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The Finite Element Method With Lagrange

Multipliers for Domains With Corners*

By Juhani Pitkäranta

Abstract. We study the convergence of the finite element method with Lagrange multipliers

for approximately solving the Dirichlet problem for a second-order elliptic equation in a

plane domain with piecewise smooth boundary. Assuming mesh refinements around the

corners, we construct families of boundary subspaces that are compatible with triangular

Lagrange elements in the interior, and we carry out the error analysis of the resulting

approximations in weighted Sobolev spaces.

1. Introduction. We consider the model problem

-A»-/   in*

u = g   on ail,

where ß c R2 is a bounded domain with piecewise smooth boundary 3ß, and /

and g are given functions defined on ß. Under sufficient regularity hypotheses on/

and g, problem (1.1) admits the following weak formulation: Find a pair (u, \p),

u E H '(ß), i// e L2(3ß), such that

[ IL -T~-T- dx + f   vxpdx + f   u$ds
,.y.      •/S2,_l   °X¡   OX¡ Jaa Jfâ

= f fvdx + f   g<t>ds   for all (v, </>) e H '(ß) X L2(3ß).

For/, g smooth enough, (1.2) has a unique solution (u, \p) such that « is the weak

solution of (1.1) and ^ is defined as

,, .. 3m 3m 3m ._
(1.3) ^ = __ = _w__„2_)       xedfi,

where n(x) = (nx(x), n2(x)) denotes the unit outward normal vector of 3ß at x.

In the Lagrange multiplier method [2] for approximately solving (1.2) one

introduces the finite-dimensional subspaces Mh c Hl{&) and Nh c L2(dil) and

defines the approximate solution as the pair (uh, \ph) E Mh X Nh which satisfies

2

í  2^7 37^ + i   «***+/  «„*ds
.   A.    Ja , = i ox, dx, Jda Jaa

(1.4)

= ( fvdx + f   g<j>ds   for all (t>, <») G Mh X Nh
Ja Jdü
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Finite element methods based on (1.4) have the benefit that they do not require the

fulfillment of the Dirichlet boundary condition in the subspaces. The stability and

convergence of such approximations was studied first in [2] (see also [3]). For an

abstract Lagrange multiplier method, necessary and sufficient conditions for stabil-

ity are given in [6].

The actual verification of stability and the construction of the subspaces was

considered by the author in [9] for quasi-uniform finite element meshes and in [10]

in a more general situation. In [10] a number of local conditions were stated that

yield the uniform stability of the Lagrange multiplier method in weighted norms

depending on the finite element partitioning of the boundary.

In the present paper we proceed from the ideas of [10] and [4]. We consider the

situation where graded meshes are used to handle the singularities arising from the

corners of 3ß. Assuming mesh refinements of the same type as those considered in

[4] for polygonal domains, we construct finite element subspaces that meet with the

stability conditions of [10]. We then derive error estimates for the resulting

approximations in weighted Sobolev spaces.

The plan of the paper is as follows. In Section 2 we state the basic assumptions

and give some properties of weighted Sobolev spaces that are needed in the paper.

In Section 3 the stability conditions are restated from [10]. A family of finite

element subspaces is introduced in Section 4 and the validity of the stability

conditions is verified. Finally, in Section 5, the approximability properties of the

subspaces in weighted Sobolev spaces are studied, and a weighted convergence

result is derived for the approximate solution.

2. Preliminaries. We consider a bounded, simply connected domain ß c R2,

whose boundary 3ß consists of a finite number of smooth closed arcs T¡, i =

1, . . . , I, defined in terms of the smooth mappings /, = (JiX, Ji¡2) such that

r,. = {(/,,(/), /,2(r)), tE [o,i]},

[j;A(t)}2+[J\,2(t)}2 > c > q,  re[o, i].

We will denote the corners, i.e., the endpoints of the arcs T¡, by z„ / = 1, . . . , /,

numbered in any order. The asymptotic opening angles of the corners into the

interior of ß are denoted by <o,. We assume that 0 < w, < 2m, i = !,...,!, i.e., we

exclude needles but include slits.

For m(x) defined on ß, let Dku denote the field of all partial derivatives of u of

order k. Then the Sobolev space Hm(il), m > 0, is defined as usual, with the norm

m    r

ll"ll™= 2   \\Dku\2dx.
k-oJa

In what follows, we use the notation

(2.2) Vßix) = II |x - z,|A        ß = (ßx,...,ßI)ERI,

and 9 = (1, 1, . . . , 1) E R'. For ß E Rl and m > 0 given, we let Wm-ß(ü) denote

the weighted Sobolev space of functions m, defined on ß, such that

m    C

HkIIíUmd-  2   ¡<Pß+{k-m)0\Dku\2dx< co.
k=oJn
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We state below some inequalities to be needed later on.

Lemma 2.1. If ß E R1 is such that 0 < ß < 1, i = I, . . ., I, and u E Hl(il),

then

j  <pß2u2 dx < C||u||¿.(a),

where C depends on ß and il.

Proof. Let x,,a be a smooth function defined on ß such that x/,«(■*) — 1 f°r

|x - z¡\ < 8 and x¡,s(x) — 0 for |x — z,| > 25. Then, if 8 is sufficiently small, a

modification of Hardy's inequality gives (see [8]):

f\x- ¿,r(x,,fi")2 dx<c[\x- Zi\a+2\D\Xi^)\2 dx,       a > -2.

Taking a = -2/?,, summing over i and using the triangle inequality, the assertion

follows after a simple computation.    □

Lemma 2.2. If ß E R' is such that /?, < 1 for some i E (1, . . . , /}, then any

u E W2'ß(Ü) satisfies

\u(x)\ < C||m|| w^Q),       \x - Zj\ >8> 0,j * i,

where C depends on il and 8. Moreover, u(z¡) = 0.

