
MATHEMATICS OF COMPUTATION
VOLUME 39, NUMBER 159
JULY 1982, PAGES 109-123

Type-Insensitive ODE Codes Based on

Implicit A( a)-Stable Formulas*

By L. F. Shampine

Abstract. Previous work on A -stable formulas is extended to A (a (-stable formulas, which are

far more important in practice. Some important improvements in technique based on another

interation method and an idea of Enright for the efficient handling of Jacobians are proposed.

Implementation details and numerical examples are provided for a research-grade code.

1. Introduction. This paper is a sequel to the paper [10] which treats ^-stable

formulas. Although largely independent, it cannot be properly understood without

the companion paper. For this reason and to avoid repetition of some lengthy

arguments, it is presumed that the reader has studied [10].

Many of the most popular formulas for the solution of stiff ODE problems are

not ,4-stable so that extending the analysis of [10] is of great practical value. The

backward differentiation formulas (BDF) of orders 3-6 are examples which are

y4(a)-stable, and may be thought of as prototypes for the formulas treated here.

The task at hand is qualitatively different from that of [10]. There stiffness

amounted to selecting an efficient iteration method for the evaluation of implicit

formulas. Stability played no obvious role there, but here the behavior of the

integration can be affected by stability.

Part of the results reported here are equally relevant to ,4-stable formulas. We

describe improvements of technique based upon an idea of Enright and still another

iteration method. Some of the practical details not fully specified in [10] will be

developed. Some numerical results with ,4-stable formulas will be presented.

The changes to [10] to accomodatey4(a)-stable formulas are more conceptual than

practical. We shall first discuss the practical significance of formulas which are not

A -stable. Then we shall investigate those factors affecting step size and iteration

method when a stability restriction is possible. It develops that whatever practical

difficulty which might arise is due to the formula and is not aggravated by our

switching iteration methods. The inherent trouble with yl(a)-stable formulas must be

taken up in our investigation, and as a consequence we propose ways to ameliorate

it. Some numerical results will be given.

2. How Troublesome Are yl(a)-Stable Formulas?. Our aim is to select an efficient

scheme for the evaluation of implicit formulas. It seems unlikely that one would base

Received April 2, 1981; revised November 20, 1981.

1980 Mathematics Subject Classification. Primary 65L05.

Key words and phrases. ODE codes, stiffness, A(a)-slable.

*This work performed at Sandia National Laboratories supported by the U. S. Department of Energy

under contract number DE-AC04-76DP00789.

©1982 American Mathematical Society

0025-5718/82/O0O0-O077/S04.50

109



110 L. F. SHAMPINE

a general purpose code intended to handle stiff problems on formulas which were

not A(a)-stab\e. From here on we suppose the formula v4(a)-stable. When one

chooses to work with an /l(a)-stable formula, one has, in effect, chosen to restrict

the domain of applicability of the code to those problems such that the Jacobian,

evaluated anywhere along the solution, has eigenvalues only in the appropriate

sector of the complex plane. Should some Jacobian have eigenvalues too close to the

imaginary axis, a poor performance is expected (and often observed).

The behavior of an A(a)-stablc formula on a problem for which it is intended is

the same as that of an >1-stable formula applied to the same problem. This obvious

remark shows us that the considerations of [10] are unaltered for such problems. In

this sense there is no real difficulty with the application of our ideas to vl(a)-stable

formulas.

As mentioned, it is expected that the typical code based on an /l(a)-stable formula

will behave badly when it actually suffers a restriction on the step size due to

stability. The comparative testing of [2] shows what can happen with the BDF. The

problem B5 leads to a stability restriction for the BDF of orders greater than 4. (It is

hoped in the popular variable order BDF codes that the restriction will be avoided

by resorting to the more stable lower order formulas. Unfortunately this does not

always happen [13].) In the present context we are only responsible for seeing that

our schemes for selecting the iteration method do not make the trouble worse. The

situation has seen very little attention. Because of the close connection with the

present study, we shall point out improvements of the technique employed in current

codes in this situation.

3. Efficient Use of Jacobians. In [8] we promoted saving Jacobians for reuse in the

simplified Newton iterations. W. H. Enright [1] has proposed a scheme which offers

important advantages in the present context. We shall point out here some argu-

ments in its favor not stated by Enright and also a convenient software device for its

efficient use.

We are solving the system

y' =f(x,y).

The implicit formula has the generic form

(1) y = hyf(y) + xp,

where y is the solution value for the step to xn +,, y is a constant characteristic of the

formula, xp lumps together previously computed quantities, and the independent

variable x is suppressed. The direction of integration is chosen so that h > 0. The

iteration schemes considered in [10] are

(2) (I - hyJ)(ym+x - ym) = xp + hyf(ym) - ym.

Here / = 0 is simple iteration, and J, a nontrivial approximation to the Jacobian

matrix/,, is a simplified Newton iteration.

First we describe Enright's basic idea. The simplified Newton iteration must

repeatedly solve linear systems with the iteration matrix / — hyj. What is going on

is seen more clearly if the linear system is scaled to result in the matrix J — (\/hy)I.

