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The Finite Element Method With Lagrange
Multipliers for Domains With Corners*

By Juhani Pitkiranta

Abstract. We study the convergence of the finite element method with Lagrange multipliers
for approximately solving the Dirichlet problem for a second-order elliptic equation in a
plane domain with piecewise smooth boundary. Assuming mesh refinements around the
corners, we construct families of boundary subspaces that are compatible with triangular
Lagrange elements in the interior, and we carry out the error analysis of the resulting
approximations in weighted Sobolev spaces.

1. Introduction. We consider the model problem
-Au = in Q,
(1.1) f
u=g onodf,
where £ c R? is a bounded domain with piecewise smooth boundary 82, and f
and g are given functions defined on £. Under sufficient regularity hypotheses on f

and g, problem (1.1) admits the following weak formulation: Find a pair (u, ¥),
u € H'Q), ¢ € L,(39), such that

. fz W terf x| uwa

= f fodx + f gbds forall (v, ) € HY(Q) X L,(39Q).
Q o

For f, g smooth enough, (1.2) has a unique solution (%, ¥) such that u is the weak
solution of (1.1) and ¢ is defined as

ou du Ju
(1.3) \P = -—5 = -—nl'a—-xl - nza—xz, x € 89,
where n(x) = (n,(x), n,(x)) denotes the unit outward normal vector of 9% at x.
In the Lagrange multiplier method [2] for approximately solving (1.2) one
introduces the finite-dimensional subspaces M"* c H'() and N* c L,(3Q) and

defines the approximate solution as the pair (1, ¥,) € M* X N" which satisfies

)
f u,,aod +f mp,,ds+f o ds
Q,-]
(1.4)
=ffodx+f gbds forall (v, ¢) € M* X N
Q 193
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Finite element methods based on (1.4) have the benefit that they do not require the
fulfillment of the Dirichlet boundary condition in the subspaces. The stability and
convergence of such approximations was studied first in [2] (see also [3]). For an
abstract Lagrange multiplier method, necessary and sufficient conditions for stabil-
ity are given in [6].

The actual verification of stability and the construction of the subspaces was
considered by the author in [9] for quasi-uniform finite element meshes and in [10]
in a more general situation. In [10] a number of local conditions were stated that
yield the uniform stability of the Lagrange multiplier method in weighted norms
depending on the finite element partitioning of the boundary.

In the present paper we proceed from the ideas of [10] and [4]. We consider the
situation where graded meshes are used to handle the singularities arising from the
corners of df2. Assuming mesh refinements of the same type as those considered in
[4] for polygonal domains, we construct finite element subspaces that meet with the
stability conditions of [10]. We then derive error estimates for the resulting
approximations in weighted Sobolev spaces.

The plan of the paper is as follows. In Section 2 we state the basic assumptions
and give some properties of weighted Sobolev spaces that are needed in the paper.
In Section 3 the stability conditions are restated from [10). A family of finite
element subspaces is introduced in Section 4 and the validity of the stability
conditions is verified. Finally, in Section 5, the approximability properties of the
subspaces in weighted Sobolev spaces are studied, and a weighted convergence
result is derived for the approximate solution.

2. Preliminaries. We consider a bounded, simply connected domain  C R?
whose boundary dQ consists of a finite number of smooth closed arcs I';, i =
1, ..., I, defined in terms of the smooth mappings J; = (J,,, J;,) such that

@1 T, = {(J“(t), Ji,2(t))” 6[0’ l]},
' [ +[700] > ¢ >0, te[0,1].

We will denote the corners, i.e., the endpoints of the arcs I';, by z;,, i =1,..., 1,
numbered in any order. The asymptotic opening angles of the corners into the
interior of Q are denoted by ;. We assume that 0 < w, < 27,i=1,..., ], ie., we
exclude needles but include slits.

For u(x) defined on £, let D*u denote the field of all partial derivatives of u of
order k. Then the Sobolev space H™(£2), m > 0, is defined as usual, with the norm

lulmey = 3 [ |D*uf* dx.
k=0Q
In what follows, we use the notation
I
(22) wpx)= Il Ix -zl B=(Byu....B) ER,

andd=(1,1,...,1) € R'. For B € R and m > 0 given, we let W™B(Q) denote
the weighted Sobolev space of functions u, defined on {, such that

m
lull ey = 2 Lv’;zsﬂk-m)olpk“lz dx < oo.
k=0
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We state below some inequalities to be needed later on.

LEMMA 2.1. If B € R is such that 0< B, < 1,i=1,...,1, and u € H'(Q),
then

J, w3 dx < Cllulye,
where C depends on 8 and Q.