Proof. See [4]. This result is also implicit in [8].

Consider next functions defined on 3ß. We say \p E Hm(dil), m > 0, if

/

ll*ii*-0O)= 2 iMitf-w) < °°>

where ^¡(t) = 4>(J¡(t)), t E (0, 1), i = 1, . . . , /. Similarly, x¡, E //m+1/2(3ß), m > 0,

if

/
ll*ll*~'/>00> = 2 (ll«M¿-(o,i> + l^m)|2/2) < °°,

i = i
where

(2.3) |</>|2/2 = /   /   ±—-—i- dt df.
J0 Jo       (t - t'y

We note that /Ym+,/2(3ß) can be defined equivalently as the interpolation space [5]

#m+1/2(3ß) = [//m(3ß), //m+1(3ß)]1/22.

To define weighted Sobolev spaces for functions on 3ß, let v = v(i) and u = u(/)

be integers such that

(2-4) 7,(0) = z„       /,(1) = v

With ß E R1 and m > 0, we define ifm'^(ß) as the space of functions \p such that

/

11*11 *-*0O) =   2   ll*,«^,  <  «,
l-I

where

ll*lí
m .

** = 2 r v-"+y(i - /^--^yw*.
y-O-'O
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Further, we let Wm+l/2'ß(dil) denote the space with the norm

/

(2.5) ||*|| fy..,,^) = 11*11 w-*-"H¡>a> + 2 l'*0 - O**}"0!./*
( = i

where | • |1/2 is defined by (2.3). The following interpolation result is obtained from

[11].

Lemma 2.3. If m > 0 and ß =\(ßx + ß^, then

W""+'/2^(3ß) =[ Wm-ß'(dil), Wm+l-ßidil)]x/2a.

In Section 5 we need the following trace inequality:

Lemma 2.4. IfuE Wm'ß(il), m > 1, then

llM|3allw""-^2-*(3S2) < CIMIw-Aa)-

Proof. In [8] it is proven that if u E Whß(il), then

(2-6) ll"|8i2llfrft«-»/2OÖ)  < CIMIw'AB)-

From this it is easily concluded that, if u E Wm'ß(ü), m > 1, then

(2.7) \\u\Ba\\w"-^-'^(3a) < C|lMll»""Aß)-

Now let Dm_xu be any partial derivative of « of order m — 1, and let \p¡(t) =

(A»-i«0W)),'- 1,...,/-Then

(2.8) 2 l'Ä0 - ONilî/a < C\\<pßDm_xUpa\\2HvKm.
i = i

Using the trace properties of Sobolev spaces Hm(ü) (cf. [1]) the right side can here

be further estimated as

(2-9) ll«P/ä^m-iM|3nll/f'/^3B) < C\\tpßDm_xu\\Hi(a).

The asserted inequahty now follows by comparing (2.5) with (2.7) through (2.9) and

noting that

II<P/»A»-i"IIj/'<b) < CIImII^-.^).   D

We state finally a regularity result for the solution of problem (1.1). For the proof,

see [8].

Theorem 2.1. Let m > 2 and let ß E R1 be such that ßi > 0, m - 1 > ßl > m -

1 — 7t/w„ i = 1, . . . , I. Further, let f and g in (1.1) be such that f= /, 4- f2,

/, E Hm-\il),f2 E Wm-2'ßiil), andg = gx + g2,gx E ttm(ß),g2 E Wm<ßiil). Then

problem (1.1) has in H\il) a unique weak solution u which satisfies u = ux + u2,

m, E Hm(il), u2 E Wm'ß(il),

II«iIIä-(0) + Il "2II »"-•*(«)

< C{ll/lllw"-2(B) +  ll/2llir»-W(0) +  llglllff-(B) +  ll&llw-W-

3. The Local Stability Conditions. In this section we state a number of conditions

that are sufficient for the uniform stability of the Lagrange multiplier method.

These were stated already in [10], but as they will be referred to in the sequel, we

repeat then here for convenience.

Suppose we are given a partitioning Thiail) of 3ß, consisting of connected

smooth arcs, a finite-dimensional subspace Nh c L2(3ß) associated to r*(3ß) in
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the manner described below, and another finite-dimensional space Mh c H '(ß). If

5 c Ä", we let d(S) denote the diameter of S, and we let K, A, and L be some

fixed positive parameters, with L an integer. Further, we associate to each pan-

ts',, Sj] c TA(3ß) a number ntJ, defined as the minimum number of subsets S E

r*(3ß) that have to be crossed when passing from a point in S¡ to a point of S¡

along 3ß.

In the above notation, the sufficient stability conditions are as follows:

Al. To the partitioning rA(3ß) = {S,, . . ., SA there corresponds a collection

{(2,,. .., G„) of discs Gj c R2, such that, for eachy, the center of Q. is in S¡,

diGj) > SKdiSß, and, for each G E {G¡}, G n Q¡> ¥= 0 for at most L spheres

GjE{Gx,...,Gv}.
A2. For all pairs [S¡, Sj) C t*(9G),

4^ < *0 + rLf.
d(Sj)

A3.  For each  Sj E rA(3ß),  there  exists *, E Nh  such  that  supp{*,} D Sp

d(supp{<t>j}) < Ätf(S}), and

I 2
f   </>, ds    > K~ld(S.) (   tf ds.

Kar! ^ao'3B -/3fi

3 «et r«. vA4. There exists a basis {*,, . . . , xp^} of A/"* and a set {©i, . . . , ü,,} c Mh such

that

(i) For all i, 1 < / < u, if supp{*,} n Sj ¥= 0 and supp{*,} n Sk ¥= 0, Sj, Sk E

Th(dil), then «, ¿ < L.

