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On Certain Extrapolation Methods
for the Numerical Solution of
Integro-Differential Equations*

By S. H. Chang

Abstract. Asymptotic error expansions have been obtained for certain numerical methods for
linear Volterra integro-differential equations. These results permit the application of extrapo-
lation procedures. Computational examples are presented.

1. Introduction. Consider the linear Volterra integro-differential equation

y(x) = a(x) + b(x)y(x) + [ k(x, 5)p(s) ds,
(1) °

J’(xo) =)o, XgSXxS<L,

where a(x), b(x), and k(x, s) are given continuous functions for x, < x, s < L, and
Yo is a given real number. Numerical solutions of more general Volterra integro-dif-
ferential equations have been investigated by many authors. Methods that use finite
difference and quadrature techniques have been studied by, for example, Brunner
and Lambert [1], Day [2], Feldstein and Sopka [3], Goldfine [4], Linz [6], Makroglou
[8], McKee [9], Mocarsky [10], Wolfe and Phillips [11]. Feldstein and Sopka [3] have
also discussed asymptotic error expansion and extrapolation for their Taylor algo-
rithms for integro-differential equations.

It is the purpose of this paper to study the asymptotic expansions for the errors
associated with certain simple numerical methods. Such a study will permit the
application of extrapolation procedures. As a consequence, high order of accuracy in
the numerical solution of (1) can be obtained with only a modest amount of work.
This will then be demonstrated by computational examples. Our work is inspired by
Linz [7] in which the extrapolation, based on a simple numerical method for linear
Volterra integro-differential equations of the first kind, is very effective.

In the subsequent discussion, y, will denote an approximate value of y(x, ), where
x,=xo+tnh, n=12,...,N, and h= (L — x,)/N. For the known functions
a(x), b(x), and k(x,s), a;, b;, and k, ; will denote a(x, + ih), b(x, + ih), and
k(xy + ih, x4 + jh).
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2. The Algorithms and Asymptotic Error Expansions. Integrating (1) from x,_, to
x,, we have

@ y(x) =) + [ La() + by di+ [ ['k(1,5)p(s) ds .

Xn—1"Xo

Replacing the integrals from x, _, to x,, by the two-step Adams-Moulton rule

O [ o) de = [56(x,) + 80(x,) — #(x,-0)] ~ 2o (@),

Xn—1
~—

and replacing the remaining inner integral by the Euler-Maclaurin formula (see
Hildebrand [5, p. 202])

[ o(x) dx = h[3o(xo) + 6(x)) + -+ +9(x,_) +6(x,)]
(4) A X
- L [8(x) — #(x0)] + O(hY),

we obtain from (2) that

$(%) = Y(x,1) + 15 [5(alx,) + b(x,)y(x,))
+8(a(xn—]) + b(xn—l)y(‘xn—l))

- (a('xn—Z) + b(xn—Z)y(xn—Z))]

+ ?—2{5[%/((%, x0)¥(xo) + :1 k(x,, x;)y(x;) + %k(xn, x”)y(xn)]

n—2
+8 %k(xn—l, x0)¥(xo) + 2 k(x,_y, x;)y(x,)
i=1
(5) !
+ Ek(xn——h xn——l)y('xn—l)]
. n—3
B Ek(xn—29 xo)y(x0) + 2 k(x,-2, x,)y(x,)
i=1
1
+ Ek(x"—z’ xn—Z)y('xn—Z)]}
+ Qn ’
where

0. =~z {5 ka1 D)] + 8 (kx|

[ ktxaae 1)) 7+ 0,
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or, using (3) again,