(We recommend this as a cheaper and more natural scaling for stiff problems



TYPE-INSENSITIVE ODE CODES 111

anyway.) One does a similarity reduction to the Hessenberg form of the iteration

matrix,

J --}-! = LHL~l.
hy

Here L is unit lower triangular and H is upper Hessenberg. (For notational

simplicity, here and elsewhere we leave out permutation matrices resulting from

pivoting.) One can solve the necessary linear systems with this factored matrix

instead of the usual LU factorization of lower and upper triangular matrices. The

advantage comes when one wants to change step size or method so that hy -» h'y'.

Then

'-wHH¿-w)')L~'
Thus the factorization can be changed trivially to correspond to the new h'y'.

The Hessenberg factorization requires an unimportant amount of additional

storage. It does require some extra work to solve the linear systems which Enright

proposes to reduce by further factoring H = LU into bidiagonal L and upper

triangular U. The additional factorization facilitates solving the linear systems

repetitively, but, on a change of hy, one must reconstruct H by multiplying out LU,

alter its diagonal, and refactor it.

Our colleague H. A. Watts raised the question to us as to whether it was better to

pay the storage cost of keeping a copy of H and so avoid the expense and inaccuracy

of frequently reconstructing H. This depends on the user's requirements, but we

noted a very convenient way to handle the matter within the DEPAC software

interface design [12]. In this design the user provides to the code a working array and

the length of the array. He is instructed as to the minimum length of the array which

will suffice for the solution of the problem. Here this length is that corresponding to

reconstruction of H. The instructions could then add that if the user can provide a

specific larger amount of storage, the code will run somewhat faster. This will not

surprise him. The code itself simply checks the amount of storage provided and uses

the appropriate technique internally. The user is never bothered about what is being

done inside the code. Storing the Hessenberg matrix should often lead to a perfectly

acceptable amount of total storage and lead to a noticeable improvement in speed.

The advantage of Enright's idea is that the frequent change of step size is not

accompanied by a corresponding expensive factorization of the iteration matrix. He

did not point it out, but the device alone goes a long way towards making a code

type-insensitive. If the code is applied to a nonstiff problem, the Jacobian is

unimportant in the iteration matrix—J = 0 (simple iteration) would suffice. Any

reasonable algorithm for deciding when to form a new J should lead to relatively few

Jacobian evaluations when the problem is not stiff and of course, correspondingly

few matrix factorizations. Another important situation in which Enright's scheme is

very useful is when the step size is being restrained for reasons of stability. We shall

amplify this later after describing what is happening to the step size then.

In what follows we shall assume Enright's idea is used. Unfortunately, the

Hessenberg reduction does not preserve structure in the Jacobian. When the Jacobian



112 L. F. SHAMPINE

is highly structured, a copy should be kept and an LU factorization used. The

cheaper linear algebra and the greatly reduced storage then compensate for the extra

matrix factorizations.

4. Effects of a Stability Restriction. What happens when a method with a finite

stability region is presented with a stiff problem? Some arguments can be found in

[5], [11] but the basic idea is simple and plausible: If the step size corresponds to

being outside the stability region, propagated error is amplified until the local error

estimator detects it and reduces the step size. If the step size corresponds to being

inside the stability region, propagated error is damped until the error estimator

realizes that the step size can be increased. The consequence is that the average step

size corresponds to being on the stability boundary.

As in [10] let Aacc be the largest step size which would permit the local accuracy

requirement to be satisfied. The difficulty for us is that most of the time the

numerical solution contains a substantial component of propagated error. It looks

"rough", and the estimate /iest of Aaec may be quite a lot smaller than hafX, which

corresponds to the smooth solution being tracked. If the code were to hold the step

size constant long enough while in the stability region, a good estimate of ftacc could

be obtained. The situation is exaggerated in our research code based on the 0-family

of one-step formulas. Past solution values are used in forming hesV but the memory

is very short and erratic values of /¡esl are observed.

The idea of Enright sketched in Section 3 appears to be very helpful when the step

size is being restrained by stability. The step size is continually changing, but there is

no need for a new Jacobian. Unfortunately,the matter is a little tricky. Going outside

the stability region may be accompanied by a convergence failure rather than a

rejected step, particularly when using the stringent acceptance criterion of [6], [15].

The typical algorithm in present codes regards this as a signal to form a new

Jacobian. In the algorithm described in Section 7 we have attempted to avoid these

unnecessary Jacobian evaluations. It is to be appreciated that this difficulty does not

arise from our ideas about switching iteration methods.

5. A More Efficient Iteration Method. When solving (1) by simple iteration, the

rate of convergence is determined by || hyf. ||. In [10] we proposed using the weighted

maximum norm of the approximate Jacobian J to estimate this. To avoid notational

complication, we shall write down only the unweighted norm:

WhyJW = max | hy | 2 \J¡: \ ■

Simple iteration was used whenever

(3) \\hyJ\\<r<\

for some r deemed an acceptable rate of convergence. As we remarked at the time, it

seemed a shame to switch from Newton to simple iteration and make no further use

of/.

