, X>

for all x E Hl(il). Set v = Go. It is well known (cf. [9]) that G:  #*(3ß)-»

Hs+3/2(il) as a bounded operator; i.e. for 9 E Hs(dil)

(2.5) l|G»ll,+3/2<C|tf|J.
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Here and in the sequel C denotes a generic constant not necessarily the same in

any two places. At times also C0 and C, will denote generic constants.

We observe finally that since G maps tjdil) into //'(ß), the trace of GO on 3ß is

in Hx/2(dit). Hence we may consider G: ^(Sß)-» (^(Sß), and it follows easily

from the definition that G is selfadjoint.

We have the following lemmas concerning G.

Lemma 2.1. There exist positive constants C0 and C, such that

(2.6) C0|Ö|2_1/2<<GÖ,ö><C,|Ö|2_1/2

for 9 E 7/"1/2(3ß).

Proof. Note that <G0, 0> = Aa(G9, G9) < C||G0||2. The second inequality now

follows from (2.5). The first inequality follows by a simple duality argument. Let

La¡/ = 0 and consider

(9, u0> = Aa(G9, ip) < CA]/2(G9, G9)\W\X.

By (2.2) it follows that

^jj^ < CA\'2(G9, G9) = C(G9, 9)1'2.
lrli/2

But t// E H l/2(3ß) may be arbitrary and hence

|0|-,/2=      sup       <ML<C(G9,9y/2.
V-e//'/2(3o)    Wi/2

In a similar fashion we may prove the following

Lemma 2.2. Let s be a real number. Then there exist constants C0 and Cx such that

(2-7) C0\9\s < |G0|,+1 < Cx\0\,

for all 9 E Hs(dil).

Proof. The first inequality for s > 0 is just an application of a trace theorem (cf.

[8]) and (2.2). We have

aG9

dv

When s = -\ it follows from Lemma 2.1. By interpolation it is true for any

s > -j. Its validity for s < -| is proved by a simple duality argument.

The second inequality for s > -\ follows from a trace inequality and (2.5).

Again a duality argument proves it for 5 < -j.

In a similar manner we set the solution w of (2.4) to be Tf. Again it is well known

that T: Hs{il) -» Hs+2{il) as a bounded operator. Now with this notation we shall

represent the solution u of (2.1) as

(2.8) u = Go + Tf.

With / G Hs~2(ü) and a E Hs~3/2(dil), u E Hs{ti). Conversely, given / E

Hs~2(il) and g E Hs~l/2(ail) there exists a unique a E Hs~3/2(ail) such that

(2.9) Go = g- Tf   on 30,

and then u is given by (2.8). In fact a = au + du/dv. It is unique by Lemma 2.2.

1*1, = aG9 + <Ci\G9\s + \\G9\\s+3/2)<C\G9\s+x.
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It will be from this point of view that we will approximate u; i.e. we will

approximate G, T and a to obtain an approximation to u.

3. Approximating Spaces on ß. For 0 < h < 1 let {Sh} be a family of finite

dimensional subspaces of H\il). Let r > 2 be an integer. We shall assume that for

<t> E H'(ii) with 1 < / < r,

(3.1) inf ||* - x\\j < Ch'-J\\*\\„      j < 1.

We now define the operators Gh: H~l/2(dil) -> Sh and Th: H'\iï) ^ Sh by

Aa(Gh9, x) = <0, x>,   VX E Sh,

and

Aa(Tj, x) = (f, x),  vxes,

These are just the so-called standard Ritz-Galerkin approximations to G and T. We

recall some well-known properties. Let Px be the orthogonal projection onto Sh

with respect to the norm (equivalent to the //1(ß)-norm) induced by Aa; i.e.

Aa(<P-Pl<t>,x) = 0,   VX£5,

Then with this notation we see that

Gho=PlGo   and    TJ = PxTf,

so that we have immediately from the approximation assumption and standard

duality arguments the following well-known results (cf. [2], [4]).

Lemma 3.1. There exists a constant C such that

\(G - G„)o\j-i/2 + \\(G - Gh)a\\j < Ch'-J\\Go\\, < Ch^M,

and

\(T- Th)f\j_x/2 + \\(T- Th)f\\j < Ch'-^WTfW, < Ch'-J\\u\\l

for 2- r <j < 1 < / < r, a E //'-3/2(3ß), / G 7f'_2(ß) and u = Ga + Tf.