(ii) For all i, 1 < / < u, u,u,- ̂  0 for at most L functions Vj, 1 < j < ¡i.

(iii) If 5,. E t*(30), then

A, = {i; tfc sé 0 on S,} = {/; e, 2 0 on S}}.

(iv) If Sj E T*(3ß) and u, ^ 0 on S), then

K-'diSj) j \D\\2 dx < Heilig) < /STII*!!2

(v) If * = 2f A*„ ü = 2f ßiVj, ßi ER1, Sj E TA(3ß), and A,, is as in (iii), then

k 2 #ll*,lli2(s,) > ll*llU) > Kl 2 A2ll*llW
ieAj /SA,

* 2 A2lklliM) > ll«lli2(S,) > Kl 2 Ä2ll«%y2w
i'e A, I'eA,

and

[ 4»ds> K-lM\\2L¿Sjy

We state below a consequence of the above assumptions, which will be of basic

importance in what follows. First, let us define on [H\il) X L2(3ß)]2 a bilinear

form <$> as

(3.1) ®(u,*;t>,*)= f 2 TL^Ldx+ [ (W<f> + o*) <fr,
-/S2 / _ 1   OX,   OX, ^3n
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so that (1.4) can be rewritten as

®(iiá, *Ä; v,<¡>) = f fvdx+ f   g<¡>ds,       (o, </>) E Mh X AT*,
•'a Jdii

Further, let us introduce on H '(ß) X L2(3ß) the weighted norm

||(«, t/0112* = i>'«|2 dx + 2 diSjY'f u2ds + 2 diSj)f tf ds,
ß j Sj j Sj

where the sums are over all S, E T^Sß). Then we have, by slightly modifying the

stability result of [10],

Theorem 3.1. Let T*(3ß), Mh, and Nh be such that the assumptions Al through A4

are satisfied for some finite K, A, and L. Then, if d(S) < h0 for all S E TA(3ß),

where h0 = h0(il) E (0, 1), we have

inf su %(«,*; o,»)       >c >0
(M.)<ea/*xJV* („^e^xiv* ll("> MIt'IK»» *)IIt*

where C depends on y, K, A, and L.

4. The Finite Element Subspaces. We will now introduce partitionings and

subspaces, which meet with the assumptions of Section 3. First, a family of

triangulations of ß is introduced. To this end, let ß E R1 be given so that

0 < ßj < 1, i = 1, . . . , I, and assume that for each h, 0 < h < 1, we are given a

collection T^(ß) of open, disjoint subsets of ß, such that U reTi(8) T = ß and so

that each T E rßiil) is either a triangle or a triangle with one or two curved sides

on 3ß. We will further assume that for some positive constant e, the following

conditions hold for all h E (0, 1).

B. (i) Each T E rß(il) contains a sphere of radius p > ed(T).

(ii) If T E T¿(fl) and z, E f, / = 1, . . . , /, then

eAmax <pßix) < d(T) < e'lh min «¡^(x).
x<=T xef

(iii) If T E t¡¡(H) and z, E T, then

eAmax tpß(x) < d(T) < e"'Amax «^(x).
xef xeT

Here qp^ refers to (2.1).

For a polygonal domain,  triangulations of the above type were discussed

previously in [4]. We cite from [4] that the number of triangles in a triangulation

T^(ß) is bounded by Ch'2, where C depends on ß and e, and ß. We also point out

the following implication of B(iii):

(4.1) T E r¡¡(il) & z,. E f => d(T) < Oi1/(1"Ä).

To each ^(ß) we associate the finite element spaces Mßk, k = 1, 2, ... , defined

as subspaces of Hl(il) such that if u E Mßk and T E T^(ß), then u¡T is a

polynomial of degree at most k.

We let r^(3ß) denote the boundary partitioning induced by T^(ß), i.e., T^(3ß)

consists of the sides on 3ß of the triangles in r^(ß). We associate to r^(3ß) the

subspaces Nßk c L2(3ß), k = 1,2,.... First, assuming the notation

(4.2) T¿(8Q) = {T,,. c 3ß; T,., = y,(/,7), i = 1, . . ., IJ = 1, . . ., mt},
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where J, is as in (2.1) and

(4.3) Iij = (tj-i> tj)>       0=r0</(<-- <í; = 1,

let Nßki, 1 < i < /, denote the maximal subspace of C°[0, 1] such that if <f> E

Nßki, then (i) if k = 1, then «fy is a constant for j = 1 and j = m¡ and a

polynomial of degree unity for 2 < j < m¡ - I; (ii) if k > 2, then <p|,. is a

polynomial of degree k — 1 for 1 < j < m(. Then define

JV^ = {* E L2(3ß); m = *(/,(*)) 6 A^y, » - 1./}.

In order to verify the assumptions Al through A4 for the above subspaces and

partitionings, set Mh = M¡¡¿, Nh = N¡¡k, and r*(3ß) = {dT n dil, T E t¡¡(í¡), T

has at least one side on 3ß}. First, we easily conclude from B(ii) that, if S £ r*(3ß)

and G c R2 is any disc of radius p < KdiS) containing S, then the number of the

sets Sj E r*(3ß) that intersect G is bounded by CK, where, if A is small enough

(depending on ß), C depends only on ß and e. In view of this, there exists for any

given ß, e, K, a finite L such that Al is satisfied for all A E (0, A0), A0 = Af/ß) E

(0, 1).
The verification of A2 is also easy: using B(ii) and (iii), a simple calculation

shows that A2 is satisfied if K is large enough (depending on ß, e) and

A
A =     max-jr.

