On Certain Extrapolation Methods for the Numerical Solution of Integro-Differential Equations*

By S. H. Chang

Abstract. Asymptotic error expansions have been obtained for certain numerical methods for linear Volterra integro-differential equations. These results permit the application of extrapolation procedures. Computational examples are presented.

1. Introduction. Consider the linear Volterra integro-differential equation

(1)
$$y'(x) = a(x) + b(x)y(x) + \int_{x_0}^{x} k(x, s)y(s) ds,$$
$$y(x_0) = y_0, \quad x_0 \le x \le L,$$

where a(x), b(x), and k(x, s) are given continuous functions for $x_0 \le x$, $s \le L$, and y_0 is a given real number. Numerical solutions of more general Volterra integro-differential equations have been investigated by many authors. Methods that use finite difference and quadrature techniques have been studied by, for example, Brunner and Lambert [1], Day [2], Feldstein and Sopka [3], Goldfine [4], Linz [6], Makroglou [8], McKee [9], Mocarsky [10], Wolfe and Phillips [11]. Feldstein and Sopka [3] have also discussed asymptotic error expansion and extrapolation for their Taylor algorithms for integro-differential equations.

It is the purpose of this paper to study the asymptotic expansions for the errors associated with certain simple numerical methods. Such a study will permit the application of extrapolation procedures. As a consequence, high order of accuracy in the numerical solution of (1) can be obtained with only a modest amount of work. This will then be demonstrated by computational examples. Our work is inspired by Linz [7] in which the extrapolation, based on a simple numerical method for linear Volterra integro-differential equations of the first kind, is very effective.

In the subsequent discussion, y_n will denote an approximate value of $y(x_n)$, where $x_n = x_0 + nh$, n = 1, 2, ..., N, and $h = (L - x_0)/N$. For the known functions a(x), b(x), and k(x, s), a_i , b_i , and $k_{i,j}$ will denote $a(x_0 + ih)$, $b(x_0 + ih)$, and $k(x_0 + ih, x_0 + jh)$.

Received October 2, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 65R20; Secondary 65D30.

^{*}This research was supported in part by the CSU RACA grants program.

2. The Algorithms and Asymptotic Error Expansions. Integrating (1) from x_{n-1} to x_n , we have

(2)
$$y(x_n) = y(x_{n-1}) + \int_{x_{n-1}}^{x_n} [a(t) + b(t)y(t)] dt + \int_{x_{n-1}}^{x_n} \int_{x_0}^t k(t, s)y(s) ds dt.$$

Replacing the integrals from x_{n-1} to x_n by the two-step Adams-Moulton rule

(3)
$$\int_{x_{n-1}}^{x_n} \phi(x) dx = \frac{h}{12} \left[5\phi(x_n) + 8\phi(x_{n-1}) - \phi(x_{n-2}) \right] - \frac{h^4}{24} \phi'''(\xi),$$

and replacing the remaining inner integral by the Euler-Maclaurin formula (see Hildebrand [5, p. 202])

(4)
$$\int_{x_0}^{x_r} \phi(x) dx = h \Big[\frac{1}{2} \phi(x_0) + \phi(x_1) + \dots + \phi(x_{r-1}) + \frac{1}{2} \phi(x_r) \Big] - \frac{h^2}{12} \Big[\phi'(x_r) - \phi'(x_0) \Big] + O(h^4),$$

we obtain from (2) that

$$y(x_{n}) = y(x_{n-1}) + \frac{h}{12} \left[5(a(x_{n}) + b(x_{n})y(x_{n})) + 8(a(x_{n-1}) + b(x_{n-1})y(x_{n-1})) - (a(x_{n-2}) + b(x_{n-2})y(x_{n-2})) \right] + \frac{h^{2}}{12} \left\{ 5 \left[\frac{1}{2} k(x_{n}, x_{0})y(x_{0}) + \sum_{i=1}^{n-1} k(x_{n}, x_{i})y(x_{i}) + \frac{1}{2} k(x_{n}, x_{n})y(x_{n}) \right] + 8 \left[\frac{1}{2} k(x_{n-1}, x_{0})y(x_{0}) + \sum_{i=1}^{n-2} k(x_{n-1}, x_{i})y(x_{i}) + \frac{1}{2} k(x_{n-1}, x_{n-1})y(x_{n-1}) \right] - \left[\frac{1}{2} k(x_{n-2}, x_{0})y(x_{0}) + \sum_{i=1}^{n-3} k(x_{n-2}, x_{i})y(x_{i}) + \frac{1}{2} k(x_{n-2}, x_{n-2})y(x_{n-2}) \right] \right\} + Q_{n},$$