Proof. Let x;; be a smooth function defined on £ such that x,4(x) =1 for
|x — 2] <& and x,s(x) =0 for |x — z]| > 28. Then, if § is sufficiently small, a
modification of Hardy’s inequality gives (see [8]):

[1x = 2P puf dx < C [ |x = 2D ()P dx, @ > -2,

Q Q

Taking @ = -28;,, summing over i and using the triangle inequality, the assertion
follows after a simple computation. []

LEMMA 2.2. If B € R’ is such that B, < 1 for some i € {1, ... , 1}, then any
u € WA(Q) satisfies

[u(x)| < Cllull yase) |x — 2| >8 >0,/ #i,
where C depends on Q and 8. Moreover, u(z;) = 0.
Proof. See [4]. This result is also implicit in [8].
Consider next functions defined on 9Q2. We say y € H™(3R), m > 0, if

I
2 _ 2
1Yl magy = 2 1¥ill rm0,1) < 00,
i=1

where Y, (1) = $(J(£)), t €0, 1), i = 1,..., I Similarly, y € H™*'/23Q), m > 0,
if

I
191m v = 2 (W4l Frmony + ™17 2) < o0,
P

where
e [9(0) — 6(0) ]
2.3 2, = —dt dt'.
(2.3) wha= [ f oy
We note that H™*'/%(3Q) can be defined equivalently as the interpolation space [5]
H™120Q) =[ H™(3Q), H™*'(39) ],

To define weighted Sobolev spaces for functions on 9%, let » = »(i) and p = p(i)
be integers such that

(24) J(0) = z,, Ji(1) = z,.
With 8 € R' and m > 0, we define W™B(R) as the space of functions y such that

1
2 - 2
¥l mseey = 2 ¥illmp: < 0,
i=1

where

& ! . —m4 .
Il ps = > fo [1A=m4(1 = 0" PleO1)P db.

Jj=0
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Further, we let W™*'/2(3Q) denote the space with the norm

I
(2.5) Wl fmerv2a00) = 1WIl Gma-oogy + 21 A1 - 1)3"4'1('"”%/2,
i=

where | - |, /, is defined by (2.3). The following interpolation result is obtained from
[11].

LEMMA 2.3. If m > Oand B =3(B, + B, then

Wm+1/28(3Q) =[ wmB\(3Q), wm*1 2(39')]1 /22"

In Section 5 we need the following trace inequality:
LEMMA 24. Ifu € W™B(Q), m > 1, then

40l wm-112800) < Cllull ymag)

Proof. In [8] it is proven that if u € W"A(Q), then

(2.6) l4pgll wor-ereey < Cllull prag)-
From this it is easily concluded that, if u € W™F(Q), m > 1, then

2.7) sl we-15-0r3amy < Cllull sy

Now let D,,_,u be any partial derivative of u of order m — 1, and let y,(¥) =
(D,,_w)J{0),i =1,..., 1 Then

I
(2.8) 2 A1 - t)ﬂ"‘l’s %/z < C||‘Ppo-1“|an||121'/2(an)-

i=1
Using the trace properties of Sobolev spaces H™() (cf. [1]) the right side can here
be further estimated as

(29 | P D — 14l 11 7202) < CllPgDom— 14|l 1@

The asserted inequality now follows by comparing (2.5) with (2.7) through (2.9) and
noting that

||‘P5Dm—1“||ﬁ'(9) < C||“||Wm-ﬂ(a)~ O

We state finally a regularity result for the solution of problem (1.1). For the proof,
see [8].

THEOREM 2.1. Let m > 2 and let B € R' be such that B; > O,m — 1 > B; >m —
1 —aw/w, i=1,...,1. Further, let f and g in (1.1) be such that = f, + f,,
HLEH"Q),f, € W), and g = g, + g,, 8, € H"(Q), g, € W™P(Q). Then
problem (1.1) has in H'() a unique weak solution u which satisfies u = u, + u,,
u, € H™(Q), u, € W™B(Q),

[yl grmegy + 142l mscy

< C{lhllam-2ay + | foll wm-280) + | 81l amey + 1| 82ll wmacay }-
3. The Local Stability Conditions. In this section we state a number of conditions
that are sufficient for the uniform stability of the Lagrange multiplier method.
These were stated already in [10], but as they will be referred to in the sequel, we
repeat then here for convenience.
Suppose we are given a partitioning 7%(9%) of 0%, consisting of connected
smooth arcs, a finite-dimensional subspace N* c L,(3Q) associated to 7*(3®) in
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the manner described below, and another finite-dimensional space M* c H'(Q). If
S C R", we let d(S) denote the diameter of S, and we let K, A, and L be some
fixed positive parameters, with L an integer. Further, we associate to each pair
{8 §;} C 7(3Q) a number n,, defined as the minimum number of subsets S €

7#(32) that have to be crossed when passing from a point in S, to a point of S;
along 0%2.

In the above notation, the sufficient stability conditions are as follows:

Al. To the partitioning 7#(3) = (S,,..., S,} there corresponds a collection
{C, ..., C,} of discs G, C R? such that, for each j, the center of C, is in S,
ac) > 8Kd(.S}), and, for each C € {C;}, €N C # I for at most L spheres
G e(C,....C).