Note that the restriction to ß of continuous piecewise polynomials of degree

r — 1 on a quasi-uniform triangulation of R2 or a rectangular mesh of "width" h

are examples of spaces Sh satisfying (3.1).

4. Approximating Spaces on 3ß. For 0 < k < 1 let {Sk) be a family of finite

dimensional subspaces of H"(ail), n > 0. Let r > 1 be an integer. We shall suppose

that for * G H'(3ß) withy < n,j < I < r,

(4.1) inf |* - x|,. < Cfc'-'W/.

We further assume that fory < m < n

(4-2) |*L < C*'-^

for all <b E Sk.

The conditions (4.1) and (4.2) together imply that for any given j0 < n there is an

operator irk: HJo(dil) -» Sk with

(4.3) I* - «k4\j < CjJc'-J\H,

uniformly in j and / withy0 < j < / < r, j < n. This result may be found in [5].
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Finally we denote by p0 the (^(dil) orthogonal projection onto Sk; i.e. for v E

E2(3ß) = //°(3ß),

(Pov,9) = (v,9),   \/9ESk.

By a standard duality argument we have

Lemma 4.1. Let Sk c H"(dil). Then

\{I - p0)4>\j < Ck'-J\4\,

for <¡> E H'(dil), with -n < / < r and -r < j < min(/, n).

We shall also need the following lemma concerning the boundedness of pQ in

other norms.

Lemma 4.2. Suppose Sk c //"(3ß). Then

\P0*\s < ¿Ms

for \s\ < min(w, r).

The proof follows from Lemma 4.1.

We note here that the operatorp0Gh: Sk -» Sk is selfadjoint; i.e. for <¡>, t|/ G Sk,

<PoGh<p, xli} = <Gh<p, ypy = Aa(Gh<t>, Grf) = (<p,p0Ghipy.

This operator will play a central role in what follows.

5. Babuska's Method Reformulated. As noted in Section 2 we may write u as in

(2.8) and (2.9).

The approximate problem motivated in this way is: Find ok E Sk such that

(5.1) P0Ghak =p0(g- Thf).

The approximation to u is defined as

(5-2) uhk = Ghak + TJ.

From the definitions of Gh and Th it follows that

AÁuhk, X) = <ok, x> + (/, x),    VX G Sh,

and

(uhk -g,9) = 0,   Víejfe.

These equations are the same as those of Babuska [3].

The first estimate which we shall give is an analogue of Lemma 2.1. A condition

relating h to k will be required.

Lemma 5.1. For h < ek with e sufficiently small there exist positive constants C0

and C, such that

(5-3) C0\9\2_x/2<<Gh6,9y <C,|0|2_1/2

for all 9 E Sk.

Proof. By Lemma 2.1,

C0\9\2_l/2 < <Gh9,9y + <(G - G„)9, Ö> < C,|0|2_1/2.
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Hence it suffices to show, for 9 E Sk, that |<(G - Gh)9, 0>| < 8\9\2_x/2 where 8 is

small with e. By definition

<(G - GA)0, 0> = ¿„((G - G„)9, G9) = ¿a((G - G„)9, (G - Gh)0)

< C\\(G - Gh)9\\2 < Ch2ß\\G9\\2x+ß

for 0 < ß < \, where we have used Lemma 3.1.

By (2.5)

(5-5) \\G9\\x+ß<C\9\ß^x/2.

By assumption (4.2) with s = ß — \ and y' = - \

(5.6) \0\ß-i/2<Ck-<i\9\_x/2.

Hence combining (5.4)-(5.6) we see that

|<(G - Gh)9, 9y\ < C{h/k)2ß\9\2_x/2 < Ce2*|0|2_1/2.

The result follows for e small enough.

Lemma 5.1 clearly implies the existence and uniqueness of ok since p0Gh9 = 0 for

9 E Sk implies that 0 = 0.

Another stability estimate will be needed in our derivation of the error estimates

and the computational method.

Lemma 5.2. Suppose that h < ek with e sufficiently small. Set m = mm(r — 3/2, r)

and let -m < s + 1 < 1. Assume that Sk c ^(Sß) and furthermore that Sk C

//'(3ß) if0<s + 1 < 1. Then there exist positive constants C0 and Cx such that

Co\0\s < \PoG„9\s+x < Cx\9\s

for all 9 G Sk.

Proof. We shall consider the cases -m < s + 1 < 0 and s = 0. The result will

then follow by interpolation.

