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On Certain Extrapolation Methods

for the Numerical Solution of

Integro-Differential Equations*

By S. H. Chang

Abstract. Asymptotic error expansions have been obtained for certain numerical methods for

linear Volterra integro-differential equations. These results permit the application of extrapo-

lation procedures. Computational examples are presented.

1. Introduction. Consider the linear Volterra integro-differential equation

/x k(x, s)y(s) ds,

(1)
y(x0)=yo>   x0<x^L,

where a(x), b(x), and k(x, s) are given continuous functions for x0 < x, s < L, and

y0 is a given real number. Numerical solutions of more general Volterra integro-dif-

ferential equations have been investigated by many authors. Methods that use finite

difference and quadrature techniques have been studied by, for example, Brunner

and Lambert [1], Day [2], Feldstein and Sopka [3], Goldfine [4], Linz [6], Makroglou

[8], McKee [9], Mocarsky [10], Wolfe and Phillips [11]. Feldstein and Sopka [3] have

also discussed asymptotic error expansion and extrapolation for their Taylor algo-

rithms for integro-differential equations.

It is the purpose of this paper to study the asymptotic expansions for the errors

associated with certain simple numerical methods. Such a study will permit the

application of extrapolation procedures. As a consequence, high order of accuracy in

the numerical solution of (1) can be obtained with only a modest amount of work.

This will then be demonstrated by computational examples. Our work is inspired by

Linz [7] in which the extrapolation, based on a simple numerical method for linear

Volterra integro-differential equations of the first kind, is very effective.

In the subsequent discussion,^ will denote an approximate value of y(xn), where

xn = x0 + nh, n=l,2,...,N, and h = (L — x0)/N. For the known functions

a(x), b(x), and k(x, s), a,, A,, and k¡j will denote a(x0 + ih), b(x0 + /A), and

k(x0 + ih, x0 +jh).
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2. The Algorithms and Asymptotic Error Expansions. Integrating (1) from xn_x to

xn, we have

(2) y{xn)=y(xn_x)+f" [a(t) + b(t)y(t)]dt + f"  f k(t, s)y(s) ds dt.
xn-\ xn-\     x0

Replacing the integrals from xn_x to xn by the two-step Adams-Moulton rule

, ,4

(3) /*" <t>(x) dx = — [5<p(xn) + 8</>(x„-,) - *(x„_2)] - 24*"'tt),
xn-\

and replacing the remaining inner integral by the Euler-Maclaurin formula (see

Hildebrand [5, p. 202])

(4)

j\(x) dx = h[U(x0) + <p(xx) + ■■■ +<?{xr_x) + 2-<i>{xr)]

12
[4>'(xr) - <¡>'{xQ)] + 0(h4),

we obtain from (2) that

y{xn) = y(xn_x) +-[5(a(xn) + b(x„)y(xn))

+S(a(x^l) + b(xn_l)y(xn-l))

- (a{xn^2) + b(xn_2)y(xn_2))]

(5)

4
+ Í

n - 11 "     '
-zk(xn,x0)y(x0)+ 2 k(xn, x,)y(Xl) + -k(xn, x„)y(xn)

n-2

-k(x„_x,xQ)y(x0) +  2 k(x„_x,xi)y(xi)
i=i

+ jk(x„-l,x„^x)y(xn_x)

;k(xn_2,x0)y(x0)+  2 x(x„_2, x¡)y{x,)
¿=i

+ ïk{xn-2,x„-2)y{xn_2)\

+ Qn,

where

Ô« = -T44^ ds
(k(xn,s)y(s)) + 8

*0 ds
(Hx„-l,s)y(s))

js-(k{xn_2,s)y(s)) + 0(h4),
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or, using (3) again,

(6) Qn = -£f" f(x)dx + 0(h4),

167

where

(7) /(*) = ds
(k(x,s)y(s))

*0

if the function/(x) is C3 in [x0, L].

From (5) we have the following algorithm.

Algorithm A.

Get starting values: y0, yx.