A2. For all palrs{ » S} C Th(3Q),

d(s;)
a(s))
A3. For each S; € 7%(3Q), there exists ¢; € N* such that supp{¢;} 2 S

d(supp{¢;}) < Kd(S;), and
2
-1 2
];ﬂ«pjds > K d(s,.)fm@ ds

A4. There exists a basis {{, ..., ¥,} of N* and a set {v,...,v,} € M"* such
that
@) Foralli, 1 <i < p, if supp{y;} N S; # J and supp{y;} N S, #IJ, §
74(3Q), then n;, < L.
(ii) For alli, 1 <i < p, y;v; 2 0 for at most L functions v, 1 <j<p
(iii) If S; € T*(3%), then
A= {i;4;200nS;} = {i;0,Z00nS}.
(iv) If S; € 7%(3Q) and v, = 0 on S, then

n;

J’ E

K_Id(s})j;JDlUilz dx < ||Ui||21,,(.s;) < K"‘Pi”zz,,(s,y
W) If ¢ = 2F By, v = St Bv, B, € R, S; € 7%(3Q), and A, is as in (iii), then
K3 Bl > Wik > K 2 By
J

iEA;

-1
K 2 B ||U||L2(S) > "”"L,(.s;) > K 2 B ||°||L,(s,)’
i€EA; A

and
J, vo ds > KWLy
J

We state below a consequence of the above assumptions, which will be of basic
importance in what follows. First, let us define on [H'(®) X L,(3Q)F* a bilinear
form B as

2
(31) Buviv e =[5 ot ot [ wor o) as
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so that (1.4) can be rewritten as

B (uy, Y3 v,¢)=ffvdx +f go ds, (v, ¢) € M* x N*.
Q Ele}
Further, let us introduce on H () X L,(3%) the weighted norm
SO = [IDwPax + 3 d(S)" [ wrds+ 3 d(S) | y*ds
G $)128 = [ 1D ;(,)[Sj ) (,)fsj¢
where the sums are over all §; € r(3Q). Then we have, by slightly modifying the
stability result of [10],

THEOREM 3.1. Let 7(3), M*, and N* be such that the assumptions Al through A4
are satisfied for some finite K, A, and L. Then, if d(S) < hy for all S € h(0Q),
where hy = hy(2) € (0, 1), we have

inf sup ?B(“a VDR 4’)
(“"P)EM’.XN" (u,q;)EM"xN" "(u’ ‘P)"v"”(v’ 4’)"7"

where C depends on v, K, A, and L.

>C >0,

4. The Finite Element Subspaces. We will now introduce partitionings and
subspaces, which meet with the assumptions of Section 3. First, a family of
triangulations of € is introduced. To this end, let 8 € R’ be given so that
0< B <Li=l, , I, and assume that for each b, 0 < h < 1, wearegivena
collection frB(SZ) of open, disjoint subsets of £, such that U ref*(n) = Q and so
that each T € 7;(9) is either a triangle or a triangle with one or two curved sides
on 9. We will further assume that for some positive constant ¢, the following
conditions hold for all A € (0, 1).

B.() Each T € 74 () contains a sphere of radius p > ed(T).

(T €r}@andz, & T,i=1,...,1I then

ehmax @g(x) < d(T) <eln min @g(x).
x€T x€T

(iii) If 7 € 72(Q) and z; € T, then

ehmax @g(x) < d(T) < e'hmax @g(x).
xeT xe€T

Here g refers to (2.1).

For a polygonal domain, triangulations of the above type were discussed
previously in [4]. We cite from [4] that the number of triangles in a triangulation
74(R) is bounded by Ch~2, where C depends on Q and ¢, and B. We also point out
the following implication of B(iii):

(4.1) T € 1}(Q) &z, € T=d(T) < Ch/0~5),

To each 7 (Q) we associate the finite element spaces Mp w k=12 ..., defined
as subspaces of H'(Q) such that if u € Mg, and T € 15(Q), t.hen ur is a
polynomial of degree at most k.

We let 7J(3Q) denote the boundary partitioning induced by 72(Q), i.e., 72(3Q)
consists of the sides on 32 of the triangles in 74(2). We associate to 74(3%) the
subspaces Né',k C L,(3RQ), k = 1, 2, . ... First, assuming the notation

(42) 1509 ={T,,cd T, =J(L,).i=1....Li=1,...,m},
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where J; is as in (2.1) and
43) L;=(4pt); O0=g<ti<--- <t =1,
let N;'k’,., 1 <i < I, denote the maximal subspace of CY0, 1] such that if ¢ €
Nik,;, then (i) if Kk =1, then by, is a constant for j=1 and j=m, and a
polynomial of degree unity for 1< Jj<m —1; (i) if k> 2, then s, is a
polynomial of degree k — 1 for 1 < j < m;. Then define

Niw = {¥ € L,(09); 6(0) = WD) € Njypi=1,....1}.

In order to verify the assumptions Al through A4 for the above subspaces and
partitionings, set M* = M},, N" = Nj,, and 7"(3Q) = (3T N 3Q, T € 13(Q), T
has at least one side on 32}. First, we easily conclude from B(ii) that, if S € 74(3Q)
and C c R?is any disc of radius p < Kd(S) containing S, then the number of the
sets §; € 7%(9Q) that intersect C is bounded by CK, where, if A is small enough
(depending on ), C depends only on 8 and . In view of this, there exists for any
given B, ¢, K, a finite L such that Al is satisfied for all h € (0, hy), hy = hy(R) €
©, 1).

The verification of A2 is also easy: using B(ii) and (iii), a simple calculation
shows that A2 is satisfied if K is large enough (depending on B, ) and

To verify A3, let S € r*(32) be given and let S, € 7#(3R) be a subset adjacent to
S on Q. Then there exists a nonnegative function ¢ € N* such that supp{s)
CS,U S. By a scaling argument, we have the inequality |f,q ¢ ds|> >
Cd(S){4q ¢* ds, where C > 0 depends on k and on the constant K in A2. Hence,
A3 is satisfied.