The Jacobi iteration for solving (1) is

(/ - hyD)(ym+l -ym) = xp + hyf(ym) -ym,



TYPE-INSENSITIVE ODE CODES 113

where D = diag{/,-,-}. The equivalent of (3) is now

(4) ||(/ - hyD)~xhy(J - D)\\ = max    , , _T'l l    <r<l-

It is just as easy to use the Jacobi iteration as simple iteration. According to the

criterion used, it is at least as effective. To see this, suppose (3) holds. Then the

Jacobi iteration is well defined because

1 >r> WhyJW >\hyJu\   cachi

hence

1 — hyJu > 0   each i.

A simple computation shows that if (3) holds, then (4) must also hold.

The Jacobi iteration can be extremely advantageous. If a diagonal element Ju < 0

and it dominates the off-diagonal elements sufficiently,

2 W<r\JH\,
j*i

the row puts no restriction on the step size to achieve the rate of convergence r in (4).

Clearly, arbitrarily stiff problems can be solved with the Jacobi iteration provided

that they have the right Jacobian structure. We do not know how important this is in

practice. A very popular method of analysis in chemical kinetics makes use of a

quasi steady state hypothesis. A solution component y,(x) satisfies an equation of

the form •

y'i=Pi(yv...,yn)-Qi(yx,...,yn)yi.

It is assumed that both P, and Q, are roughly constant and that Q,, > 1. Considering

the corresponding row of the Jacobian of the system, we see that such an equation

places no restriction on the step size which might be used with the Jacobi iteration.

We propose using simple iteration until the first Jacobian is formed and thereafter

using the Jacobi iteration. Every time a Jacobian J is formed we must save the

diagonal in a separate array because we plan to overwrite J if we ever do a matrix

factorization involving it. In our research code we aim for a rate r = 0.5. When the

Jacobian is formed, we determine the largest step size, hi1max, which according to (4)

would yield this rate of convergence. At the same time we compute \\J\\ which,

through monitoring of h IIJII, gives us a measure of the stiffness of the problem.

After forming a Jacobian J, we may switch back and forth between a Jacobi

iteration and a simplified Newton iteration using the same J. Our intention is

basically to use the Jacobi iteration whenever h < hilmax. As we discussed at length

in [10], the information used to determine h itmax in (4) may become out of date as the

Jacobian changes along the solution curve. A useful refinement is to improve the

value for h itmax based on whatever observations are available. Whenever we actually

use the Jacobi iteration and should need at least two iterations, we obtain an

estimate of the rate of convergence,

||     m + 2 _ y"+l||

max —-.
m=»o     || ym+l - ym||



114 L. F. SHAMPINE

The rate of convergence is essentially linear in the step size, so we can estimate the

largest step size which would yield convergence at a rate r = 0.5. If this estimate is

smaller than the current /iitmax, we reduce /¡itmax to this value. If it is larger, we take

no action. This is because we are certain the rate of contraction is no faster than the

observed rate, but we cannot exclude the possibility that the true rate is slower.

6. Interaction of Iteration Method and Stability. In this section we identify the

tasks our algorithm for selecting the iteration method should address. The step size

Aacc is the largest step size which would yield the desired local accuracy. There are

two potential restrictions on this step size: The step size hitei is the largest for which

the iteration contracts in the norm of the code. The step size /¡stable is the smallest

step size h for which hX¡ is on the boundary of the stability region for some

eigenvalue X, of fy with Re(A,) < 0.

When we considered A -stable methods in [10], the restriction due to the iteration

method was the only one present because /istable is infinite by definition. The

restriction can be quite severe. When simple iteration is used, /iiter is defined by

/iitery||/vll = 1. Because ||/J| >\X¡\ for all eigenvalues X, of f, the step size must

satisfy |AiterA(.|< 1/y. This is exactly the restriction imposed by stability for a

method with an absolute stability region consisting of the half-disc of radius 1/y.

Stating this necessary condition on hiteT in this way gives some insight as to the role

of the iteration method. The restriction can be still more severe because the norm of

the Jacobian can be much larger than the spectral radius of the Jacobian. For some

standard test problems, the difference amounts to several orders of magnitude.

Problems for which /l(a)-stable methods are appropriate have hslabXe infinite and

the situation is the same as with an A -stable method. The basic task is to recognize

when we can use a cheap iteration—simple or Jacobi—and when we must use a

simplified Newton iteration. This must be done inexpensively, at virtually every step,

and switching iteration methods must be efficient. In [10] we described how to do

this and here we refine the procedure with Enright's idea and the use of the Jacobi

iteration.

Because we want robust codes, we must consider what happens when some

eigenvalue of f is close enough to the imaginary axis that /istable is finite. One

possibility is that hacc « hstabXe. Such a case is no different from one with Astable

infinite and needs no more comment. If, on the other hand, hacc is comparable to, or

greater than, Astable, the formula actually exhibits a stability restriction.

The essential difficulty we face when the formula exhibits a stability restriction is

that the estimate Aest of hacc varies above and below Astable as described in Section 4.