<-i.i i - Pi

To verify A3, let S E T*(3ß) be given and let Sx E r*(3ß) be a subset adjacent to

S on 3ß. Then there exists a nonnegative function <f> E Nh such that supp(<f>)

C Sx u S.   By   a   scaling   argument,   we   have   the   inequality   |/9a <f> ds\2 >

CdiS)faa tf ds, where C > 0 depends on k and on the constant K in A2. Hence,

A3 is satisfied.

We come finally to the assumption A4.

Lemma 4.1. Let ß E R1 be such that 0 < ß < I, i = 1, . . ., I. Then there exist

finite K and L depending on e and ß such that Mh = Mßk and Nh = A^¿ satisfy A4

for all A E (0, A0), A0 = A0(ß) E (0, 1).

Proof. We define first a linear mapping U: Nh -> Af\ To this end, let \p E Nh be

given and let us associate to each T E Tßiil) a polynomialpT = PjX\p) (on R2) such

that

(4.4) (t/*)(x) = PT(x),       xETE t¿ÍO).

We now define the polynomials pT. First, consider a triangle T E Tß(ß) which has

a side 5" on 3ß. We choose a cartesian coordinate system {x,, x2} so that S has the

parametrization

(4.5) S = {(x„ x2); x2 = F(x,), x, E (0, d)),

where F is a smooth function satisfying

(4.6) F(0) = Fid) = 0,    |F(x,)| + d\F\xx)\ < Cd2,   xx E (0, d),

with C independent of S. Now if S does not touch a corner of 3ß, we require that

Pt ~ pAxi, Xj) satisfies

Priid/k, 0) = Mid/k, F(id/k)\       i = 0,...,k.
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In the remaining cases, i.e., one endpoint of S is a corner of 3ß, we choose the

coordinates in (4.5) so that the corner is at (0, 0), and set

pTiO, 0) = 0,   pTiid/k, 0) = ii/k)Ji(id/k, F(id/k)),       i = 1, . . . , k.

Consider now an arbitrary T E rß(ü). Recall (cf. [7]) that any polynomial of

degree < k on R 2 is defined uniquely by its values on a set aT given by

o> =    -?; 2  W ", E (0, 1,. . ., k), 2  v,, = k J,

where a, are the vertices of T. Now, if T has a side on 3ß and if x E aT is located

on the line joining the two vertices of T on 3ß, then we define Pr(x) as above. At

the remaining points x E aT we set Pf(x) = 0. Then each pT is uniquely defined.

Moreover, it is easy to see that the mapping U defined by (4.4) is linear and into

A/\

We establish next some inequalities for the mapping U. Let i^eJV*be given, let

T E ^(ß) have a side S on 3ß, parametrized as in (4.5)-(4.6), and let <f>(x) = <//(x),

x E S, if S does not touch a corner of ß, or <p(x) = <p(xx, xA = (xx/d)\f/(xx, x^,

x E S, if (0, 0) is a corner of ß.

Let us first note that, by (4.6),

Jf'[ WKxx, 0) - £/*(*„ Fix,))]2 dxx

(4-7) ° ñr^ a mi    w f=l0[j0   ^r2^(xi,x2)dx2

Also, since U\p(xx, 0) is the Lagrange interpolant of <f>(xx, F(xx)),

["[UUxuO) - <t>ixx, F(xx))]2 dxx
Jo

(4-8) r ,*+1 12

< cd2k+2{  (dYJ    *(*"F(Xl))   *• < Ci*\/V*-

Here the last inequality follows from an inverse inequality for the space NH. (Recall

that t// comes from a polynomial of degree < k — 1 if S touches a corner of ß, and

from a polynomial of degree < k otherwise.)

Using (4.7) and (4.8) we obtain

¡m -Mds- fd[ity - *)*](*„ F(xi))-^- dxx

ds

te"

dx, < Cd '■(\vutfdx.

f [ £/*(*,, Fixx)) - UiPixx, 0)]*(jc„ F(xx))-^- dx

+ jH*[ ttyixu 0) - </>(x„ F(x,))]*(x„ Fixx))-£- dx

< Cd I j \V Ux¡i\2 dx)     iftfds]      + Cdftfds.

On the other hand, by the equivalence of norms in a finite-dimensional space, we

have

f \¡«¡> ds > C f tf ds
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for d sufficiently small. Combining the last two inequalities we obtain, for d small

enough,

(iUtf^ds > CÍ tfds- Cxd2(\VUi\2dx.
Js Js JT

Now, if S is the only side of T on 3ß, then B(i) and (4.8) imply that

diT) ( \VUxP\2 dx <C fd\ t/«|/(x„ 0)]2 dxx <Cxf tf ds,
JT J0 Js

where C, depends on k and e. More generally, if T E r^(ß) is a triangle that

touches 3ß, we conclude from a similar argument that

diT) [ \V Ux¡i\2 dx < cfiU^fds <Cxf tfds,
JT Js Js

where S = dT n dil if T has one or two sides on 3ß, and otherwise S = Sxu S2,

where S¡ E r*(3ß) are such that Sx n S2 is a vertex of T. Combining these

inequalities, we see that

/ ( tf*)* ds > (C - C,A) f tfds> C2f tfds,

A small enough, S = dT n dil E rA(3ß), xfi E Nh.

Also, since U^T = 0 if T does not touch 3ß, we obtain

f\VW\2dx <C     2     diS)-1 f (tty)2 ds
Ja 5eT*(3i2) Js

(4.10)

<c,   2   disy'ftfds.
S£t*(3S2) S

Using (4.9) and (4.10), it is now easy to complete the proof of Lemma 4.1. First,

introduce a basis {\pj) of A^* such that A4(i) is satisfied for some finite L. Such a

basis is easily formed from locally supported functions. We then define the set

{Vj} c Mh so that Vj = U\pj, where U is the linear mapping constructed above. The

validity of A4(ii) is then clear, and the inequalities in A4(iv) and (v) are easily

proved using scaling arguments and (4.9) and (4.10).    □

We conclude this section by stating a convergence result for the Lagrange

multiplier method (1.4) when Mh = Mßk, Nh = Nßk. We need the following result.