We come finally to the assumption A4.

LeMMA 4.1. Let B € R' be such that 0 < B, < 1,i=1,..., 1. Then there exist
finite K and L depending on € and B such that M* = M}, and N* = N, satisfy A4
Jor all h € (0, hy), hy = ho(R2) € (0, 1).

Proof. We define first a linear mapping U: N* — M"*. To this end, let y € N* be
given and let us associate to each T € 'r;(ﬂ) a polynomial p,; = p(¢) (on R?) such
that
(4.4) (W)(x) = pr(x), xETE fr;(ﬂ).

We now define the polynomials p,. First, consider a triangle T € 1-;(9) which has

a side S on 0Q. We choose a cartesian coordinate system {x,, x,} so that S has the
parametrization

(45) S = {(x1, x2); x, = F(xy), x, € (0, d)},
where F is a smooth function satisfying
(4.6) F(0) = F(d) =0, |F(x,)|+ d|F'(x))| < Cd? x,€(0,d),

with C independent of S. Now if S does not touch a corner of 0%, we require that
pr = p(x,, x,) satisfies
pr(id/k, 0) = Y(id/k, F(id/k)), i=0,...,k.
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In the remaining cases, i.e., one endpoint of S is a corner of 9%, we choose the
coordinates in (4.5) so that the corner is at (0, 0), and set

p:(0,0) =0, p.(id/k,0) = (i/k)(id/k, F(id/k)), i=1,..., k.

Consider now an arbitrary T € ";(Q)' Recall (cf. [7]) that any polynomial of
degree < k on R? is defined uniquely by its values on a set o, given by

3 3
or={—llc-2 viaz v, €{0,1,...,k}, > v,.=k},

i=1 i=1
where g; are the vertices of T. Now, if T has a side on dQ and if x € oy is located
on the line joining the two vertices of T on 0%, then we define p,(x) as above. At
the remaining points x € o, we set pr(x) = 0. Then each p; is uniquely defined.
Moreover, it is easy to see that the mapping U defined by (4.4) is linear and into
Mk,

We establish next some inequalities for the mapping U. Let y € N* be given, let
T € r;(ﬂ) have a side S on 92, parametrized as in (4.5)—(4.6), and let ¢(x) = Y(x),
x € S, if § does not touch a corner of £, or ¢(x) = ¢(x,, X)) = (x,/dW(x,, x,),
x € S, if (0, 0) is a corner of €.

Let us first note that, by (4.6),

f “TUw(x,, 0) — Us(x,, F(x)) ] dx,
4.7) 2
-/ ‘ ) oD 8 ixy x,) dxy | dx, < Ca? [1v g ax.
o|J 0x, T

Also, since Uy/(x,, 0) is the Lagrange interpolant of ¢(x,, F(x,)),

j;d[ Ud(x,, 0) — o(x,, F(xl))]2 dx,

(4.8) d

k+1 2
< Cd2k+2fd[(.‘7x_l) ¢(x|, F(xn))] dx, < Cldzj:S~ 4,2 ds.

0

Here the last inequality follows from an inverse inequality for the space N*. (Recall
that y comes from a polynomial of degree < k — 1 if S touches a corner of Q, and
from a polynomial of degree < k otherwise.)

Using (4.7) and (4.8) we obtain

J(vv - ow ds‘ =‘ [T - o) P02 dx.‘

=M>d[ U(x,, F(x1) = Ub(x,, 0) J9(xy, F(xl))%' “
+j;d[ U‘I’(Xl, 0) - ¢(x|, F(x,))]\l/(xl’ F(X,))%] dx||

1/2 1/2
<Cd{fT|VU¢|2dx} {fs;pzds] +Cdfs¢2ds.

On the other hand, by the equivalence of norms in a finite-dimensional space, we
have

j;v.pxpds)Cfs\pzds
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for d sufficiently small. Combining the last two inequalities we obtain, for d small
enough,

[(ypas>cf yras - c,d2f|vu¢|2dx.
S S T
Now, if S is the only side of T on 0%, then B(i) and (4.8) imply that
d
d(T) [ |VUyPdx < C [ [UW(x,, 0)]P dx, < C, [ ¢?ds,
(T) [ |V U4 dx < C [ “[U(x, 0T dy < C, [ W

where C, depends on k and &. More generally, if T € 'rﬁ','(ﬂ) is a triangle that
touches 02, we conclude from a similar argument that

d(T)fTw UY? dx < cfs(u.p)’ ds < c,fs.pz ds,

where S = 0T N 92 if T has one or two sides on 0%, and otherwise S = S, U S,,
where S; € 7%(dQ) are such that S, N S, is a vertex of T. Combining these
inequalities, we see that

fs(Uw)m > (C- C,h)j;xpzds > szs‘l’zd‘,

h small enough, S = 3T N 2 € 7*(3Q), y € N*.

(4.9)

Also, since Uy = 0 if T does not touch 92, we obtain

JIvwPax<c 3 ds) [ (W) e
Q N

S e7h(39)

<¢, S dis)! fs Y2 ds.

