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On the Evaluation of Double Integrals

By Moshe Levin

Abstract. A cubature formula consisting of line integrals which is optimal on a set of functions

satisfying given boundary conditions is obtained. The line integrals of this formula may be

evaluated by optimal quadrature formulas. The advantage of this formula over the optimal

cubature formula with a rectangular lattice of knots is shown. This approach to optimal

cubatures was stimulated by the idea of blending [1], [2].

1. Notations and Definitions. Let L,,/(-) = 0, i= 1,...,/•,, and L2jf(-) = 0,

j = 1,... ,r2, be linear homogeneous boundary conditions for the interval [0,1] such

that the problems

m   ¡y(r){x) = o, iv("(x) = o,

(1)    U„v(-) = 0,       /=!,...,,,    md   \L2jy{-) = 0,      y=l,...r2,

both have the unique solutiony(x) = 0, and let g,(x, t) and g2(x, 0 be the Green's

functions corresponding to problems (1) [4].

Let6!) = [0,1] X [0,1], 1 <p < oo,p"1 + q~x = 1,

\\f{-)\\p=(f¿\f{x)\Pdx)l/P,        \\tP(.,.)\\p=iyfJ\tp(x,y)fdxdyyP.

We consider the following sets of functions:

WgLp = {/(x): f(r){x) piecewise continuous on [0,1],

l/">(-)«,<l,£„A-)~9,i=].r,}-,      4 = 1,2,

W¡U,-\Ax.,):?2±£o.,f(x, y):-;—!-(/, s «s r) piecewise continuous on 6D,
o \o2      r íiv'üii^3x'3>-

327(-,-)
3xr9yr M,LXlf(-,y)=0,i= 1,...,/-,;

L2y/(x,-)=0,7=l,...,r2

The quadrature formula

' f(x)dx =
k=\

1 m

(2) ( f{x)dx= 2AJ{xk) + r(f),       0
J0 *■=!

<xx<---<xm<]
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is called optimal for the set H of functions/(x) if the coefficients Ak and knots xk

of the formula are chosen so that the quantity

(3) sup |r(/)|
feH

is minimal.

Designate
Am) A(>").  y(m) r(m).  _(m)

np\   >• • ■ ̂ pm , xp\    ,---'Xpm,'p\

ff(m) D(m).  .Am) .Am),     (m)
Dp\    '■■■' °pm  ' yp\    >••• '/fin   ' >2

the coefficients, knots, and the value (3) of the optimal formula (2) for the sets

Wg\Lp and W¡Lp, respectively. It is known [4] that r<xm) = 0(m'r), rj2m) = 0(m~r).

The formula
11 mm

f   Í f(x,y)dxdy=  2    2Cklf{xk,y,) + R(f),
(4) ■'o Jo k=l /=1

0^x,<   ■<xm<\,0<yx < ••■<ym<\,

is called the optimal formula for the set F of functions/(x, y) if its coefficients and

knots are chosen so that the quantity

R = sup \R{f)\
feF

has the least value.

It is shown in [3], [4] that the optimal formula (4) on the set Wgg L2 has the

coefficients Ckl = A^B^, the knots xk = x2"\ y, = y¡^\ and the remainder
R = 0(m'r).

For the case p ^ 2 the optimal formula (4) on the set W2r L has not yet been

found.

2. The Optimal Cubature Formula. We will find an optimal formula of the form

f Cf(x,y)dxdy=  2otkCf{xk,y)dy+ 2 ß} ('/(*, V,) dx

(5)

+ 2   2 ykJf(xk, yj) + E(f),
k=\   7=1

0<xx<---<xn<\,0<yx<---<yn^\,

r2r
me .s^i  rr

Of

E =     sup      | E(f) | .
V2'   L

for the set W2rg L    In other words, we will find the formula (5) with the least value

/e K* L?

Theorem. The coefficients and knots

n   = Afn)     R = fi(,!)     v    = -A<n)R(")
(6) pk"     '       "' '      ■' pk  PI '

xk = xpttk\  yJ=y(p°),      k,j= 1,...,«,

and the estimate

(7) E = Mrtfrtf

are the coefficients, knots, and estimate of the optimal formula (5) on the set W2rgiLp.
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Proof. Let/O, y) G W2¡Lp. Then [4]

/{X> y) = SI So   \x'dy")gxiX' ')g2Íy' U) dt dU-

Hence by (5)

where

K(t,u) = <px(t)cp2(u)-<p2(u)  2 «*«■(■**. 0~«P](0 2 ßjgziyj, ")
*=i y=i

- 2  2 ykjg\{xk,t)g2(yj,u),
k=\  y=l

<Pt{v) = f g¡{x,v)dx,       1=1,2.