© 0= -1 [ x)ax + o(h*)
where
™) 1) = 35 (k. )260)]

if the function f(x) is C?in [x,, L].
From (5) we have the following algorithm.
ALGORITHM A.
Get starting values: y,, y,.
Compute y,, forn = 2,3,...,N, according to

h
In = Yn—1 + _1—2— [5(0" + bnyn) + 8(an—l + bn—lyn—l) - (an—2 + bn—Zyn—2)]

h2
t

1 " 1
5(_2—kn,0y0 + 2 kn,iyi + Ekn,nyn)
8 i=1
(®) 1 - 1
+38 Ekn—l,OyO + 2 kn—l,iyi + Ekn-l,n—lyn—l

i=1

1 "2 1
- ('fkn—z,o)’o + 2 ko2 ¥t Ekn—2,n—2yn—2)
i=1

=

Now, let e(x) be the solution of
9) au)=an4n+£§uJyuyw-%ﬂn,eugzm

where f(x) is given by (7). Using the same approach as before and with appropriate
assumption on smoothness, we have

e(x,) = e(x,1) + 1 [5b(x,)e(x,) + 8b(x, Je(xy-1) = Bxy—2)e(x,3)]
+'1'—;{5

(10) +8

3 k(i m)e(x) + 3k(x, x,.)e(xn)}

n—2
3 kxpo, x)e() + gk(xn-o xn_.)e<x,._.>]

[2 (2, %)e(x) +%k(x,,_2,xn_z>e(x,,_z)”

— o5 [ f(x) dx + O().

X,
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Let p, = y(x,) — y, — h%e(x,), n = 0,1,...,N. We see from (5), (8), and (10) that p,
satisfies the following equation.

h
Pn = Pn—1 + E(Sbnpn + 8bn—lpn—l - bn—2pn—2)

2
s

+
12 8

n—2 1
k,_1p; t Ekn—l,n—lpn—l
=1

i=

n—1 1
5( 2 kn ipi + Ekn npn
i=1 ' '

(11)
n—3 l
- ( kn—2,ipi + Ekn—Z,n—2pn—2)]
=1

1

+ O(h*), n=2.

By assumption on initial conditions, p, = 0. Suppose we choose the starting value y,
so that

y(x;) =y, = O(n*).
Furthermore,
(12) e(x,) =e(xy) + e'(xg)h + e"(xy)h* + ...
=le"(xg)h* + ...,

since e(x,) = e’(xy) = 0 by (9). Then we have
(13) py = y(x,) =y — hPe(x,) = O(h*).
Then, it is clear that (11) implies p, = O(h*), for n = 2.

We have thus proved the following theorem.

THEOREM 1. Assume that a(x) and b(x) are C>, and k(x, s) is C**, for x, < x,
s < L. Then the approximations y,, n = 2, computed from Algorithm A with O(h*)
starting values, satisfy the relation

¥(x,) =y, + he(x,) + O(h*).

Now, the extrapolation procedure can be used. Let Y(x, k) denote the approxi-

mate solution at x with step-size 4. Then, by Theorem 1, we have
y(x) = Y(x, h) + h%(x) + O(h*).

We then obtain immediately that

y(x) = %(4Y(x, g) ~ ¥(x, h)) + O(h*).

Thus a better approximate value at x is obtained with fourth order accuracy.
Now, instead of (3), let us use the three-step Adams-Moulton rule

[ 0(x) dx = 2 [96(x,) + 196(x,-,) — 58(x,2) + (x,5)]
(14 ™

_ 19k

together with the Euler-Maclaurin formula (4), in Eq. (2). This leads to the following
algorithm.
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ALGORITHM B.
Get starting values: y,, y,, y,.
Compute y,, for n = 3,4,...,N, according to

h
Yn =yn—l + ﬂ[g(an + bnyn) + 19(an—l + bn—lyn—l)

_5((1"_2 + bn—Zyn—Z) + a,_3 + bn—3yn—3]

1 =

h? : 1
ikn.OyO + 2 kn,iyi + Ekn,nyn
i=1

+379

1 "2 1
Ekn—-l,OyO + 2 ko1 yit Ekn—l,n—lyn—l)
i=1

i=

(13) +19

1 n—3 1
_S(Ekn—z,o)’o + 2 kn2i¥it Ekn—Z,n—2yn—2)
i=1

1

+

1 n—4 1
Ekn—3,0)’0 + 'EI kn—s.5+ Ekn—3,n—3yn—3)}'
i=

Again, let e(x) be the solution of (9) and p, = y(x,) — y, — h’e(x,), n=
0,1,...,N. This time we find that p, satisfies an equation similar to (11) but for
n =3 and with an O(h®) error term. Using an argument similar to that leading to
(13), we obtain easily that p, = p, = O(h*). Then this leads again to the asymptotic
error expansion

y(x,) =y, + h?e(x,) + O(h*).