where

$$Q_{n} = -\frac{h^{3}}{144} \left\{ 5 \left[\frac{\partial}{\partial s} (k(x_{n}, s)y(s)) \right]_{x_{0}}^{x_{n}} + 8 \left[\frac{\partial}{\partial s} (k(x_{n-1}, s)y(s)) \right]_{x_{0}}^{x_{n-1}} - \left[\frac{\partial}{\partial s} (k(x_{n-2}, s)y(s)) \right]_{x_{0}}^{x_{n-2}} \right\} + O(h^{4}),$$

or, using (3) again,

(6)
$$Q_n = -\frac{h^2}{12} \int_{x_{n-1}}^{x_n} f(x) dx + O(h^4),$$

where

(7)
$$f(x) = \left[\frac{\partial}{\partial s}(k(x,s)y(s))\right]_{x_0}^x$$

if the function f(x) is C^3 in $[x_0, L]$.

From (5) we have the following algorithm.

ALGORITHM A.

Get starting values: y_0, y_1 .

Compute y_n , for n = 2, 3, ..., N, according to

$$y_{n} = y_{n-1} + \frac{h}{12} \left[5(a_{n} + b_{n}y_{n}) + 8(a_{n-1} + b_{n-1}y_{n-1}) - (a_{n-2} + b_{n-2}y_{n-2}) \right]$$

$$+ \frac{h^{2}}{12} \left[5 \left(\frac{1}{2} k_{n,0} y_{0} + \sum_{i=1}^{n-1} k_{n,i} y_{i} + \frac{1}{2} k_{n,n} y_{n} \right) \right]$$

$$+ 8 \left(\frac{1}{2} k_{n-1,0} y_{0} + \sum_{i=1}^{n-2} k_{n-1,i} y_{i} + \frac{1}{2} k_{n-1,n-1} y_{n-1} \right)$$

$$- \left(\frac{1}{2} k_{n-2,0} y_{0} + \sum_{i=1}^{n-3} k_{n-2,i} y_{i} + \frac{1}{2} k_{n-2,n-2} y_{n-2} \right) \right].$$

Now, let e(x) be the solution of

(9)
$$e'(x) = b(x)e(x) + \int_{x_0}^x k(x,s)e(s) ds - \frac{1}{12}f(x), \quad e(x_0) = 0,$$

where f(x) is given by (7). Using the same approach as before and with appropriate assumption on smoothness, we have

$$e(x_{n}) = e(x_{n-1}) + \frac{h}{12} \left[5b(x_{n})e(x_{n}) + 8b(x_{n-1})e(x_{n-1}) - b(x_{n-2})e(x_{n-2}) \right]$$

$$+ \frac{h^{2}}{12} \left\{ 5 \left[\sum_{i=1}^{n-1} k(x_{n}, x_{i})e(x_{i}) + \frac{1}{2}k(x_{n}, x_{n})e(x_{n}) \right] \right.$$

$$+ 8 \left[\sum_{i=1}^{n-2} k(x_{n-1}, x_{i})e(x_{i}) + \frac{1}{2}k(x_{n-1}, x_{n-1})e(x_{n-1}) \right]$$

$$- \left[\sum_{i=1}^{n-3} k(x_{n-2}, x_{i})e(x_{i}) + \frac{1}{2}k(x_{n-2}, x_{n-2})e(x_{n-2}) \right] \right\}$$

$$- \frac{1}{12} \int_{x_{n-1}}^{x_{n}} f(x) dx + O(h^{3}).$$

Let $\rho_n = y(x_n) - y_n - h^2 e(x_n)$, n = 0, 1, ..., N. We see from (5), (8), and (10) that ρ_n satisfies the following equation.