Lemma 4.2. Let tß(dii) = [Sx, . . . , S„}  and let r > -\.  Then if h E (0, hA,

h0 = (ß) E (0, 1), and t E Nlk or ^ E A/^|an, 0 < ß, < 1, i - 1./, there

exist the positive constants Cx and C2 depending on k, e and rß such that

V

Cxh2r f   tf/tf ds < 2 d(5,)2r f tfds < C2A2r f   tfJtf ds.

Proof. If Sj does not contain any of the corners of 3ß, then B(i) and B(ii) imply

that, if A is small enough and yp E L2(3ß), then

(4.11) cih2rf <PßV2ds < diSj)2rf tfds< C2h2rf tpftf ds,
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where C, and C2 depend on e. Assume then that z, E S, 1 < i < I. Using the fact

that

Cx C t'y2 dt <  C p2 dt < C2 C t'y2 dt
•'0 -'0 ■'o

for a > -1 and for any polynomial y of degree k, with C, and C2 depending on a

and k, we conclude by scaling that if \p E Nßk or \p E Mßk^da and A is sufficiently

small, then

CASjTjlx-'iWds

< f tfds< C2diSj)~af \x - z.lV ds,       a> -1.

Choosing a = 2rßt and noting that, by B(i) and (4.1),

C1A2r<rf(S,.)2r(,-Ä)<C2A2r,

we again obtain (4.11), with C, and C2 now depending on e, rßt and k.

Since (4.11) holds for all S- E rßidil), the assertion follows by summing over

j.   D
We note that, by Lemma 2.4 and Lemma 2.1, we have the inequality

f   tftt* ds < C\\u\\2H,m,        uErV'(Ö).
•'30

In view of this, if we define

IK«. *)II/m = ( \D '"I2 dx + h~l f  <Pß«2 ds + hf <pßtf ds,

then || • H^ is a norm in the space Hx(il) X W°-ß/2(dil). We denote the normed

space (H\Ü) X W°'ß'2(dQ), \\ • \\ß<h) by XßA.

Let the bilinear form % be as in (3.1). We replace from here on the weak

formulation (1.2) by the following more convenient variational problem:

(4.12) (u, rf,) E Xßy. <£(m, *; v,<t>) = [ fv dx + f   g</> ds,       (o, <í») E XßJl.
Ja •'so

In the sequel it is of importance that (4.12) is solvable under weaker assumptions

on/ and g than (1.2). From (3.1) one concludes immediately that the bilinear form

ÍB is bounded on Xßh X Xßy.

(4.13) I® (m, *; v, </>)| < ||(«, mßJ(v, *)||w.

Moreover, by Theorem 3.1 and Lemma 4.2,

(4-14) inf SUP ,„   ^tü'*l      >^>°-
(u^eMfaxNfo (v^eMfaxNfo  IK"' Y)\\ß,h\\\V> <t>)\\ß,h

From (1.4) and (4.12) through (4.14) we conclude, by classical arguments (see [3]),

the following result:

Theorem 4.1. Assume that problem (4.11) has a solution (k, i¿) E//'(ß) X

W°'ß/2idil), 0 < ßi < 1, / = 1, . . . , /. Then, if (ma, ¡¡iA is the solution of (1.4) with

Mh = M¡¡¿, Nh = Nj¡k, A E (0, A0), A0 = A0(ß) E (0, 1), we have the error estimate

||(«, xp) - (u„, 4ih)\\ßj, <C       min        ||(m, +) - iv, tfWßj,,

where C dey ends on ß, k and e.
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5. Rate of Convergence. We state first some lemmas which pertain to the

approximation properties of polynomials in weighted Sobolev spaces. In what

follows, T denotes a triangle with vertices at (0, 0), (1, 0) and (0, 1).

Our first lemma is from [4].

Lemma 5.1. Let a # 0 and let u be defined on T such that /r|x|a|Z) lu\2 dx < oo.

Then there exists a constant q, deyending on u and a, and a constant C > 0,

dey ending on a, such that

(5.1) f |x|"-2|m - q\2 dx < C f \x\a\D lu\2 dx.

Lemma 5.2. Let k be an integer, k > 1, a E R \ a E (0, 2, .. ., 2k - 2}, and let

u be defined on Tsuch that fT\x\"\Dku\2 dx < oo. Then there exists ayolynomialy of

degree k — 1 and a constant C, deyending on a, k, such that

k-l

(5.2) 2   f |x|a+2-/-2*|Z>/(M - y)\2 dx <CJ \x\a\Dku\2 dx.
7 = 0 JT JT

Proof. We first apply Lemma 5.1 to find constants qu, i + j = k — 1, such that

Í^'ÍtTTJ - *u) dx < CÍ\x\"\Dku\2dx.
JT \ 3x¡3x^ / JT

Then define

Pk-Ax)=     2     7i7T*i-4
i+j-k-l '••/•

Let uk_x = m — yk_x, and apply again Lemma 5.1 to find constants qijy i + j =

k - 2, such that

i^'i^itr - *)dx < cf\xr2\Dk-\_x\2dx.
jt \   3x,3x^ / JT

Further, define uk_2 = uk_x — yk_2, where

—      V J    i J
Pk-2 * Zj -.   i X,X2.

i+j-k-2  'v*

Continuing in this way, one finally finds the homogeneous polynomials yj of degree

j, 0 < j < k — 1, such that if m, = m — Y/¡Z} P¡ for 0 < j < k — 1, and uk = u,

then

f\x\a+2J-2k\DJU,\2dx
JT

<c[ |xr+?'+2-2*|Z>/+,«i+1|2 dx,     j=0,...,k-l.