S erh(3Q)

(4.10)

Using (4.9) and (4.10), it is now easy to complete the proof of Lemma 4.1. First,
introduce a basis {y;} of N* such that A4(i) is satisfied for some finite L. Such a
basis is easily formed from locally supported functions. We then define the set
{yyc M k so that v; = Uy;, where U is the linear mapping constructed above. The
validity of A4(ii) is then clear, and the inequalities in A4(iv) and (v) are easily
proved using scaling arguments and (4.9) and (4.10). [J

We conclude this section by stating a convergence result for the Lagrange
multiplier method (1.4) when M"* = M}, N* = N,. We need the following result.

LemMA 4.2. Let 74(3Q) = (Sy,...,S,) and let r > —3. Then if h € (0, hy),
hy = () € (0, 1), and ¢€N£k or \I/EM;k'aﬂ, 0< B, <1, i=1,...,1 there
exist the positive constants C, and C, depending on k, € and rf3 such that

c,hz'faﬂ Qi ds< D d(sj)"fs Y2 ds < czhszasz o3y ds.
J

Jj=1

Proof. If S_; does not contain any of the corners of 92, then B(i) and B(ii) imply
that, if & is small enough and y € L,(0%2), then

2r 2r)2 2r 2 2r 2r2
(4.11) Ch fsj<pﬁ¢ ds < d(S)) fs,"’ ds < C,h fsjqo,,¢ ds,
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where C; and C, depend on ¢. Assume then that z; € §;, 1 <i < I. Using the fact
that

ri 1 1
C,| tp*dr < 2dt < C,| tpdt
1 fo ‘r ](; P 2 fo °r
for @ > -1 and for any polynomial p of degree k, with C, and C, depending on a

and k, we conclude by scaling that if y € Ng, or ¢ € Mg, 5q and h is sufficiently
small, then

Cid($) [ Ix =zl ds

2 -a _ 2 _
<fsj¢ ds < C,d(S)) lex Z|Nds, a> -l

Choosing a = 2rf; and noting that, by B(i) and (4.1),
Cthr < d(sj)Z’(l_Bi) < Cthr,

we again obtain (4.11), with C; and C, now depending on &, rS; and k.
Since (4.11) holds for all §; € 1;(39), the assertion follows by summing over

J- Qd
We note that, by Lemma 2.4 and Lemma 2.1, we have the inequality

fa ) @' ds < Cllullypg, € H\Q).
In view of this, if we define
2 — 1,12 -1 -1.2 2
1o Wi = [1D 'l dx + 17 [ gz ds+ h[ gpy?as,

then || - ||z, is a norm in the space H'() X W%6/%(3Q). We denote the normed
space (H '(2) X WOP/X@Q), || - [|5,) by Xp .

Let the bilinear form % be as in (3.1). We replace from here on the weak
formulation (1.2) by the following more convenient variational problem:

(412) (4 4) € Xpy: Buvi0,0) = [ fods+ [ gods,  (0,4) € Xpy

In the sequel it is of importance that (4.12) is solvable under weaker assumptions
on f and g than (1.2). From (3.1) one concludes immediately that the bilinear form
B is bounded on Xj, X Xp,,:

(4.13) |B (4, 5 v, &)| < [I(u, )l gall (0, Yl g
Moreover, by Theorem 3.1 and Lemma 4.2,

(4.14) inf sup Bludivg o5
(u9) € MA i X Nj, (0.4) E ME, X Nbs "(u’ ‘P)”ﬁ,h"(v’ ‘p)llﬁ,h

From (1.4) and (4.12) through (4.14) we conclude, by classical arguments (see [3]),
the following result:

THEOREM 4.1. Assume that problem (4.11) has a solution (u,y) € H'(Q) X
wWoB23Q),0< B, < 1,i=1,..., 1 Then, if (u, {,) is the solution of (1.4) with
M" = M}, N" = N}, h € (0, hy), hy = ho(Q) € (0, 1), we have the error estimate

I(u, ) = (s, ¥1)llgs < € min . I(u, ¥) — (0, D)l g o

(0.8)MJ X Nj,

where C depends on B, k and e.
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5. Rate of Convergence. We state first some lemmas which pertain to the
approximation properties of polynomials in weighted Sobolev spaces. In what
follows, T denotes a triangle with vertices at (0, 0), (1, 0) and (O, 1).

Our first lemma is from [4].

LEMMA 5.1. Let a # 0 and let u be defined on T such that [|x|*|D'ul* dx < co.
Then there exists a constant q, depending on u and o, and a constant C > 0,
depending on a, such that

(5.1) flx|"‘_2|u — gl dx < Cf |x|%| D 'uf? dx.
T T

LEMMA 5.2. Let k be an integer,k > 1,a € R, a & {0,2,...,2k — 2}, and let
u be defined on T such that {1|x|*|D*ul*> dx < . Then there exists a polynomial p of
degree k — 1 and a constant C, depending on a, k, such that

(52) 3 J Xl = p)F dx < C [ x| DMl dx

Jj=0
Proof. We first apply Lemma 5.1 to find constants ¢;;, i + j = k — 1, such that

k-1
[t 0 u _ dx<cf|x|°|p ul? dx
T 0x;0x4

Then define
q.. i
Pk—l(x) = 2 ~|‘~]' XIXé.
i+jmk—11J?