Consider first s with -m < s + 1 < 0. Using Lemma 2.2 and the triangle

inequality, we see that

Co|0|, < |(G - G„)9\s+X + \(I - Po)Gh9\s+x + \PoGh9\s+x

and

\P0Gh9\s+l < |(G - Gh)9\s+X + \(I - Po)Gh9\s+x + Cx\9\s.

Hence it suffices to prove that

(5.7) |(G - G„)9\s+X < Ce\9\s,       § - r < s + 1 < 0,

and

(5.8) |(/ - p0)Gh9\]+x < C\PoGh9\s+x\9\s,       -r < s + 1 < 0,

for 9 E Sk.

To prove (5.7) we use Lemma 3.1 withy — ̂  = s + 1 and / =| to obtain

(5.9) l(G-G*)0|i+1<CA-||G»||3/a.

From (2.5), (4.2) and the fact that -s > 1 we see that

h-°\\G9\\y2 < Ch-\0\ < C(h/k)-s\9\s < Ce|0|,

which, together with (5.9), proves (5.7).
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To prove (5.8) we apply Lemma 4.1 to obtain

\(I-Po)Gh9\2s+x<Ck-^\Gh9\2x/2.

By the trace theorem and the definition of Gh

\Gh9\\/2 < C||GAÖ||2 < CAa(Gh9, Gh9) = C(9,p0G„9y.

Hence, using (4.2),

\(I - P0)Gh9\2s+x < Ck-*-'\PoGh9\k-*\9\ < C\pQGh9\s+x\9\s

which is (5.9), and hence the lemma is proved when -m < í + 1 < 0.

It remains to consider 0 < s + 1 < 1 when Sk c 7i'(3ß). We only look at the

case s = 0. The full result will follow by interpolation. Let $ E Sk be the unique

solution of p0Gh\p = 9 which exists and satisfies |i//|_, < C|0| by virtue of the first

part of the proof. Hence

|0|2 = (9,p0Ghty = (p0Gh9,ty < C\p0G„9\x\9\,

so that |0| < C\p0Gh9\x. Finally, since Sk c H'(3ß),

\PoGh8\i < \Po(G - Gh)9\x + \PoG9\x < \Po(G - Gh)9\x + C\G9\X

by Lemma 4.2. Using (4.2), Lemma 3.1, (2.5) and (2.7), we see that

l/V^i^cr'KG-Gjtfl + ciGöi,

< C(A/A:)||GÖ||3/2 + C\G0\X < C\G9\X < C\9\

which completes the proof of the lemma.

6. Error Estimates. The following theorems are the main error estimates. The first

is the energy norm estimate given by Babuska [3]. The estimates in weaker norms

are sharper than those of [3]. These in turn give rise to an accurate method for

calculating the flux on the boundary.

Theorem 1. Let r < f + | and h < ek for e small enough for Lemmas 5.1 and 5.2

to hold. Then

\o - oklx/2 + ||« - «„II, < C^'-'IH, + ^+,/2|a|r).

Proof. We note that

« - uhk = (G - Gh)a + iT-Th)f+ Gh{o - ok).

Hence   to  estimate   \\u — uhk\\x,  by   Lemma   3.1   it  suffices  only  to   estimate

Gh{a — ak). But since Gh = Px G, we have that

\\G„io - ak)\\x < C\\G{a - ak)\\x < C\a - ok\_x/2

by (2.5). Thus we have reduced the estimate to that of \o — o,|_!/2. By (4.3)

Ia - °*l-i/2 < C(|(7 - ^)o|_1/2 + |irto - ok\_x/2)

< C(kr+i/2\a\r +\irko - ok\_x/2).

By Lemma 5.1

(6.1) \irka - ak\2_x/2 < C(Gh{mka - ok), irka - oA>.
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Using the boundary conditions (5.1) and (2.9)

(6.2)       PoGh(irka - ak) = p0[ G„(wko - a) + (Gh - G)o + (Th - T)f],

we see from (6.1) that

k*° - »»Li/a < C(\(Gh - G)o\x/2 + \(Th - T)f\x/2 + \Gh(nko - a)\x/2).

Hence applying Lemma 3.1 and a trace inequality, we obtain

k« - «fcl-i/2 < C(hr~l\\u\\r + \\Gh{vko - a)\\x).