Noting that L^Uj = DJu0, the assertion follows by taking/» = 2*~0' Pj-   □

Let ~Zk denote the set of nodal points on T associated to a reference Lagrange

element of degree k, k > 1 (cf. [7]). For a continuous function u, defined on T, we

let (u)k denote the kth order Lagrange interpolant to u, i.e., iu)k is a polynomial of

degree k such that (u)k(x) = m(x) for x E 2t. We have

Lemma 5.3. Let k > 2, let 2k - 4 < a < 2k - 2, and let u be defined on T such

that /T|x|a|Z)*M|2 dx < oo. Then (5.2) holds for a yolynomial y = (u)k.
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Proof. Let/» be the polynomial of Lemma 5.2. Then we have

(5.3) (n)* = (m - y)k + y.

From Lemma 2.2 and from (5.2), we have

|(m - y)(x)\2 <cf \x\a\Dku\2 dx,       x E T,

(5.4)
(« - y)(0) = 0.

Then also (u — y)k(0) = 0, so we have

*-1  /•
2   / \x\a+2l-2k\D'(u - y)k\2 dx < oo,       a>2A:-4.
1 = 0 JT

Further, by the definition of the interpolant and by (5.4),

2   ( \x\a + 2'-2k\D'iu - y)k\2 dx
1-0 JT

(5-5)
< C 2   l(« - P)(x)\2 <CX[ \x\a\Dku\2 dx.

*eZt JT

The assertion now follows by combining (5.3), (5.5), and (5.2) and using the

triangle inequality.   □

Using the above results we now prove the first approximation theorem.

Theorem 5.1. Let k > 1, and let ß E R1 be such that 0 < ß, < 1, i - 1,..., /.

Further, let u be defined on il such that fa <p2,k\Dk+lu\2 dx < oo. Then, if h E (0, hA,

A0 = A0(ß) E (0, 1), there exists a constant C, deyending on k, ß, e, such that

in   f (\D\u- v)\2dx + A-'f   <pßl\u - v\2 ds)
M&.k (JT JdQ )

<Ch2k( <p2k\Dk+lu\2 dx.
•Iq

Proof. We begin by introducing an interpolant of u. Let T be the reference

triangle as above. Then, if 7j E rß(il), we can write

(5.6) T = iGj o Aj)iTj),        TjET¡¡iíl),

where Aj is an affine transformation which maps the corners of 7} onto those of T,

and Gj is a smooth transformation which straightens the curved sides (if any) of

Aj(Tj). If Tj contains a corner z, of 3ß, then we assume Aj to be chosen so that

Ajizù = {0}.

With the nodal set 2* defined as above, let 1/k = (G, ° A) '(2fc), and define m7 as

the polynomial of degree k on Tj such that u^(x) = m(x) for x E 1fk. Since the sides

of the triangles 7) E T^(ß) become straight in the limit A -> 0, we see that, if A is

sufficiently small, then uJ is uniquely defined for all Tj E rß(ß). We let ußk E Mßk

denote the interpolant defined as

«¿A*) = ""(*)>       xETjE t*(Q).

We will first prove that, under the assumptions made,

(5.7) f\Dl(u - uhßk)|2 dx < Ch2k f tfk\Dk + 1u\2 dx.
Ja Ja

nun
ufEMfa
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Let Tj E rß(il) be a triangle which does not touch any of the corners of 3ß. Then

we have the classical result

j \D\u - u*)\2dx < CdiTj)2kf \Dk+xu\2dx,
Tj Tj

where C depends only on k and e for h sufficiently small. Using B(ii), this can be

further written as

(5.8) f \D\u - t^)|2 dx < Ch2kf <p2k\Dk+lu\2 dx.

We show next that (5.8) also holds when Tj contains a corner z, of 3ß. We note first

that Lemma 5.1 holds also when T is replaced by Aj(Tj), Aj as in (5.6), provided

that A is small enough. Moreover, the constant C in (5.1) does not depend onj.

This follows, since Aj(Tj) = Gj~\T), and the Jacobian of G,"1 tends to unity

uniformly in j as A —> 0. Then Lemma 5.2 holds also when T is replaced by Aj(Tj),

and so does Lemma 5.3, if ~S,k is replaced by Gj~l(2k) in the definition of the

interpolant (u)k.

Now choose any a E R ' so that 2k — 2 < a < 2k, a > 2kßt. Then, using the

above modifications in Lemma 5.3, we conclude that, if ü(x) = u(Aj~\x)), ü'(x) =

uJ(Aj-\x)), x E AjiTj), then

(      \x\"-2k\Dliü-&)\2dx <C(      |x|"|Z>*+1«ï2</x.

WTi) JAj(Tj)

This inequality is invariant in scaling. Therefore, and taking into account the

assumption B(i), the affine transformation Af1 can only introduce a dependence on

e in the constant C. Thus, we have

(5.9) [ \x - z,.|a-2*|Z>'(M - uJ)\2 dx < C f \x - z,|a|Z)*+1M|2 dx,
J HT J y.'j 'j

where C depends on k, a, e. Using (4.1), we have here the further estimates

x — z, la-2k >  Ch(«-2k)/V-ß,),

\x - z\" < C[<pßix)Ykh(a-2kßW-ß>\       xETj,C>0.

Together with (5.9), these prove (5.8).

Having verified that (5.8) holds for all 7} £ Tß(il), it suffices to sum over j to

prove (5.7).