Let w,_, = u — p;_,, and apply again Lemma 5.1 to find constants g;,, i +j =
k — 2, such that

2
9k 2u
f| |- 4( — I__qu) dx<Cf|x|"‘ 2le Iy -1|2

Further, define w, _, = w,_, — p,_,, where

i i
Di_r = —= x{x3.
ke T
Continuing in this way, one finally finds the homogeneous polynomials p; of degree
J» 0<j <k —1, such that if y = 2,_,p, for 0<j<k-—1, and 4, = u,
then

fT'x|a+2j—2k|Djuj|2 dx

< CfT|x|"+2f+2‘2"|Df“uj+,|2 dx, j=0,...,k—1

Noting that D/u; = D’uq, the assertion follows by taking p = ep. O

Let 3, denote the set of nodal points on T associated to a reference Lagrange
element of degree k, k > 1 (cf. [7]). For a continuous function u, defined on T, we
let (1), denote the kth order Lagrange interpolant to u, i.e., (4), is a polynomial of
degree k such that (u),(x) = u(x) for x € 3,. We have

LEMMA 5.3. Let k > 2, let 2k — 4 < a < 2k — 2, and let u be defined on T such
that [;|x|*|D*ul* dx < co. Then (5.2) holds for a polynomial p = (u),.
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Proof. Let p be the polynomial of Lemma 5.2. Then we have

(5-3) (u) = (u—ph +p.
From Lemma 2.2 and from (5.2), we have

= )P < Cf |xFIDMuf dx,  x€ET,

(v — p)(0) =
Then also (¥ — p),(0) = 0, so we have

(5.4)

k-1
D f|x|"+2’“2"|D’(u —pPhlPdx <0, a>2k -4
1=0YT

Further, by the definition of the interpolant and by (5.4),

> f | [+ 4| D/(u — p)if* dx
=0
(5.5)

<C 3 = pEF < Cf 51Dk

xEZ,
The assertion now follows by combining (5.3), (5.5), and (5.2) and using the
triangle inequality. []
Using the above results we now prove the first approximation theorem.

THEOREM 5.1. Let k > 1, and let B € R! be such that 0 < B<lLi=1...,1I
Further, let u be defined on  such that [q @3*|D**'u* dx < co. Then, if h € (0, hy),
hy = hy(R) € (0, 1), there exists a constant C, depending on k, B, ¢, such that

{f|D‘(u —v)Pdx + h~ f @p'|lu — of* ds }
MEMﬂk

< Cthjs; ‘p;lek+lu|2 dx

Proof. We begin by introducing an interpolant of u. Let T be the reference
triangle as above. Then, if 7, € -r;(ﬂ), we can write

(5.6) T=(G *A4)T), T, €159),

where 4; is an affine transformation which maps the corners of 7; onto those of T,
and G; is a smooth transformation which straightens the curved sides (if any) of
A; (T) If T contains a corner z; of 3{, then we assume 4; to be chosen so that
A(z) = {0).

With the nodal set 3, defined as above, let 3, = (G, ° 4,)"'(Z,), and define v’ as
the polynomial of degree k on 7; such that «/(x) = u(x) for x € ;. Since the sides
of the triangles T, € 77(2) become straight in the limit 4 — 0, we see that, if 4 is
sufficiently small, then « is uniquely defined for all T; € 75(Q). We let ug, € Mg,
denote the interpolant defined as

ug(x) = w(x), x €T, €pQ).

We will first prove that, under the assumptions made,

(5.7) fﬂ |D"(u — u}, ) dx < Ch* fn @2 D**ul? dx
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Let T, € 'r;(ﬂ) be a triangle which does not touch any of the corners of 9Q2. Then
we have the classical result

fT|D‘(u — WP dx < Cd(7;.)2"fT|D"+'u|2 dx,

where C depends only on & and ¢ for 4 sufficiently small. Using B(ii), this can be
further written as

(5.8) f |D\(u — w)P dx < Chz"f 92| D**uf? dx.
T )

We show next that (5.8) also holds when f/ contains a corner z; of 3Q2. We note first
that Lemma 5.1 holds also when T is replaced by 4/(7)), 4; as in (5.6), provided
that A is small enough. Moreover, the constant C in (5.1) does not depend on ;.
This follows, since A(T) = Gj"(T), and the Jacobian of Gj" tends to unity
uniformly in j as A — 0. Then Lemma 5.2 holds also when T is replaced by 4,(T)),
and so does Lemma 5.3, if =, is replaced by Gj"(Ek) in the definition of the
interpolant (u),.

Now choose any a € R' so that 2k — 2 < a < 2k, a > 2kp,. Then, using the
above modifications in Lemma 5.3, we conclude that, if d(x) = u(4;"(x)), #(x) =
w/(A7\(x)), x € A(T)), then

[ Ixl¥pMa @) dx < |xl*|D**ap dx.
A4(T) 4(T)
This inequality is invariant in scaling. Therefore, and taking into account the

assumption B(i), the affine transformation Aj" can only introduce a dependence on
¢ in the constant C. Thus, we have

(5.9) f Ix — zJ*~%*|DV(u — W) dx < cf |x — 2| D** uf? dx,
7, 7

where C depends on k, a, e. Using (4.1), we have here the further estimates
|x — Z,-[“_zk > Ch(a—Zk)/(l-ﬁ,-)’
|x — z,]* < C[(pp(x)]zkh("—z"m/('_B'), xE€T,C>0.