But

\\Gh(iTka - a)||, < C\\G(mko - a)||, < C\itka - a|_1/2

by the stability of Px and (2.5). Collecting these results and using (4.3) completes

the proof.

Theorem 2. Let Sk c H"(dil) with 0 <«</•- §, r < r +\ and h < ek as in

Theorem 1. Then for 0 < i < r — 2,

I" -  ««IL  <
c(Ar+'||u||r + A:r+3/2+'|a| •),       0 < i < n - £,

C((*/A)'+I/2-V+i||«||r + kr+3/2+i\o\>),      n -\ < / < r - 2.

Proof. As noted in the proof of Theorem 1 it suffices to estimate GA(cr — ok). By

the triangle inequality and Lemma 3.1

\Gh(o - ak)\\_, < ||G(o - ak)\U + hi + i\\G(a - o,'k/\\l-

Now   by   (2.5)   with  s " -5   and   Theorem   1   it  remains  only   to   estimate

II GO» - °k)\\-¡ for 0 < i < r - 2. By (2.5) and (4.3)

\\G(a - o-*)||_,. < C|o - o-*|_,-3/2 < C(|(/ - 7r*)o-|_,-3/2 + I**» _ «fcb-3/2)

(6'3) <c(*'*"2+'M#+|»fc«-«*U,-s/a)-

It remains to estimate \irko — ok\_¡_i/2. Using Lemma 5.2 and (6.2), we obtain

k** - %l-,-3/2 < Ci\p0{Gh - G)a|_,_1/2 + \p0iTh - T)f\_i_x/2

{6A) +boGAKa-a)|_,_1/2).

Now if 0 < 1 < it — 5, then/30 is bounded in Tf ~,_1/2(3ß), and by Lemma 3.1 the

first two terms on the right of (6.4) are bounded by CAr+'||«||r. Finally

\Gh(irko - o)|_,._1/2 < \G(*k - /)o|_,._1/2 + |(GA - G)(*k - /)a|_,_1/2

< C(|(/ - ^)a|.,._3/2 + h^2\(I - «k)o\)

< Ck"3'2+i\o\h

where we have again used Lemmas 3.1 and 2.2, (4.3) and h < ek. This completes

the proof for 0 < 1 < n — \. In case n — \ < i < r — 2, we cannot infer that p0

is bounded in H~i'+l/2\dil). Hence we use the triangle inequality in (6.4) and

still have to bound |(/ - Po)(Gh - G)a|_,._ 1/2, \(I - Po)(Th- T)fU-l/2 and

\{I — Po)Gh(irka — o-)|_,_i/2- The result now follows from Lemmas 4.1 and 3.1, the

triangle inequality, (2.7) and (4.3).
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Now, looking at the proof of Theorem 2 from (6.3) on, we see that we have

proved the following

Theorem 3. Under the same hypothesis as in Theorem 2

Ia - °k\-i-3/2

C(hr+i\\u\\r + Jfc'+3/2+'|a|;),       0 < i < n -\,

c((k/h)i+l/2-nhr+i\\u\\r + £'+3/2+i|a| •),       n -\ < i < r - 2.

As an immediate corollary we have

Corollary. Under the same hypothesis as in Theorem 2

(6.5)
3«
Tv *(ff* ~ ag) < c(Arn-I/ir+''-1/2||M||r + /c>|.).

Proof. By the triangle inequality and (4.3)

= \o — ak\ < \irko — a\ + \trko — ok\

< KAa -a\ + Ck-"-1^ - a|_„_, + Ck~n-'\a - ak\_n_x

du
Tv - (ok - ag)

< c(k'\o\ + k -n-l| -  ^|_„_,).

The result now follows from Theorem 3.

Let us apply Theorem 1 with r = r = 2 to estimate the flux on 3ß. The choice

which balances the terms is then k = h2^5 which leads, as in the proof of the

corollary, to

13«

dp - (°k - <*g)
< CA4/5(|M|2 + |a|2).

Applying the Corollary in this case with n = j — 8 (discontinuous piecewise poly-

nomials), we obtain

3«

av
- (°k - <*g)

< C*8/7-s(||«||2 + |a|2),

where   8 = 125 [7 — 25] '/7.   In  case  n =\   (e.g.   Sk   consists   of  continuous

functions), we obtain

3«

dv
- K - <*g)<C/I8/7(||«||2+|a|2).

Thus Theorem 2 indicates a different balance between h and k from that suggested

by Theorem 1, and a higher rate of convergence in the lower norms and for the flux

is proved.