Compute v„, for n = 2,3,... ,7V, according to

yn=yn-\ + Tj[5(an + bnyn) + %(an_x + A„_,yn_x) - (an_2 + bn_2yn_2)]12

(8)
12

n-\
1 "     ' 1

5( -kn,oy0 + 2 k»,,y, + -kn,nyn

n-2

+ %\-kn-\,0y0+    2   *«-l,i>ll+2*«-l.«-lÄ-l

n-3
1 "~D

^n-2,0^0 +    2i   kn-2,¡yi + ^"^n-2,n-2>'n-
1=1

Now, let e(x) be the solution of

(9) e'(x) = b(x)e(x)+fk(x,s)e(s)ds-^f(x),   e(x0) = 0,

where/(x) is given by (7). Using the same approach as before and with appropriate

assumption on smoothness, we have

e(x„) = e(xn_x) + — [5A(x„)e(xJ + 8A(x„_,)e(xn_,) - A(x„_2)e(x„_2)]

+#

12

n-l
1

2 k{x„, Xi)e(x,) + -k(x„, x„)e(x„)
i=i

(10) + 8
1n-l

2 A(x„_,, x,)e(x,) + yA(xn_,, xn_x)e(xn_x)

i=i

n-3
1

2 k{x„-2, xi)e(xi) + yA(x„_2, x„_2)e(x„_2)
i=i

-±f"f(x)dx + 0(hi).
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Let p„ = v(xJ -y„ - h2e(xn), n = 0,1,... ,7V. We see from (5), (8), and (10) that Pn

satisfies the following equation.

Pn = Pn-l  + ~2 (5b"Pn + 8è"-'P"-'  ~ bn-2Pn-2)

(H)

12 5      2  K,iP,1 + 2 kn,nPn\   +8 12  K-\,iP><+ ^ K-\,n-\Pn-\\

1-3 j )

2   K-2,iPi + ^kn-2,n-2Pn-2
1=1

+ 0(h4),       n>2.

we cho^

v(x,)-v, = 0(A4).

By assumption on initial conditions, p0 = 0. Suppose we choose the starting value y,

so that

Furthermore,

/12) e(xx) = e(x0) + e'(x0)h + 2-e"(x0)h2 + ...

= ie"(x0)h2 + ...,

since e(x0) = e'(x0) = 0 by (9). Then we have

(13) p1=j(x,)-y,-A2e(x1) = 0(A4).

Then, it is clear that (11) implies pn = 0(h4), for n > 2.

We have thus proved the following theorem.

Theorem 1. Assume that a(x) and b(x) are C3, and k(x, s) is C3'4, for x0 < x,

s < L. Then the approximations yn, n > 2, computed from Algorithm A vv/'i// 0(h4)

starting values, satisfy the relation

y{xn)=yn + h2e(xn) + 0(h4).

Now, the extrapolation procedure can be used. Let T(x, A) denote the approxi-

mate solution at x with step-size A. Then, by Theorem 1, we have

y(x) = Y(x, h) + h2e(x) + 0(h4).

We then obtain immediately that

y(x) = }(4y(x,f)-y(x,A)) + 0(A4).

Thus a better approximate value at x is obtained with fourth order accuracy.

Now, instead of (3), let us use the three-step Adams-Moulton rule

f" <¡>(x) dx = — [9<#>(xJ + 19<i»(x„_,) - 5<i>(xM_2) + 4>(x„_3)]

(14) *"-
19/t5

720 9   U;'

together with the Euler-Maclaurin formula (4), in Eq. (2). This leads to the following

algorithm.
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Algorithm B.

Get starting values: y0,yx,y2.

Compute>>„, for n = 3,4,... ,7V, according to

yn=yn-\ + 24[9{aH + b„y„) + \9(a„_x + bn_xyn_x)

-5(an_2 + b„_2y„_2) + a„_3 + A„_3y„_3]

A2'
+ 24

1 "_1 1
9( -k„fiy0 + 2 knJy, + -knnyn

i=i
2

(15) / 1 "~2 1
+ 19   2-A„_,,0>'o+ 2 k„_uy¡ + ^kn_Xn_xyn_x

/ 1 "~3 1
~~   I 2   "~2-0^0 +  ^ k„-2<iy,■ + — kn_2n_2yn_2

/ 1 ""4 1
+      2 *»-3jOÄ +    2   fr«-3,/^ +  j ^n-3,n-3J„-

Again, let e(x) be the solution of (9) and pn = y(xn) — yn — h2e(xn), n =

0,1,...,TV. This time we find that p„ satisfies an equation similar to (11) but for

n 3s 3 and with an 0(A5) error term. Using an argument similar to that leading to

(13), we obtain easily that px = p2 = 0(h4). Then this leads again to the asymptotic

error expansion

y(xJ=j„ + A2e(x„) + 0(A4).