$$\rho_{n} = \rho_{n-1} + \frac{h}{12} \left(5b_{n}\rho_{n} + 8b_{n-1}\rho_{n-1} - b_{n-2}\rho_{n-2} \right) + \frac{h^{2}}{12} \left[5 \left(\sum_{i=1}^{n-1} k_{n,i}\rho_{i} + \frac{1}{2}k_{n,n}\rho_{n} \right) + 8 \left(\sum_{i=1}^{n-2} k_{n-1,i}\rho_{i} + \frac{1}{2}k_{n-1,n-1}\rho_{n-1} \right) - \left(\sum_{i=1}^{n-3} k_{n-2,i}\rho_{i} + \frac{1}{2}k_{n-2,n-2}\rho_{n-2} \right) \right]$$

$$+ O(h^4), \quad n \geq 2.$$

By assumption on initial conditions, $\rho_0 = 0$. Suppose we choose the starting value y_1 so that

$$v(x_1) - v_1 = O(h^4).$$

Furthermore,

(12)
$$e(x_1) = e(x_0) + e'(x_0)h + \frac{1}{2}e''(x_0)h^2 + \dots$$
$$= \frac{1}{2}e''(x_0)h^2 + \dots,$$

since $e(x_0) = e'(x_0) = 0$ by (9). Then we have

(13)
$$\rho_1 = y(x_1) - y_1 - h^2 e(x_1) = O(h^4).$$

Then, it is clear that (11) implies $\rho_n = O(h^4)$, for $n \ge 2$.

We have thus proved the following theorem.

THEOREM 1. Assume that a(x) and b(x) are C^3 , and k(x, s) is $C^{3,4}$, for $x_0 \le x$, $s \le L$. Then the approximations y_n , $n \ge 2$, computed from Algorithm A with $O(h^4)$ starting values, satisfy the relation

$$y(x_n) = y_n + h^2 e(x_n) + O(h^4).$$

Now, the extrapolation procedure can be used. Let Y(x, h) denote the approximate solution at x with step-size h. Then, by Theorem 1, we have

$$y(x) = Y(x, h) + h^2 e(x) + O(h^4).$$

We then obtain immediately that

$$y(x) = \frac{1}{3} \left(4Y\left(x, \frac{h}{2}\right) - Y(x, h) \right) + O(h^4).$$

Thus a better approximate value at x is obtained with fourth order accuracy.

Now, instead of (3), let us use the three-step Adams-Moulton rule

(14)
$$\int_{x_{n-1}}^{x_n} \phi(x) dx = \frac{h}{24} \left[9\phi(x_n) + 19\phi(x_{n-1}) - 5\phi(x_{n-2}) + \phi(x_{n-3}) \right] - \frac{19h^5}{720} \phi^{(4)}(\xi),$$

together with the Euler-Maclaurin formula (4), in Eq. (2). This leads to the following algorithm.

ALGORITHM B.

Get starting values: y_0, y_1, y_2 .

Compute y_n , for n = 3, 4, ..., N, according to

$$y_{n} = y_{n-1} + \frac{h}{24} \left[9(a_{n} + b_{n}y_{n}) + 19(a_{n-1} + b_{n-1}y_{n-1}) - 5(a_{n-2} + b_{n-2}y_{n-2}) + a_{n-3} + b_{n-3}y_{n-3} \right]$$

$$+ \frac{h^{2}}{24} \left[9 \left(\frac{1}{2} k_{n,0} y_{0} + \sum_{i=1}^{n-1} k_{n,i} y_{i} + \frac{1}{2} k_{n,n} y_{n} \right) + 19 \left(\frac{1}{2} k_{n-1,0} y_{0} + \sum_{i=1}^{n-2} k_{n-1,i} y_{i} + \frac{1}{2} k_{n-1,n-1} y_{n-1} \right) - 5 \left(\frac{1}{2} k_{n-2,0} y_{0} + \sum_{i=1}^{n-3} k_{n-2,i} y_{i} + \frac{1}{2} k_{n-2,n-2} y_{n-2} \right) + \left(\frac{1}{2} k_{n-3,0} y_{0} + \sum_{i=1}^{n-4} k_{n-3,i} y_{i} + \frac{1}{2} k_{n-3,n-3} y_{n-3} \right) \right].$$