We prove next the estimate

(5.10) A"1 f   tpgl\u - u*\2ds < CA2*f   tpf \Dk+lu\2dx.
Jdii JdSt

Let Tj E rß(il) be a triangle such that Tj has a curved side S, on 3ß, and let ü and

m7 be defined on Aj(Tf) = Gfx(T) as above. Assume first that Sj does not touch any

of the corners of 3ß. Then we start from the inequality

f      |m -V\2 ds < C||m - SiWr,)) < Cx [      \Dk+lü\2 dx,
JAASj) JAj(Tj)
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where C, depends only on k and e for A sufficiently small. Applying to this the

affine transformation Af\ one gets

diTj)-1 f |ii - ¿\2 ds < CdiTj)2kf \Dk+lu\2 dx,
Sj Tj

and further, using B(ii),

(5.11) A"1 f <p¿'|M - m>|2 ds < CA2* f <p2k\Dk+1u\2 dx.
JSj JTj

If z, E Sj, we take a E (2k - 2, 2k), a > 2kßt, and derive first from (2.6) the

inequality

f      |x|"-2*-'|m -iPfds
JMSj)

<C(      (|x|a-2*-2|M -üJ\2 + \x\"-2k\Dliü -iP)\2} dx.
JMtj)

Applying on the right side the same reasoning as above and performing the affine

transformation A7X, we conclude that

(\x- z,|a-2*-'|m - uJ\2 ds <CJ |x - Zi\a\Dk+lu\2 dx.

Since, by (4.1),

|x - zf'2"-1 > Ch(°-2k-1 + ß'W-M[<pßix)]-\

\x - zjr < ch("-2kßw-ß>\<pßix)]2k,

2kßi < a < 2k, x E 5,, C > 0,

we again obtain the estimate (5.11).

Upon summing over j in (5.11), the estimate (5.10) follows. Finally, combining

(5.7) and (5.10), the proof of Theorem 5.1 is complete.    □

The second approximation theorem is as follows.

Theorem 5.2. Let k > 1, and let ß E R1 be such that 0 < ß, < 1, / = 1, . . . , /.

Then, if u E IVk+x'kß(il) and xp is defined by (1.3), there exists a constant C,

deyending on k, ß, e and ß, ímcA that

nunin     A f   <pß\xp - ,/<|2 ds    < CA2*||m|| ̂+W(ß)

Proof. Consider first a function \p defined on 3ß and sufficiently smooth on each

T,, / = 1, . . . , I. We use the notation of (4.2) and (4.3) to define an interpolant of

\p in Nßk. First, let uV(/) = 4>(J¡(t)), t E (0, 1), i = 1, . . . , /, and let i/*,.* denote the

interpolant of \p¡ in the partitioning {7/(0}JL1, defined so that (i) if 2 < j < ml, — 1,

then \pik\j., equals the Lagrange interpolant of t|/, of degree max{ 1, k — 1} on Ij, and

(ii) if j = 1 ox j = w„ then ifriM' is defined as a polynomial of degree k — 1 such

that

(*!0 - *1'¿)('¡ - o) = o,

Otf0-*$)«-i+ 0)-0,       l = 0,...,k-l.
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We let tpßk be a function defined on 3ß such that

*£*(*) = *i*(4"'(*))>    x E r,, / = i,..., /.

It is clear from the definition of Nßk that \pßk E Nßk.We will establish first the

interpolation error estimates

h f   ty|* - tfß,k\2 ds < CA2*+1|^||V*,*+i/2).(3ß),
(5.13)      J*°

^e wk-(k+1/2)ß(dii),k= 1,2,....

To prove (5.13), let v = v(i) and u = p(i) be as in (2.4). Then B(ii) implies the

inequalities

C,/A(l - tf* < d(lj) < C2rft(l - /)*,       t E Ij,j = 2, . . . , m, - 1,

where C, and C2 depend only on e. Combining these with the classical estimates of

the error of Lagrange interpolation we get

A/>(l-/)*|*,-*a|2<ft
Jij

(5.14)
< CA2*+1 f /P*+»A(l - /)<2k+1)A.|^*)|2 ̂      7 = 2,..., mt - 1.

Let us now show that (5.14) also holds for j = 1 and j = m¡. We need the following

consequence of Hardy's inequality [8]: Let a > 0, k > 0, and let/ be defined on

(0, 1) so that f0 ta+lk\fM\2 dt < oo, and so that /(/)(l) - 0, / - 0,.... k - 1.

Then

(5.15) f ' taf2dt<cC ta+2k\fkfdt,
Jo Jo

where C depends only on k.

Since (5.15) is invariant in scaling, we conclude from (5.12) and (5.15) that

'I
(5.16)

< C /   /A+2*(l - 0*+"|*H2 dt,      j E {1, m,.}.
Jij

On the other hand, B(iii) implies that

t < chx/(A-ß-\     t e /;',

and

i - t < chl'v-*>,     t e /;.

Using these estimates in (5.16), it follows that (5.14) holds also for j = 1 and

j = m¡. It then suffices to sum over i and y to prove (5.13).

In view of (5.13), the following estimates hold:

nunin     A f   <pß\xp - <f>|2 ds

< CA2*+,||*||2^(*+./2,/.(80),      * E iy^+1/2^(3ß)

< Ch2k-lU\\2^-^-^ßW,      * e Wk-^k-^ß(dil),

k - 1, 2,
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Here the second estimate is trivial if k = 1, and for k > 1 it follows from (5.13)

and from the inclusionNßk_x c Nßk. Upon interpolating between these estimates

and using Lemma 2.3, we have

min   { A I    <pß\\p — <¡>\2 ds
(5.17)    oeNik {   Jda

< CA2*||^|| ̂ -,/,^3a),       * E ry*-1/2-^(3ß), k - 1, 2,....