We shall try to devise an algorithm which will avoid unnecessary evaluation of

Jacobians in this situation. This is a general difficulty unrelated to our switching of

iteration methods. Indeed, if hner « Astable, there is no interaction at all. Typical

numerical methods have a region of absolute stability containing a half-disc of

radius ß (van der Houven [4, p. 83] calls ß the general stability boundary). If one

compares ß to 1/y for typical methods, it is seen that often there will be no

interaction of the two restrictions on step size if simple iteration is used. On the

other hand, if the structure of/„ is favorable, hitei can be much larger than /¡stable

when the Jacobi iteration is used. Thus interaction of a cheap iteration method and

the stability restriction is probably not common, but is certainly possible. For this



TYPE-INSENSITIVE ODE CODES 115

reason, we must be careful that our scheme for switching iterations does not lead to

a lot of unnecessary work should the step size used vary about haer.

7. An Algorithm. In [10] we did not fully specify when the change of iteration

method should be made, nor did we go into details of implementation. In our

numerical experiments we have found that the decisions are not critical, except in

the presence of a stability restriction. Here we shall describe one approach which

seems to work satisfactorily. The algorithm might appear to be rather different from

that outlined in [10], but on close examination is seen to be essentially the same

when an /1-stable formula is used. Besides the fact that A(a)-stab\e formulas are now

treated, an additional iteration method and a different way of handling Jacobians

contribute to the different description.

The various decisions interact with one another so that some reflection is

necessary to fully appreciate the algorithm. To help the reader follow it, we split this

section into subsections which correspond roughly to modules in a computer

implementation. Translation into code is still not completely straightforward because

we detail only those matters relevant to this paper. In each subsection we provide

arguments for proceeding as we do. The approach we take is reasonable and works

adequately, but there is room for improvement. It is hoped that presenting the

algorithm in this way will facilitate future development of it.

7.1. Initial Iteration Method. The first step must be taken with simple iteration. No

Jacobian is formed initially, and if simple iteration will suffice for the entire

integration, the algorithm described will never form a Jacobian, one of our goals.

However, if a Jacobian ever is formed, we shall not use simple iteration again. For

the reasons given in Section 4, we prefer to use the Jacobi iteration method instead.

Just how the initial step size is selected is extraneous to this paper. On the other

hand, our algorithm applies a sensitive test that this step size reflects the initial scale

of the problem by insisting that simple iteration converge. This cheap iteration

allows the code to recover inexpensively from an initial step size which is far too

large.

7.2. Evaluate Implicit Formula. Here we have accepted values (xn, yn) and wish to

compute an approximate solution y,l+1 at xn+x = xn + h. An iteration has already

been selected for the attempt to evaluate the implicit formula for y„+l.

First a prediction y„°+, is made, and then we begin iterating. How one decides

when the implicit formula has been solved adequately is extraneous to this paper,

but we do need to point out that some procedures allow the possibilities that the

predicted value or the first iterate be accepted; see, for example, [6], [8], [15].

Whenever two or more iterations are made, a rate of contraction is estimated. The

possibility of failure is not even considered until two iterations are made so that a

rate estimate is available. It is very helpful that the rate for both the simple and the

Jacobi iteration can be regarded as proportional to the step size. In [8] we argued

that it is reasonable to proceed as if this were also the case with the rate for the

simplified Newton interation. In our algorithm the step size in the factored iteration

matrix is always that being attempted. This is the case of the analysis of [8] which is

best justified. From proportionality and an observed rate, /iitcr, the largest step size

which would yield convergence with the current iteration method, is estimated.



116 L. F. SHAMPINE

If the observed rate is not less than 1, the iteration is certainly not contracting, so

we go to subsection 7.2.1 dealing with a failure to converge. If the prediction is poor,

or if the rate is slow, many iterations might be necessary. It is best to specify a

maximum allowed number of iterations and to proceed to 7.2.1 if it is attained. In

our research code this maximum was 5. We actually used the observed rate to

predict if convergence would not be attained within the allowed number of itera-

tions. This was done as described in [8, p. 109]. It proved quite helpful to terminate

the iteration early in this way.

If convergence is secured, we proceed to 7.3 where the accuracy of yn+x will be

checked. If two or more iterations were made, an estimate of hiteT is available. If

fewer than two iterations were made, no estimate of hita is ordinarily available.

However, the rest of the algorithm may cause subsection 7.2 to be repeated: when

convergence is not obtained, and when it is obtained, but yn+x is not accurate

enough, the step from xn is attempted again with a smaller step size. An hiter

estimated in one try is at our disposal for subsequent tries provided the iteration

method was not changed, as will be seen to be typical. Thus it could happen that

convergence is obtained in fewer than two iterations, but an estimate of hher is

available.

7.2.1. Convergence Failure. In traditional algorithms a new Jacobian must be

formed at this time because, to save storage, it is overwritten by the iteration matrix

and destroyed in the subsequent factorization. Saving a copy of the Jacobian and

Enright's idea both allow us to reuse Jacobians so that we may hope to avoid the

considerable expense of forming unnecessary Jacobians. Enright's idea avoids the

storage penalty associated with saving a copy of the Jacobian and also avoids the

cost of a factorization.

There are two basic tools for securing convergence. One is to reduce the step size.

This has two good effects. The predicted value y°+, is improved and the rate of

contraction is improved. The other tool is to form a new Jacobian. Here the

simplified Newton iteration with a Jacobian evaluated at some previously computed

point must be regarded as a different iteration from that using a Jacobian evaluated

at a current point. In particular, we cannot predict the effect on the rate of

contraction due to forming and using a current Jacobian; it is hoped that the rate

will be better.