Again, let e(x) be the solution of (9) and $\rho_n = y(x_n) - y_n - h^2 e(x_n)$, n = 0, 1, ..., N. This time we find that ρ_n satisfies an equation similar to (11) but for $n \ge 3$ and with an $O(h^5)$ error term. Using an argument similar to that leading to (13), we obtain easily that $\rho_1 = \rho_2 = O(h^4)$. Then this leads again to the asymptotic error expansion

$$y(x_n) = y_n + h^2 e(x_n) + O(h^4).$$

Now, from (9) we see that

$$e''(x_0) = -\frac{1}{12}f'(x_0).$$

Suppose that

$$(16) f'(x_0) = O(h).$$

Then from (12) we will have $e(x_0 + h) = O(h^3)$. This in turn will lead to $\rho_1 = \rho_2 = O(h^5)$ if we choose $O(h^5)$ starting values. Then the equation on ρ_n implies that $\rho_n = O(h^5)$, and thus the asymptotic error expansion

$$y(x_n) = y_n + h^2 e(x_n) + O(h^5).$$

By differentiating (7) we have

$$(17) \quad f'(x_0) = k_{ss}(x_0, x_0)y(x_0) + 2k_{s}(x_0, x_0)y'(x_0) + k(x_0, x_0)y''(x_0).$$

One sufficient condition for (16) to hold is seen to be

(18)
$$k(x_0, x_0) = k_s(x_0, x_0) = k_{ss}(x_0, x_0) = 0.$$

THEOREM 2. Assume that a(x) and b(x) are C^4 , and k(x, s) is $C^{4,5}$, for $x_0 \le x$, $s \le L$. Then the approximations y_n , $n \ge 3$, computed from Algorithm B with $O(h^4)$ starting values, satisfy the relation

$$y(x_n) = y_n + h^2 e(x_n) + O(h^4).$$

170 S. H. CHANG

If, furthermore, (16) is satisfied, then the values y_n , $n \ge 3$, computed from Algorithm B with $O(h^5)$ starting values, satisfy the relation

$$y(x_n) = y_n + h^2 e(x_n) + O(h^5).$$

3. Computational Examples.

Example 1.

$$y'(x) = 1 - \int_0^x y(s) ds$$
, $y(0) = 0$, $0 \le x \le 1$.

The exact solution is $y(x) = \sin x$.

Example 2.

$$y'(x) = 1 + \sin x - y(x) + \int_0^x \sin(x - s) y(s) ds,$$

$$y(0) = 0, \qquad 0 \le x \le 1.$$

The exact solution is y(x) = x.

For Example 1, we see that $f'(x_0) = 0$ by (17). Both Algorithms A and B, with appropriate starting values, are used in computing the approximate solution. We list in Tables 1, 2, and 3 some of the resulting errors, before and after extrapolation. By error we mean

$$error = | exact value - approximate value |$$
.

For Example 2, the approximate solution is computed using only Algorithm A. The resulting errors are listed in Tables 4 and 5. The effect of extrapolation is apparent from these tables.

The programs are written in FORTRAN in double precision for the IBM 370/158 computer at the Cleveland State University.