Now, from (9) we see that

e"(x0) = -5 /'(x0).
Suppose that
(16) f'(xo) = O(h).
Then from (12) we will have e(x, + ) = O(h?*). This in turn will lead to p, = p, =
O(h®) if we choose O(h®) starting values. Then the equation on p, implies that
p, = O(h®), and thus the asymptotic error expansion
y(x,) =y, + hle(x,) + O(K*).

By differentiating (7) we have
(1) f'(xg) = k(x5 x0)¥(x0) + 2k (x0, %0)y'(x) + k(g5 X0)»"(xo)-
One sufficient condition for (16) to hold is seen to be
(18) k(xg, xo) = ky(xo, x9) = ky(xo, %9) = 0.

THEOREM 2. Assume that a(x) and b(x) are C*, and k(x, s) is C*°, for x, < x,

s < L. Then the approximations y,, n =3, computed from Algorithm B with O(h*)
starting values, satisfy the relation

y(x,) =y, + h%(x,) + O(h*).
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If, furthermore, (16) is satisfied, then the values y,, n = 3, computed from Algorithm B
with O(h>) starting values, satisfy the relation

y(x,) =y, + h’e(x,) + O(F*).

3. Computational Examples.
Example 1.

y(x) =1 —/"y(s)ds, y(0)=0, O<x<l.
0

The exact solution is y(x) = sin x.
Example 2.

X

y'(x)=1+sinx — y(x) +f sin(x — s)y(s) ds,
0
y(0)=0, O0<x<I.

The exact solution is y(x) = x.

For Example 1, we see that f'(x,) = 0 by (17). Both Algorithms A and B, with
appropriate starting values, are used in computing the approximate solution. We list
in Tables 1, 2, and 3 some of the resulting errors, before and after extrapolation. By
error we mean

error =| exact value — approximate value | .

For Example 2, the approximate solution is computed using only Algorithm A. The
resulting errors are listed in Tables 4 and 5. The effect of extrapolation is apparent

from these tables.
The programs are written in FORTRAN in double precision for the IBM 370 /158
computer at the Cleveland State University.

TaBLE 1
Example 1, Algorithm A

x h=0.1 h =005 h=0025

04 1.13 X 1073 2.55 X 1076 5.95 X 1077

0.6 3.50 X 103 8.06 X 1076 1.92 X 1076

0.8 775 X 10°3 1.81 X 1073 435% 1078

1.0 1.42 X 1074 335X 1075 8.11 X 107
TABLE 2

Example 1, Algorithm B

x h=0.1 h = 0.05 h =0.025
0.4 8.47 X 10°¢ 221 X107 5.49 X 1077
0.6 292 X 1073 7.28 X 1078 1.81 X 106
0.8 6.73 X 10~° 1.67 X 1073 417 %1076

1.0 1.26 X 10™* 3.15 X 1073 7.85 X 1076
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TABLE 3
Example 1, after extrapolation

Algorithm A Algorithm B
x h=0.1 h =005 h=0.1 h = 0.05
0.4 3.54 X 1077 572 % 1078 1.25 X 1077 4.10 X 107°
0.6 9.28 X 1077 1.33 X 1077 4.46 X 10~° 1.13 X 1078
0.8 1.70 X 10°° 232 % 1077 1.18 X 1077 1.70 X 1078
1.0 2.60 X 107° 3.46 X 1077 2.06 X 1077 2.07 X 1078

TABLE 4
Example 2, Algorithm A

x h=0.1 h =005 h=0.025
0.4 1.14 X 10™* 2.89 X 1073 7.27 X 107°
0.6 242 %107 6.11 X 1073 1.53 X 10~°
0.8 4.05 X 107* 1.02 X 10~ 254X 1073
1.0 5.93 x 104 1.49 X 107 3.72 X 1073

TABLE 5

Example 2, Algorithm A, after extrapolation

x h=01 h=0.05

0.4 7.42 %< 1077 451 x 1078
0.6 6.16 X 1077 3.76 X 1078
0.8 5.28 X 1077 3.25 X 1078
1.0 478 X 1077 297 %1078
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