We argue that in conjunction with other aspects of our algorithm, reduction of the

step size is always the appropriate response to failure of convergence. We insist that

the very first step be carried out with simple iteration for reasons amplified in

another subsection, so do not consider forming a Jacobian then. After the first step

one has experience in a preceding step from which to predict what should happen in

the current step. Of course,the step size selected for the current step is predicted to

yield the desired accuracy. In our algorithm it is also predicted from solid evidence

to yield convergence of the iteration method. The only time we cannot make such a

prediction is when a Jacobian is evaluated at a current point and a simplified

Newton method is tried in the current step. Later we shall amplify "current point"

and note here only that, in this last circumstance, we certainly do not want to form a

new Jacobian. Thus we reduce the possibilities to considering an appropriate

response when we fail to get convergence, even though we have predicted on the

basis of experience that the step size should yield accuracy and convergence.



TYPE-INSENSITIVE ODE CODES 117

It may happen that we just missed getting convergence because the rate is a little

too slow or the predicted value a little too far away. There is no justification then for

going to the expense of forming a new Jacobian when a relatively small change of

step size will suffice.

If the rate of contraction is very slow, perhaps the process is not even contracting,

or y„°+, is very far away, some of our basic assumptions justifying our predictions

must be invalid. One possibility is thaty(jc) or f(x, y) does not change smoothly on

[xn, xn+x\; for example, some term in/has a discontinuity. If the numerical solution

can be advanced at all, the appropriate response seems to be to reduce the step size.

Evaluating a Jacobian as traditionally done might well be a complete waste of effort;

see subsection 7.4. Another possibility is that the problem has not changed char-

acter, the formula has. If the step size corresponds to being outside the stability

region of the method,yn+x may be a very poor approximation toy(x„+]). This can

lead to convergence failure in two ways: The predicted y °+, might reflect the smooth

behavior of y(x) and so be far away from yn+x. Even if the rate of contraction is

adequate, a convergence failure might then occur because too many iterations are

needed. Alternatively, the Jacobian might vary rapidly as a function of the depen-

dent variables so that an approximate Jacobian which is a good approximation to

fy(xn+x, y(xn+x)) might be far away fromf(x„+x, yn+x). This could mean that the

prediction of a good rate of contraction is incorrect and there is a resulting failure of

convergence. It is crucial that we not form a Jacobian when the stability region is the

source of the trouble. It might help us to compute yn+,, but the effort is misdirected.

Should we get convergence, we expect then to reject yn+x on grounds of accuracy.

The appropriate response is to reduce the step size which will restore stability and

the accuracy of yn+x. Thus, in every case, an appropriate response is to reduce the

step size without forming a new Jacobian.

From proportionality we estimate how much to reduce the step size to secure an

adequate rate of convergence. In our research code we aim at a rate of 0.5. A

significant reduction should be made to account for a possible lack of proportional-

ity of rate and for a predicted solution which is not quite good enough. In our

research code we required a reduction of at least a factor of 0.5.

In our experience a signal that a very rapid change of step size is needed often

arises from a failure of some basic assumption. For this reason we limit the step size

reduction. In our research code we did not allow the step size to be reduced more

than by a factor of 0.1. Of course, very slow observed contraction, or divergence,

result in this maximal reduction.

In only one situation do we change iteration method in this subsection. The step

size is always halved or more. If the step was attempted with Newton's method, we

have at our disposal an estimate of the largest step size for which the Jacobi iteration

with this Jacobian matrix would converge at an acceptable rate. Should the step size

be reduced enough that we can switch, we do so. This is one way the algorithm can

respond to a change in character of the problem. There is no cost associated with the

switch, and we have excellent reason for believing the Jacobi iteration will succeed

and yield rapid convergence. The benefit is an important reduction in the overhead

involved in solving linear systems of equations and in changing step size.

7.3. Test Local Error. Having formed yn+, successfully, its accuracy is now

estimated and /iest, an estimate of the largest step size which would yield the desired



118 L. F. SHAMPINE

accuracy is formed. If yn+x is not accurate enough, we go to 7.3.1 and otherwise, to

7.3.2.

7.3.1. Reject the Step. If yn+x is not accurate enough, hesl is smaller than the step

size h actually tried. The step to xn+, is rejected and another try made with a smaller

step size. There are a variety of practical issues involved in selecting the new step size

with the consequence that it is not simply hesr However, the new step size h will be

smaller than one which gave acceptable convergence in the computation of yn+x. The

iteration method used and the prediction scheme should therefore be more effective

with this new step size. The only reason for considering a change of iteration method

is that it might be possible to switch from a simplified Newton to a Jacobi iteration.

If this is feasible, we do so as described at the end of subsection 7.2.1.

Having selected a new step size and switched to a cheaper iteration when feasible,

we go to the beginning of 7.2 and try again.

7.3.2. Accept the Step. When we decided to accepty„+x, we formed hesl. There are

a variety of practical issues involved in selecting a step size for the next step with the

consequence that it is not simply hesv Several are significant to our algorithm. It is

not prudent to let the step size increase greatly in a single step. When a simplified

Newton iteration is being used and only a small increase in the step size appears

possible, the increase in efficiency due to a slightly bigger step size is not worth the

cost of changing the iteration method. There is a common tactic which is of

fundamental importance in our special situation, so we shall expand upon it.