Using Holder's inequality, we obtain from (8) that

(9) \E(f)\<M\\K{-,-)Wr

Since the function

M f\ r\
fo(x, y)

\K(-,■   AU1/P
(   f \K{t,u)\"   xsgnK(t,u)gx(x,t)g2(y,u)dtdu
'0  ■'o

belongs to the set rV2rgLp, it follows from (8) that E(f0) = M\\K(-, -)\\q. Therefore

we have from (9) E = M \\ K( •, • )|| q.

By the result on " polynomials" of least deviation from zero [5], we have that

inf llÄ-(-,-)H,
[«k,ßj,rkj.Xk>yj)

(10)

inf
{ak'ßj.xi>,yj)

<P\{x)y2{y) -<p2{y) 1ak8Áxk,x)
A      I

-<p\{x) 2ßjg2{yj,y)+ 2   2 akßjgAxk,x)g2(yj, y)
7=1 k=\   7=1

=    inf

As the equalities

•Pi(-) -  2 a*Si(**.0
k=\

■   inf

,  Up») 7=1

inf

inf

•Pi(-) -   2 «*gi(**>')
A = l

-(»)
0>1   '

%(•)- 2/37g2U-,-)
_     (n)

^2

hold and are achieved by the coefficients and knots (6) [4], it follows from (10) that

the numbers (6) and (7) are the coefficients, knots, and estimate of the optimal

formula (5) for the set rV2rgLp.
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The theorem is proved.

Now we will obtain a cubature formula which requires less computational work

than the optimal formula (4) with the same error estimate.

Let

sup
0<y«sl

37(-,j)
3x'

<M. sup
0«x«l

Vf(x,-)
3vr

M2.

Then

Mxxf(x, ytf) e w;lp,     M2-xf(Xpi\ y) e w;lp.

Applying optimal quadrature formulas for these sets to the integrals in (5), we obtain

(H)

(12)

Designating

ff(x,ytf)dx= 2 A^flxtf, j#>) + r,(/),
•'o k = \

ki(/)l^M,r;r2),

ff(xp"k\ y) dy = 2 *<;2»/(x#, y^) + r2(f),
y-i

\r2{f)\<M2rtf

"n       I ̂ pl   I  ^ ^   I ̂ pn  I  ' "«1^1    l+ +   I apn   I

and substituting (11) and (12) into the optimal formula (5) for the set W2fgLp, we

obtain the following cubature formula

f ff(x,y)dxdy=  2    Î 4"^ppf(xpl\ y<f^)
Jo Jo

(13)

k=]   7=1

+ 2    2 BtfApVf{xpi\ ytf
7=1   k=\

n n

where

(14)

2  2 4W)/(4*)^i;)) + £.(/)-
k=\   7=1

Ex(f)\^anM2r¡p + bnMxr^ + Mr <">/#>.

It follows from the convergence of optimal formulas (2) that an and bn are bounded

as « -» oo. Hence it follows from (14) that

\E](f)\=0(n-2').

The formula (13) has a remarkable advantage over the optimal formula (4). The

optimal formula (4) with m = n2 has the error estimate 0(n~2r), and it uses n4 point

values of f(x, y), while the formula (13) has the same error estimate 0(n~2r) but

uses only In3 + n2 point values of the function/(x, y).



ON THE EVALUATION OF DOUBLE INTEGRALS 177

3. Example. We compare the evaluation of the integral

r\  r\ (x — x2)( y — y2)
/=/    /   -—-     'Y——dxdy = 0.0701598...

J0 Jo 0 • 2 + xy

with the optimal formula (4) with m = n2 and with the formula (13) obtained from

the optimal formula (5). Both formulas are taken for the set W2'gL2, r = 2.

As the integrand/(x, y) satisfies the conditions

f(0,y)=f(\,y)=f(x,0)=f(x,l)^0,

we can take the functions gx(x, t) = g2(x, t) as Green's functions for the problem

y" = 0,       v(0) = y(l) = 0.

Then by [4] we have

4™> = fi#> = 2e,       fc = 2,...,m-l,

4T> = *<»> = 4«) = b™ = (i + 1.25/273 )e,

x2mk)=yikn) = 2e(j2/~3+k-\),       k=\,...,m,

£ = 0.5(2{2/3 + m - i)"'.

Let /„ be an approximate value of /, obtained by the optimal formula (4) with

kn = n4 knots and let Tn be the approximate value obtained by formula (13) with

qn = 2«3 + n2 knots.

We obtain for n = 4,7,9

K h qn k„ n

0.0701302 0.0701319 144 256 4

0.0701587 0.0701588 735 2401 7

0.0701596 0.0701596 1539 6561 9

The superiority of formula ( 13) over the optimal formula (4) is obvious.
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