To complete the proof, take \p in (5.17) to be defined by (1.3), with u E

Wk + l'kß(il). Since n, in (1.3) are smooth functions on each arc T¡, i = 1, . . . , /,

and since the operator of multiplication by a smooth function is bounded in the

weighted Sobolev spaces considered, we conclude from Lemma 2.4 that xp satisfies

||tp\\ Wk-1/1*0(38) < C||«|| ^t + i^Q).

Upon combining this with (5.17), the proof is complete.   □

Using the above approximation results, we can now estimate the error of the

Lagrange multiplier method in terms of weighted norms.

Theorem 5.3. Let ß E R' be such that ß > 0, 1 > ßi > 1 - ir/u¡k, i =

1, . . . , I. Further, let u be the solution of yroblem (1.1) with f = fx + f2, fx E
Hk~\il), f2 E Wk-]'kß(il) and g = g, + g2, g, E Hk+l(il), g2 E W*+1^(ß), and

let xp be defined by (1.3). Then, if h E (0, A0), A0 = A0(ß) E (0, 1), and Mh = Mhßk,

Nh = Nßk, (1.4) has a unique solution (uh, xph), and there exists a constant C,

depending on k, ß, e and il, such that

f <pß2\u - uh\2 dx + h2 f\Dl(u - uh)\2 dx

+ hf   <p-ßx\u - uh\2 ds + A3 T   <pß\xp - xpt
^an •'an

h2ds

<  Ch2k ̂ {Wf^Jjk-^çty + 11/211^-1.^(0) +  ||gi||¿t + i(o) +  Il g2|| ̂ ^1.^(8)}  ■

Proof. Given k and ß, which satisfy the assumptions of the theorem, we have, by

Theorem 2.1,

m = m, + m2,        ux E Hk+1(il), u2 E Wk+1'kß(il),

(5.18)    ll"llll*-'(Q) +  ll"2ll^* + '^(Q)

< G{ II /ill2/*" '(B) +  IIAII^-'^B) +  I|glll¿* + '(Í2) +  ll^2ll»'t + '^(B)}-

Also, by (1.3) and Lemma 2.4 and by the trace properties of functions in Sobolev

spaces Hm(il), xp satisfies

xp = xpx + xp2, xPx E //*-'/2(3ß), ^2 E Wk-l/2'kßidil),

ll*llU*-VJ(38) +  ll*2lllf*-,^^(3a) < C{llMlll¿* + l(B) +  ll"2ll Wk*l*ß(Q)}-

From (5.19) and (2.5), we conclude that xp2 E W°'kß-(k-x/T>eidil). Since xpx E

L2(dil) and 0 < ß < 1, i = 1, . . . , /, it follows that xp E W°-ß/2(dil). Hence, (u, «//)

is the solution of problem (4.11), and the error bound of Theorem 4.1 applies to the

Lagrange multiplier method.
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By Theorems 5.1 and 5.2, we have

min   \(\D\u - v)\2 dx + A-1 [   <pB\u - v\2 ds]
veM¡¡k{Ja JdQ )

(5.20)

<CA2*f (p¿*|Z>*+1w|2¿*,

and

(5.21) min  Ihf   <pß\xp2 - <¡>\2 ds) < CA2*||m2||i^.^.

Also, using the same type of reasoning as in the proof of Theorem 5.2, one gets

(5.22)

min     A f   <pß\xpx - <í>|2 ds
^Nik I    •/3fi J

<C   min  ihf l^-^l2^] < C,A2A:||^||¿*-./2(3B)-
*e.Nij, I   Jda )yß.k

We finally estimate }a <pß2\u — uh\2 dx using a duality argument. Consider the

auxiliary problem

-aV=tpß2iu- uA,       xEil,

V = 0,       x E 3ß,

the solution of which satisfies [8]

V E W2'ßiil);

(5.23) i , yn
II v\\ w^(a) < C\\tpß2iu - mJ|| ̂ i(8) = C j J <pß2\u - uh\2 dx \    .

By Lemma 2.4, if we define 2 = -dV/dn, x E 3ß, then

(5-24) I|S|Ih^(38)<C IIKII,^).

By (2.5) and (5.24), we have 2 E ryl/2^-*/2(3ß), so 2 E W°-ß/2(dil). Noting also

that, by Lemma 2.1,

f <fV2(« - uh)v dx < C||m - uh\\H,w\\v\\H^a),       v E Hx(il),

we see that the auxiliary problem admits the variational formulation

iV,Z)EH\il)x W°'ß/2(dil):

« (o, <¡>; V,Z)=j tpß\u - uh)v dx   V(t;, </>) E H\il) X W°^2(dil),

where the bilinear form ® is defined by (3.1).

By the same reasoning as above, we get, from (5.24) and (5.25), that

(5.26) min {||(K - v, 2 - <¡>)\\\h) < Ch2 f <pf\u - «J2 dx.
(v,<t>)£MikXNik Jil

Then, since (1.4), (5.25), and (4.13) imply that

/ <P¿> - "J2 dx = ®(k - uh, xp - xph; V - v, 2 - <f>)
(5.27) a

< ||(« -«*,*- 4>H)\\ß,k\\(V - v, 2 - <j>)\\ß,h   V(o, <f>) E Mhß<k X N^k,
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we obtain by combining (5.26) and (5.27) the estimate

(5.28) j <pf\u - uh\2 dx < Ch2\\(u -u„,xp- xph)\\l„.

The asserted error bound now follows from the estimates (5.18) through (5.22),

(5.28), and from Theorem 4.1.    □
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