It is quite useful to note whether there was an unsuccessful attempt to step from

xn before the present one succeeded. A failure to get convergence, or a rejected step,

tell us that the attempted step size was too optimistic. It can happen that /iest

estimated from a shorter, successful step size is also too optimistic: A not uncom-

mon situation is that the problem, i.e., y(x) or f(x, y), changes dramatically in the

course of the first step size tried, e.g., there is a discontinuity in / at some xd. The

smooth behavior up to xd suggests a large step size is possible, but this results in step

failures until one tries a step landing short of xd. The smooth behavior up to this

point causes the cycle to be repeated. A simple but helpful tactic is not to allow a

step size increase after any step involving an unsuccessful try. The device -is of

general value, but notice how it fits in here. It is a response to a dramatic change of

problem. It is an equally valid response to a dramatic change of the behavior of the

formula, namely, stepping outside the stability region. The tactic smooths out the

behavior of the step sizes in a most desirable way.

Having chosen a step size we would like to try, we now ask if we need to improve

the iteration method in order to evaluate the implicit formula with such a step. As

we noted in 7.2, it may happen that convergence was so good in the step just taken

that we were unable to estimate Äjter. In view of the fact that the new step size

cannot be greatly larger than this one for which convergence was so good, there is no

point to changing iteration methods. In such a case we proceed to the next step via

7.5.

We anticipate that the current iteration method will converge at rate, say, 0.5 if

h < 0.5 r2iter (or /iitmax if the Jacobi iteration is used—see Section 4). If we predict

adequate convergence in this way, we retain the iteration method and go to 7.5.

Otherwise we go to subsection 7.4 to improve the iteration method.



TYPE-INSENSITIVE ODE CODES 119

7.4. Improve Iteration Method. Here we turn to a more powerful iteration method

so that we can proceed with a step size appropriate to the smoothness of the

solution. There are three cases corresponding to the three methods that might have

been used to take the successful step. In each we choose to form an approximate

Jacobian at a current point, but the reasons are rather different.

If the step was taken with simple iteration, we have no choice because both the

alternatives require the Jacobian. If the step was taken with a simplified Newton

iteration, the only improvement we consider is to form a current Jacobian.

If the step was taken with the Jacobi iteration, the diagonal of an existing

Jacobian was used. It is tempting to switch to the simplified Newton iteration with

the old Jacobian matrix. The trouble is that there is no information available to

predict whether this will suffice. It is true that the Jacobi iteration allows us to solve

some stiff problems for which it is reasonable to presume that the Jacobian is

roughly constant for many steps. If the Jacobian has not changed much, using the

whole Jacobian would be adequate. We consider the Jacobi iteration to be ordinarily

only a minor improvement to simple iteration and expect it to be used basically on

nonstiff portions of the integration. In such portions we expect the solution and the

Jacobian to change significantly. For this reason, on grounds of simplicity, and to

support decisions made in subsection 7.2.1, we choose to form a new Jacobian in this

case, too.

When it appears desirable to form a new approximate Jacobian to aid in stepping

from xn to x„+x, traditional algorithms approximate fy(xn+x, y°+x). If Jacobians are

saved, there is a good reason to approximate fr(xn, yn) instead. If all is going well,

the two possibilities behave the same. It is a fundamental hypothesis that the

Jacobian is changing slowly, so there should be little difference when computing

yn+,. There is even less reason to distinguish the procedures when the Jacobian is

used for the computation of later steps, y„+2, y„+3, — A real difference arises when

the attempt to compute yn+x is unsuccessful. Because the character of the problem

might have changed on [xn, xn+x], it is necessary to reevaluate/v(xn+1, y„0+,) with

the new step size. Proceeding as we suggest, there is no reason to form a new

Jacobian. The traditional algorithms do not save the Jacobian so one must reevaluate

anyway, in which case one might as well evaluate at the current predicted solution.

On forming the Jacobian, /iitmax is estimated for the Jacobi iteration as described

in Section 4. If h < hitmax, we predict the Jacobi iteration will contract at a rate of at

least 0.5. In such a case we choose the Jacobi iteration for the next step. Otherwise

we choose the simplified Newton method with this new Jacobian.

Having selected a step size and an iteration method we proceed to 7.5.

7.5. Process Output. After successfully computing (xn+x, yn+]), the result is

returned to the user if it was requested. The code would be reentered at 7.2 if the

user wishes to continue. The user might shorten the step size proposed for the next

step for a variety of reasons. The code might also shorten it in this section to deal

with future output whether or not control is returned to the user. If control is not

returned to the main program, it now passes directly to subsection 7.2.

The point we make here is that the step size proposed may be reduced for some

reason before attempting the next step. This can only improve the performance of

the prediction scheme and of the iteration method. It also implies that factorization



120 L. F. SHAMPINE

of iteration matrices for the Newton method should be done in subsection 7.2, when

the step size to be attempted is definitive.

8. Some Numerical Results. We have written a research code based on the 0-family

of formulas

Ä+i =yn + h[0f{x„, yn) + (1 - 9)f(xn+x, yn+x)].