Together with (5.9), these prove (5.8).

Having verified that (5.8) holds for all T, € T;(Q), it suffices to sum over j to
prove (5.7).

We prove next the estimate

5.10 h! MNu — ul |* ds < Ch* 2k| DR+ 12 dx.
(5.10) J,_ @il = il J_eIpt
Let T, € -r;(ﬂ) be a triangle such that 7} has a curved side S; on 9%, and let & and

# be defined on A(T) = Gj“'( T) as above. Assume first that S; does not touch any
of the corners of d€2. Then we start from the inequality

li — & ds < Cllii —# |} umy < Ci | D**'a|? dx,
fA,(sj) D fA,-(n)
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where C, depends only on k and ¢ for h sufficiently small. Applying to this the
affine transformation Aj", one gets

-1 T 2k k+1,12
d(T,) j;j|u W[ ds < Cd(T)) ijlD ul? dx,
and further, using B(ii),

5.11 W @p'lu — WP ds < Ch* | @2*|D**+'u|? dx.
(5.11) [Sjm | frjm |

If z, €S

j ’
inequality

f lxla—Zk—lla —1'4'j|2ds
A4(S)

we take a € (2k — 2, 2k), a > 2kp;, and derive first from (2.6) the

<cf  {Ix* % — @ + |x|*7*|D @ — @)} dx.
4,(T)

Applying on the right side the same reasoning as above and performing the affine
transformation 4", we conclude that

[|x — %y — WP ds < cf Ix — 2| D**+'uf? dx.
5 T

Since, by (4.1),
|x — z|* %1 > Cpla—k-1+B)/ =R g (x)],
|x — z|* < Ch(a—ZkB.)/(l—B;)[%(x)]z"’
2kB; <a < 2k,x € S, C >0,

we again obtain the estimate (5.11).

Upon summing over j in (5.11), the estimate (5.10) follows. Finally, combining
(5.7) and (5.10), the proof of Theorem 5.1 is complete. []

The second approximation theorem is as follows.

THEOREM 5.2. Let k > 1,and let B € R be such that 0 < B; < 1,i=1,...,1I
Then, if u € W V' 3(Q) and  is defined by (1.3), there exists a constant C,
depending on k, B, ¢ and Q, such that

min. ([ waly = v ds} < CH™ s

Proof. Consider first a function ¢ defined on 9$ and sufficiently smooth on each
I,i=1...,1 We use the notation of (4.2) and (4.3) to define an interpolant of
¥ in Ng,. First, let () = Y(J()), t €0, 1), i = 1,..., I, and let y;; denote the
interpolant of ¥, in the partitioning {Ij‘o};"'_,, defined so that (i) if 2 < j < m; — 1,
then y; ;s equals the Lagrange interpolant of y; of degree max{1, k — 1} on Ij‘, and
(@) if j = 1 or j = m,, then y; ;.. is defined as a polynomial of degree k — 1 such
that

(¥ = ) —0) =0,
(WD =¥t +0)=0, I=0,...,k—1.

(5.12)
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We let y7, be a function defined on 9 such that

Yo(x) =¥, (J7(x), x€T,i=1,...,1I
It is clear from the definition of Ng, that Yz, € N;,.We will establish first the
interpolation error estimates

(5.13) hj eald = Va2 ds < CH** [y 3pmce+ 1m0y,
5.1

Y E WHEHI/DBRO) k= 1,2,....
To prove (5.13), let » = »(i) and p = p(i) be as in (2.4). Then B(ii) implies the
inequalities
CA(l - 0 <d(I) < CP(1 -0, telj=2,...,m-1,
where C, and C, depend only on &. Combining these with the classical estimates of
the error of Lagrange interpolation we get
B A= Pl — gl e
lji

(5.14)
< Cpkr [ (@R OR(] - PR OR g =2, m - L,
Ijl

Let us now show that (5.14) also holds for j = 1 and j = m,. We need the following
consequence of Hardy’s inequality [8]: Let a > 0, k > 0, and let f be defined on
0, 1) so that f}r2*%|f®2dt < o0, and so that fO(1)=0, /=0,..., k-1
Then

(5.15) [lerra < cf e opa,
0 0

where C depends only on k.
Since (5.15) is invariant in scaling, we conclude from (5.12) and (5.15) that

[ 8= 0Py, = il
lj‘

(5.16)
<Cf 1= OBTRYOR, € (1,m).