Now, from (9) we see that

e"{xo) = —^/'(xo)-

Suppose that

(16) f'(x0) = O(h).

Then from (12) we will have e(x0 + A) = 0(h3). This in turn will lead to px = p2 =

0(h5) if we choose 0(h5) starting values. Then the equation on pn implies that

p„ = 0(h5), and thus the asymptotic error expansion

y{xn)=yn + h2e(xn) + 0(hi).

By differentiating (7) we have

(17) f'{x0) = kss(x0, x0)y(x0) + 2A,(x0, x0)y'(x0) + k(x0, x0)y"(x0).

One sufficient condition for (16) to hold is seen to be

(18) k(x0, x0) = ks(x0, x0) = kss(x0, x0) = 0.

Theorem 2. Assume that a(x) and b(x) are C4, and k(x, s) is C4,5, for x0 < x,

s =s L. Then the approximations yn, n > 3, computed from Algorithm B with 0(h4)

starting values, satisfy the relation

y{xn)=yn + h2e(xn) + 0(h4).
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If, furthermore, (16) is satisfied, then the values yn, n > 3, computed from Algorithm B

with 0(h5) starting values, satisfy the relation

y{xn)=yn + h2e(xn) + 0(h5).

3. Computational Examples.

Example 1.

y'(x) = \- fy(s)ds,       y(0) = 0,       0<x<l.

The exact solution isy(x) = sin x.

Example 2.

fX
y'{x) = 1 + sin x — y(x) + 1   sin(x — ■OK5) ds,

^(0) = 0,       0<x<l.

The exact solution is y(x) = x.

For Example 1, we see that f'(x0) = 0 by (17). Both Algorithms A and B, with

appropriate starting values, are used in computing the approximate solution. We list

in Tables 1, 2, and 3 some of the resulting errors, before and after extrapolation. By

error we mean

error = | exact value — approximate value | .

For Example 2, the approximate solution is computed using only Algorithm A. The

resulting errors are listed in Tables 4 and 5. The effect of extrapolation is apparent

from these tables.

The programs are written in FORTRAN in double precision for the IBM 370/158

computer at the Cleveland State University.

Table 1

Example 1, Algorithm A

x h = 0.1                 h = 0.05               h = 0.025

0.4 1.13 X 10"5 2.55 X 10"6 5.95 X 10"7

0.6 3.50 X 10"5 8.06 X 10"6 1.92 X 10"6

0.8 7.75 X 10"5 1.81 X 10"5 4.35 X 10"6

1.0 1.42 X 10"4 3.35 X 10"5 8.11 X 10"6

Table 2

Example 1, Algorithm B

a                A = 0.1                 n = 0.05 h = 0.025

0.4           8.47 X 10~6           2.21 X 10"6 5.49 X 10'7

0.6           2.92 X 10"5           7.28 X 10"6 1.81 X 10"6

0.8           6.73 X 10"5           1.67 X 10~5 4.17 X 10"6

1.0           1.26 X 10"4           3.15 X 10"5 7.85 X 10"6
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Table 3

Example 1, after extrapolation

Algorithm A Algorithm B

0.1 0.05 = 0.1 h = 0.05

0.4

0.6

0.8

1.0

3.54 X 10"7

9.28 X 10"7

1.70 X 10"6

2.60 X 10"6

5.72 X 10"8

1.33 X 10"7

2.32 X 10"7

3.46 X 10~7

1.25 X 10"7

4.46 X 10"9

1.18 X 10"7

2.06 X 10"7

4.10 X 10"9

1.13 X 10"8

1.70 X 10"8

2.07 X 10~8

Table 4

Example 2, Algorithm A

/i = 0.1 h = 0.05 h = 0.025

0.4

0.6

0.8

1.0

1.14 X 10"4

2.42 X 10"4

4.05 X 10"4

5.93 X lO"4

2.89 X 10~5

6.11 X 10"5

1.02 X 10"4

1.49 X 10"4

7.27 X 10"6

1.53 X 10'5

2.54 X 10"5

3.72 X 10"5

Table 5

Example 2, Algorithm A, after extrapolation

A = 0.1 0.05

0.4

0.6

0.8

1.0

7.42 X 10"7

6.16 X lu"7

5.28 X 10"7

4.78 X 10"7

4.51 X 10"

3.76 X 10'

3.25 X 10"

2.97 X 10"
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