When applied to y' = Ay with constant step size h, the stability function R(X) is

given in

„/>N 1+0A

Ä+i = Ä(X)Ä=1_(,_i)xÄ,

where À = Ah. Our experiments were performed with 8 = 0, the backward Euler

method, which is /1-stable and has R(ao) = 0; 9 — 0.1 which is /1-stable, but less

damped since i?(oo) = -1/9; and 8 = 0.9 which has a (small) finite stability region.

The local truncation error is

lte =[i — (1 -8)]h2y"(x) + 0(h3).

The leading constant is then 0.5, —0.4, +0.4 in the three cases, respectively.

In general the code is written in accordance with the proposals of [6], [8], [15]. The

term y" in the local truncation error is estimated by a second divided difference of

solution values. Enright's idea is used for the simplified Newton scheme. Analytical

Jacobians were used in all our experiments.

The code was written for research purposes so that the results presented here are

intended to illustrate switching iteration methods rather than the behavior of a piece

of software. Some computations were made with the production BDF code LSODE

[3]. To make it more comparable we restricted the order to 1, so refer to the results

as computed with LSODE1. Unfortunately, the codes are tuned very differently and

at order 1 the cost is a sensitive function of the accuracy achieved. A direct

comparison is also difficult because LSODE does a lot of unnecessary Jacobian

evaluations which result in very fast convergence and fewer function evaluations.

Here we shall use the LSODE 1 results merely to indicate the general range of

Jacobian evaluations as made by a traditional algorithm.

Our numerical results were obtained from selected members of the test set [2]. The

observations of [9] are very pertinent. For example, it is pointed out in [9] that the

problem E2 is not really stiff, so it provides an interesting test of our algorithm. The

problem was solved with the three scalar, pure absolute error tolerances 10~2, 10~3,

10"4. The formula with finite stability region, 8 = 0.9, did not form a Jacobian in

any case so that the integrations were all carried out entirely with simple iteration.

The A -stable methods, 8 = 0 and 0.1, formed exactly one Jacobian for each

integration. However, all steps were carried out with either the simple or Jacobi

iteration for all the integrations. This performance is about all we could hope for

from our switching algorithms. LSODE 1 used 7-11 Jacobians when doing these

integrations.

For E2 the solutions with 0 = 0.1 and 0.9 were of comparable efficiency, and both

were notably more efficient than the solution with 0 = 0. This was expected from the

local truncation errors. With the truly stiff problems it is too expensive to carry out



TYPE-INSENSITIVE ODE CODES 121

the entire integration with a formula with finite stability region. For this reason the

runs with 8 = 0.9 were limited to 100 successful steps for all our examples.

Computations with this formula simulate the use of an ^(a)-stable formula on a

problem which exhibits a stability restriction. The experiments we report give a good

idea of the performance of our algorithm in a situation we regard as very unusual in

practical computation.

The problem A2 has a constant Jacobian. At the tolerances 10~2, 10 3, the

formula with 6 = 0.9 formed one Jacobian, but all 100 steps were taken with a cheap

iteration method. At the tolerance 10~4, no Jacobian was formed at all. One reason

for using A2 as a test problem was to point out that, with Enright's device and our

algorithm for deciding when to form a Jacobian, we cannot form more than two

Jacobians when the differential equation has a constant Jacobian, as it does here.

This gratifying observation is easily seen to follow from the description of Section 7

and is indicative of the soundness of the approach. In all the runs with 8 = 0 and

0.1, exactly two Jacobians were formed; LSODE1 forms 20-38.

This problem also illustrates the fact that switching methods can be advantageous

even for a stiff problem. For example, with 8 = 0.1 at tolerance 10~2 there were 45

successful steps. Of these 12 were taken with simple iteration, 18 with Jacobi, and 15

with Newton. This is quite a lot of steps with cheap iterations for such a crude

tolerance. At the tolerance 10~4, the 333 successful steps were split among the

iterations as 116, 196, and 21. The results with 8 = 0 are quite similar but

correspondingly more expensive as expected from the local truncation error.

The problem A2 has an obvious limit solution. The numerical results at the end of

the interval agreed with the limit solution to about one more digit than the local

error tolerance in every case. With the /1-stable formulas there were at most two

convergence failures and two rejected steps in a run. With 8 = 0.9 there were no

convergence failures, but there were a significant number of rejected steps. The most

was 7 at the tolerance 10~2. This is to be expected as a consequence of the

interaction with the stability region as discussed in Section 6.

We believe the Liniger-Willoughby problem Dl should be solved in the original

variables for reasons presented in [9]. When this is done, the problem is linear with a

nonconstant Jacobian. The problem was solved with scalar, pure absolute error

tolerances 10~2 and 10~3.

In every case the code took exactly two steps with simple iteration. In the case of

the formula with a finite stability region, 8 = 0.9, one Jacobian was formed for each

integration, but the Newton scheme was never used. The stability region had no

serious effects: there were no convergence failures; one integration had 5 rejected

steps, the other 4.