On the other hand, B(iii) implies that
t<ChV/U-B) el
and
1-t<Ch/0-B)  tel.
Using these estimates in (5.16), it follows that (5.14) holds also for j =1 and
J = m. It then suffices to sum over i and j to prove (5.13).
In view of (5.13), the following estimates hold:

min {4[ ol - of o)

$ENS,

< Ch2k+l||ll/|| 3yk.(k+l/2)ﬂ(aﬂ), Y E Wk’(k+l/z)ﬁ(aﬂ)

< Chzk_l"\ll" ;zyk—l»(k-'/z)ﬂ(an), ‘P e Wk-l.(k—l/z)ﬂ(aﬂ)’
k=12 ....
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Here the second estimate is trivial if K = 1, and for k > 1 it follows from (5.13)
and from the inclusionNg, _, C N,. Upon interpolating between these estimates
and using Lemma 2.3, we have

min {4 oply - of |
(5.17) ¢e~;ﬁ[ faa ?
< Ch*| W\ La-rnmsgy € WETVPRB@RQ), k=1,2,.. ..
To complete the proof, take ¢ in (5.17) to be defined by (1.3), with u €
wk*1kB(Q). Since n, in (1.3) are smooth functions on each arc I';, i=1,..., I,

and since the operator of multiplication by a smooth function is bounded in the
weighted Sobolev spaces considered, we conclude from Lemma 2.4 that y satisfies

W1l we-r2unagy < Cllull s reogay.

Upon combining this with (5.17), the proof is complete. []
Using the above approximation results, we can now estimate the error of the
Lagrange multiplier method in terms of weighted norms.

THEOREM 5.3. Let B € R’ be such that B, >0, 1 >8> 1 —n/wk, i=
1,..., 1. Further, let u be the solution of problem (1.1) with f=fi + f,, fi €
H*"\Q), f, € W* " (Q) and g = g, + gy, 8 € H**'Q), g, € W**'*3(Q), and
let  be defined by (1.3). Then, if h € (0, hy), hy = hy(Q) € (0, 1), and M* = Mﬁ',"k,
N' = N;k, (1.4) has a unique solution (w,,,), and there exists a constant C,
depending on k, B3, € and Q, such that

f (p§2|u — w2 dx + h2f|D'(u — u,)|? dx
Q

thf o'l —wfds+ 1 [ gy -l as

2
< Cth+2{||f1||121*-'(n) + | foll fe-raaey + 1| &4ll eorcay + ||82“v2V**'-*ﬁ(sz)} .

Proof. Given k and B, which satisfy the assumptions of the theorem, we have, by
Theorem 2.1,
u=u +u, u €H*(Q),u, € Wkt (Q),
(5.18) ”ullllzi"”(ﬂ) + (|| Fesracey
< C{IAN Ay + LAl Ge-eo@y + 1| 8ill rvray + [l 82ll Besrungy }-
Also, by (1.3) and Lemma 2.4 and by the trace properties of functions in Sobolev
spaces H™(), ¢ satisfies

Y=+ § € H3Q), 4, € WETI/24E(30),
(5.19)

Wl Zre-vaaqy + 11l e-1/2unagy < C{”“l”%{**'(a) + [yl %/**W(n)}

From (5.19) and (2.5), we conclude that y, € WO*E-&-1/293Q)  Since y, €
L) and0< B < 1,i=1,...,1, itfollows that y € W*F/%(3Q). Hence, (u, })
is the solution of problem (4.11), and the error bound of Theorem 4.1 applies to the
Lagrange multiplier method.
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By Theorems 5.1 and 5.2, we have
{f|D'(u —o)[*dx + h! e |u — o) ds }

OEMﬂJ‘

(520
< Ch* | @f*|D**'uf? dx
L‘Pp | |

and
(521) in {5 0plts = 9P | < CH¥ il evsmca,

¢€ Nﬂ,k
Also, using the same type of reasoning as in the proof of Theorem 5.2, one gets
(4] ol - o as)
¢EN§',k
(5.22)

< min [ vy~ o ds} < CH*IMIEmc0r
¢EN£J‘ a0

We finally estimate fo s°lu — u,|° dx using a duality argument. Consider the
auxiliary problem

AV = @i (u—w), x€Q,
V=0, x € 909,
the solution of which satisfies [8]
vV e wr(Q);
(5.23) 1/2
IVl w2y < C”‘PEZ(“ = )| wor@y = C{fﬂ‘?ﬁzh‘ — d"] .
By Lemma 2.4, if we define & = -9V /0n, x € 9%, then
(5:24) IZ1 wrr2s0) < CIV || wascay

By (2.5) and (5.24), we have = € W'/28-9/2(3Q), so = € W*#/%(3Q). Noting also
that, by Lemma 2.1,

j{;‘PEZ(“ — w,)v dx < Cllu — wl yr@)lloll iy v € H'(Q),

we see that the auxiliary problem admits the variational formulation

(5.25) (V, ) € H'(Q) x W°/*(3Q):

Bo, 9 ¥, 2) = [ g(u — w)odx V(v ¢) € H(@) x WOA/(30),
Q

where the bilinear form 9 is defined by (3.1).
By the same reasoning as above, we get, from (5.24) and (5.25), that

5.26 min V02—, < Ch[ o2lu— ul?dx
(326) (v,¢)EM,§"k><N;*{”( ®)l%4} fn% | A

Then, since (1.4), (5.25), and (4.13) imply that
[, ol = il dx = B~ oy~ i V = 0.5~ 9)

< (u = wp & — Yllgall(V — 0, Z = d)llg, V(v ¢) € M;;',k X N;,k’

(5.27)
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we obtain by combining (5.26) and (5.27) the estimate

(5.28) fﬂ @5lu — w2 dx < CRYI(u = w0 — U3

The asserted error bound now follows from the estimates (5.18) through (5.22),
(5.28), and from Theorem 4.1. [
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