TABLE 1
Example 1, Algorithm A

x	h = 0.1	h = 0.05	h = 0.025
0.4	1.13×10^{-5}	2.55×10^{-6}	5.95×10^{-7}
0.6	3.50×10^{-5}	8.06×10^{-6}	1.92×10^{-6}
0.8	7.75×10^{-5}	1.81×10^{-5}	4.35×10^{-6}
1.0	1.42×10^{-4}	3.35×10^{-5}	8.11×10^{-6}

TABLE 2
Example 1, Algorithm B

x	h = 0.1	h=0.05	h = 0.025
0.4	8.47×10^{-6}	2.21×10^{-6}	5.49×10^{-7}
0.6	2.92×10^{-5}	7.28×10^{-6}	1.81×10^{-6}
0.8	6.73×10^{-5}	1.67×10^{-5}	4.17×10^{-6}
1.0	1.26×10^{-4}	3.15×10^{-5}	7.85×10^{-6}

	Table 3
Example	1, after extrapolation

	Algorithm A		Algorithm B	
х	h = 0.1	h = 0.05	h = 0.1	h = 0.05
0.4	3.54×10^{-7}	5.72×10^{-8}	1.25×10^{-7}	4.10×10^{-9}
0.6	9.28×10^{-7}	1.33×10^{-7}	4.46×10^{-9}	1.13×10^{-8}
0.8	1.70×10^{-6}	2.32×10^{-7}	1.18×10^{-7}	1.70×10^{-8}
1.0	2.60×10^{-6}	3.46×10^{-7}	2.06×10^{-7}	2.07×10^{-8}

TABLE 4
Example 2, Algorithm A

x	h = 0.1	h=0.05	h = 0.025
0.4	1.14×10^{-4}	2.89×10^{-5}	7.27×10^{-6}
0.6	2.42×10^{-4}	6.11×10^{-5}	1.53×10^{-5}
0.8	4.05×10^{-4}	1.02×10^{-4}	2.54×10^{-5}
1.0	5.93×10^{-4}	1.49×10^{-4}	3.72×10^{-5}

TABLE 5
Example 2, Algorithm A, after extrapolation

х	h = 0.1	h = 0.05
0.4	7.42×10^{-7}	4.51×10^{-8}
0.6	6.16×10^{-7}	3.76×10^{-8}
0.8	5.28×10^{-7}	3.25×10^{-8}
1.0	4.78×10^{-7}	2.97×10^{-8}

Department of Mathematics The Cleveland State University Cleveland, Ohio 44115

- 1. H. BRUNNER & J. D. LAMBERT, "Stability of numerical methods for Volterra integro-differential equations," *Computing*, v. 12, 1974, pp. 75-89.
- 2. J. T. Day, "Note on the numerical solution of integro-differential equations," Comput. J., v. 9, 1967, pp. 394-395.
- 3. A. FELDSTEIN & J. R. SOPKA, "Numerical methods for nonlinear Volterra integro-differential equations," SIAM J. Numer. Anal., v. 11, 1974, pp. 826-846.
- 4. A. GOLDFINE, "Taylor series methods for the solution of Volterra integral and integro-differential equations," *Math. Comp.*, v. 31, 1977, pp. 691-707.
 - 5. F. B. HILDEBRAND, Introduction to Numerical Analysis, 2nd ed., McGraw-Hill, New York, 1974.
- 6. P. LINZ, "Linear multistep methods for Volterra integro-differential equations," J. Assoc. Comput. Mach., v. 16, 1969, pp. 295-301.
- 7. P. Linz, "A simple approximation method for solving Volterra integro-differential equations of the first kind," J. Inst. Math. Appl., v. 14, 1974, pp. 211-215.
- 8. A. MAKROGLOU, "Convergence of a block-by-block method for nonlinear Volterra integro-differential equations," *Math. Comp.*, v. 35, 1980, pp. 783–796.
- 9. S. McKee, "Cyclic multistep methods for solving Volterra integro-differential equations," SIAM J. Numer. Anal., v. 16, 1979, pp. 106-114.
- 10. W. L. Mocarsky, "Convergence of step-by-step methods for non-linear integro-differential equations," J. Inst. Math. Appl., v. 8, 1971, pp. 235-239.
- 11. M. A. Wolfe & G. M. Phillips, "Some methods for the solution of non-singular Volterra integro-differential equations," *Comput. J.*, v. 11, 1968/69, pp. 334-336.