Finally, we see from (6.5) that in case u is very smooth we could obtain the result

that for r fixed and any 5 > 0 we may choose r, n and k (as a power of h) such that

3«

dv - (°k - «#) = 0(h 2r-2-6
)■

As an example of Theorem 2 we specialize to the case i = 0, n > 2. Then we

have

||« - uhk\\ < C(h'\\u\\r + /c'+3/2K).
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Since h < ek, the condition r < r + | is natural. For instance, if r = 2 and r = 2,

then it would be natural to take h = &7/4. Hence for k sufficiently small the

condition h < ek will be satisfied.

7. Computation of ak. Let us consider the following discrete surface Laplacian.

Define lk:Sk-+ Sk, with Sk c //'(3ß), by

</,4>, 0> = <<i>,0>„

where < -, •>, is the inner product in Hl(ail). (E.g. for d = 2 we may take

<<£, 0>[ = (<¡>, 9 y + <<>', ö'> where </>' is the derivative of 4> with respect to arc

length along 3ß.) Note that the computation of lk<¡> involves only the "inversion" of

the Gram matrix which in the case of usual finite element spaces will be well-

conditioned and sparse. Hence lk<f> is always a relatively inexpensive computation.

Now lk is positive definite and symmetric, and we may define lk in the usual way

by taking powers of its eigenvalues. We have the following

Lemma 7.1. Let Sk c H\dil). Then for \s\ < 1 there are constants C0 and C, such

that for <t> E Sk

(7.1) C0M, < |/¿/2<í>| < C,H,.

Proof. For s = 1 it is obvious by definition. For s = -1 we have that

Ul                        O,*)                      <lkl/2f, lkl/2Po*>
W-i-    sup     -7tt-=    sup-

■/-e//'(9S2)      If li ¿e/r'(3í2) Ifli

.  1,-1/2.1 I4'7W|        .,-1/2.1 \Pot\l

^e/z^an)      ItIi y(,BH\aa)    Ifli

Applying Lemma 4.2, we obtain |^|_, < C\lkl/2<¡>\. Now

lt,/2<i>l2 = <tl* <*>> < It^liW-, = I4"1/2«i>l l*L,

by the definition of lk. Hence |4~1/2<i>| < I^U, and (7.1) is proved for j = -1. By

interpolation it holds for -1 < s < 1.

As an application, we combine Lemmas 5.1 and 7.1 to obtain

c0l4-1/4*l2<<GA<i.,^><c1|4-1/V|2

or taking lk1/49 = <j>

c0\o\2 < <(4,/4(/>oCAK,/4)M> < c,|ö|2

for 9 E Sk. This inequality means that the system with matrix induced by

lk/4(PoGh)lk1/4 has bounded condition number, and hence we can obtain a solution

<í> to the equation

l¿'\PoG*)l¿/44> = *

to within an accuracy hr by the conjugate gradient method (or some other method)

in G(ln 1/h) iterations. To apply such a method we need to be able to compute

ll/2(p0Gh) for any <j> G Sk (cf. [1]). An example of where this is possible is that of

smooth splines on a uniform mesh of size k (d = 2). In this case we may easily take

the discrete Fourier transform for <$> E Sk. Hence in that case lk/2 is easy to

compute; in fact using a fast Fourier transform algorithm (cf. [6]) the number of

operations required is of the order k~l In k~ .
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In cases where fractional powers of lk are not easy to compute (e.g. for d = 3) we

may apply Lemmas 7.1 and 5.2 to obtain a well-conditioned system. We obtain

C0I*|2 < \lk/2PoG„<f>\2 < Cx\4>\2

or

C0|*|2 < <(p0Gh)lk(p0G„)4>, <*>> < C,H2.

Hence the system induced by (p0Gh)lk(p0Gh) is well-conditioned, and we can use

the resulting matrix as a basis for our iteration and apply the conjugate gradient

method [1] to obtain a solution to our equations in 0(ln 1/h) iterations. The

solution ak satisfies

PoGhok =Po[g- Thf}.

Instead we should consider the well-conditioned system

PoGhlkPoGh°k =PoGhlkPo[g- Tj\.

The calculation of p0 and lk are inexpensive, and GA is the natural boundary

condition solution operator.

The author wishes to thank Professor Lars B. Wahlbin for several suggestions

which led to a considerable improvement in this work.
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