The solutions of the Liniger-Willoughby problem with the two /1-stable formulas

were quite similar, with 8 = 0.1 somewhat more efficient. There were 1-2 conver-

gence failures in each integration. There were a significant number of rejected steps.

the worse case being 14 rejections associated with 96 successful steps at tolerance

10~2 with 8 = 0.1. We have also found a lot of steps rejected with other kinds of

methods applied to this problem. In [7] we found that how cautious the step size

selection algorithm is plays an important role in this matter. The algorithm imple-

mented in  the 0-family code  is bold,  using a procedure suitable for nonstiff



122 L. F. SHAMPINE

problems. Our algorithm for selecting the iteration method does not cause a new

Jacobian to be formed on a step rejection so that the number of Jacobians formed

ranged from 4 to 5, despite a relatively large number of step rejections. By way of

comparison, LSODE 1 used 24-31.

The Robertson problem D2 is a nonlinear problem of chemical kinetics, which we

solved for the scalar, pure absolute error tolerances 10~2, 10 ~3, 10~4. The formula

with a finite stability region, 8 = 0.9, did not form a Jacobian for the tolerance 10'2

but formed just one for the other two tolerances. All steps were taken with a cheap

iteration method. There were no convergence failures and at most 4 rejected steps in

an integration. The /1-stable formulas had no convergence failures and at most one

rejected step in an integration. The number of Jacobians formed ranged from 2 to 3.

LSODE1 formed 15-45. Prothero [14, p. 135] presents some similar computations

with a more traditional code based on a member of the 0-family. The results are not

directly comparable, but it is worth remarking that his code uses on the order of 20

Jacobians.

9. Conclusion and Acknowledgements. We believe that the analysis and numerical

results presented here demonstrate the feasibility of making some kinds of ODE

codes type-insensitive by the automatic selection of iteration method. Extension of

the results of [10] to v4(a)-stable formulas is more of conceptual than practical

importance. However, we have in addition fully specified the algorithms of [10] and

introduced several important technical improvements. Although stability restrictions

are of little practical importance with the popular ^4(a)-stable formulas, we have

shown a way to enhance the performance of codes then, quite aside from the issue of

selection of iteration method.

The author and his associates L. R. Petzold and H. A. Watts are engaged in a

project to develop a new piece of mathematical software for the solution of ODEs.

Towards this end a number of investigations are being made independently and in

various combinations of team members. The work reported here is an independent

investigation done by the author, with computing assistance provided by L. S. Baca.

The author has benefited from frequent discussions of the investigation with the

other members of the team. Integration of the results with the work of the others has

led to notable improvements.

Numerical Mathematics Division

Sandia National Laboratories

Albuquerque, New Mexico 87185

1. W. H. Enright, " Improving the efficiency of matrix operations in the numerical solution of stiff

ordinary differential equations," AC M Trans. Math. Software, v. 4, 1978, pp. 127-136.

2. W. H. Enright, T. E. Hull & B. Lindberg, "Comparing numerical methods for stiff systems of

O.D.E's," BIT, v. 15, 1975, pp. 10-48.
3. A. C. Hindmarsh, "LSODE and LSOD1, two new initial value ordinary differential equation

solvers," SIGNUM Newsletter^. 15, 1980, pp. 10-11.
4. P. J. van der Houven, Construction of Integration Formulas for Initial Value Problems, North-Hol-

land, Amsterdam, 1977.

5. L. F. Shampine, "Stiffness and non-stiff differential equation solvers," in Numerische Behandlung

von Differentialgleichungen (K. Ansorge et al., eds.), Birkhauser, Basel, 1975.

6. L. F. Shampine, "Evaluation of implicit formulas for the solution of ODEs," BIT, v. 19, 1979, pp.

495-502.
7. L. F. Shampine. "Implementation of Rosenbrock methods," AC M Trans. Math. Software. (To

appear.)



TYPE-INSENSITIVE ODE CODES 123

8. L. F. Shampine, " Implementation of implicit formulas for the solution of ODEs," SI A M J. Sei.

Statist. Comput., v. 1, 1980, pp. 103-118.

9. L. F. Shampine, "Evaluation of a test set for stiff ODE solvers," ACM Trans. Math. Software., v. 7,

1981, pp. 409-420.

10. L. F. Shampine, "Type-insensitive ODE codes based on implicit /(-stable formulas," Math. Co/up..

v. 36, 1981, pp. 499-510.

11. L. F. Shampine & M. K. Gordon, Computer Solution of Ordinary Differential Equations: The Initial

Value Problem, Freeman, San Francisco. Calif., 1975.

12. L. F. Shampine & H. A. Watts, DEPAC—Design of a User Oriented Package of ODE Solvers,

Report SAND79-2374. Sandia National Laboratories, Albuquerque, N. M., 1980.

13. S. Skelboe, "The control of order and steplength for backward differentiation formulas," BIT, v.

17. 1977. pp. 91-107.

14. A. Prothero, "Introduction to stiff problems," Chap. 9 in Modern Numerical Methods for Ordinary

Differential Equations (G. Hall and J. M. Watt, eds.), Clarendon Press, Oxford, 1976.

15. J. Williams, The Problem of Implicit Formulas in Numerical Methods for Stiff Differential Equations.

Report 40, Dept. of Math., Univ. of Manchester, Manchester, England, 1979.


