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A Linear Scheme for the Numerical Solution

of Nonlinear Quasistationary Magnetic Fields

By Milos Zlámal

Abstract. The computation of nonlinear quasistationary two-dimensional magnetic fields leads

to the following problem. There exists a bounded domain Q and an open nonempty set

R CÜ. We are looking for the magnetic vector potential u(xx, x2, t) which satisfies: (1) a

certain nonlinear parabolic equation and an initial condition in R, (2) a nonlinear elliptic

equation in S = SI — R, (3) a boundary conditon on dû and the condition that « as well as its

conormal derivative are continuous across T = dR n dS. This problem is formulated in an

abstract variational way. We construct an approximate solution discretized in space by a

generalized Galerkin method and by a one-step method in time. The resulting scheme is

unconditionally stable and linear. A strong convergence of the approximate solution is proved

without any regularity assumptions for the exact solution. We also derive an error bound for

the solution of the two-dimensional magnetic field equations under the assumption that the

exact solution is sufficiently smooth.

1. Introduction. For two media the computation of nonlinear quasistationary

two-dimensional magnetic fields leads to the following problem: There exists a

two-dimensional bounded domain ti and an open nonempty set R C ti. We are

looking for the x3-component u = u(xx, x2, t) of the magnetic vector potential such

that

(u) ffar = |,äi;('ä^)+J •n/?x(o,r),o<r<oo,

u(xx, x2,0) = u0(xx, x2)    inR,

(1.2) 0= 2 ¿-("I7) +J   inSX(O.r),        S = ti-R,
1

u satisfies a boundary condition on dti X (0, T) and

du
(1.3) [u]R

on

s
0   on T X (0, T),       r = dR n dS.

]R

Here the conductivity a = a(xx, x2) is a positive function on R, the reluctivity

v = v(xx, jc2,||grad m||2) (||grad u\\\ = 2-=1(3m/3x,)2) is a positive function on ti X

[0, 00), J = J(xx, x2, t) is a given current density, u0 = u0(xx, x2) is a given initial

value of the x3-component of the magnetic vector potential and n denotes the

normal to T oriented in a unique way. The derivation of (1.1) and (1.2) from

Maxwell's equations is, e.g., given in Demerdash and Gillot [10].
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In Zlámal [9] there are given two equivalent abstract formulations of the above

problem. A fully discrete approximate solution is constructed and a weak conver-

gence is proved. The scheme for the approximate solution is nonlinear. In this paper

the hypotheses on relevant spaces and differential operators are strengthened. On

the other hand, the scheme for the fully discrete approximate solution is uncondi-

tionally stable and linear; more exactly the corresponding matrix is the same at each

time step. In case of the Dirichlet homogeneous boundary condition it is derived

from the equation

which is true for all v E V = H¿(ti) (it follows by multiplying (1.1) and (1.2) by v,

by integrating over R and S, respectively, by using Green's theorem, by summing up

and by taking into account (1.3)). We add the bilinear form

2

l{u,v)=    2    ®mÍ  2 -— -r-dx
M=R,S        JM,= ]   ÖX>  0Xi

to both sides of (1.4), where @M (M = R, S) are positive constants, and we

discretize in space by the Galerkin method. Denoting by U the semidiscrete solution,

we get

(1.5) (*ir,e)  ,      +l{U,v) = o>(U,v) + (J,v)I2(il)   VG V;
\      Ot I L2(R)

here u(u, v) = l(u, v) — a(u, v), Vh — V is a family of finite-dimensional ap-

proximations of the space Fand U E Vh. The discretization in time is carried out by

applying the implicit Euler method to the left-hand side and the explicit Euler

method to the right-hand side of (1.5). The final scheme is

(1.6) (£/<- U'-x,av)o{R) + Ml(V,v)

= Afw(£/'-', v) + àt(Ji-x,v)l?,a)   Vu G Vh;

here the index i denotes the value of the corresponding function at the time r, = i At,

i = 0,1,_The scheme (1.6) cannot be used for i = 1 as the initial value u0 is

known on R only. Ux has to be computed by the nonlinear scheme (4.4). Let us

remark that the idea of implicit-explicit methods goes back to Douglas and Dupont

who proposed in [4] the Laplace modified method for the solution of the nonlinear

heat equation. Recently, Crouzeix [3] proposed a general scheme of an implicit-ex-

plicit linear multistep method. We prove a strong convergence of the approximate

solution to the exact one in two norms for the abstract variational formulation of the

problem without requiring any smoothness of the exact solution. The conditions of

the main theorem are satisfied for the problem (1.1)—(1.3) if the reluctivity v and the

constants 0W satisfy (2.4) and (3.1), respectively. Under these conditions we also

derive an error bound assuming, of course, that the exact solution is sufficiently

smooth. The condition ®M>\CM is almost necessary in the following sense: if

v = const, then 0W > {CM is necessary (as well as sufficient) for the scheme (1.6) to

be unconditionally stable.
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The abstract variational formulation covers the three-dimensional nonlinear quasi-

stationary magnetic field as well. The magnetic vector potential u is now a vector

u = (ux, u2, M3)rwithu, = Uj(xx, x2, x3, t) and it satisfies (see [10]):

,     , a-^ = -curl(i>curlu) + J   in R X (0, T),(1.7) 3/ v ' v »    /.

u(xx,x2,x3,0) = uo(xx,x2,x3)   inR,

(1.8) 0 = -curh>curlu) + J   in 5 X (0, T),       S = ti-R,

u satisfies a boundary condition on dti X (0, T) and

,j 9x [(curlu)rn]SR = 0,       [pcurlu Xn]ss = 0   on T X (0, T),

r = dR n dS.

Here n is the unit normal vector to T oriented in a unique way, u X v and urv (the

superscript T denotes transposition of a vector or of a matrix) denote the vector and

the scalar product, respectively, and v = v(xx, x2, jc3,||curlu||2). For the boundary

condition u \da = 0, the equation corresponding to (1.4) has the form

,     N (4H(,w + a(u'v) = (J'v)(LW'
(1.10)

a(u,v) =  1 p(curlu) curí\dx,

which is true for all v E V = (H^ti))3. (1.10) can be derived in the same way as

( 1.4). Adding the bilinear form

'(».*) =     2    ©A/(curlu,curlv)(Z.2(M))3
M=R.S

to both sides of (1.10) and discretizing in space and in time as before, we get the

linear scheme

(1.11)      (AU',av)(/.W + A?/(U',v)

= Afw(U'-',v) + At(J'-x,v\L2(a))>   Ve G Vh,

where Vh -* V is a family of finite-dimensional approximations of the space V =

(//'(ß))3, w(u,v) = /(u,v) - a(u,v). Again, the conditions (2.4) and (3.1) are suffi-

cient for applying the abstract convergence result.

2. General Formulation of the Problem. First, we introduce some notations.

Hk(ti), k = 0,l,..., denotes the usual Sobolev space, Hk(Q) = {v E L2(ti); D"v

E L\ti) V|a|< k), provided with the norm ||t>||„*(0) = \^k\\Dav\\Lhay Hk(ti) is

the closure of ^(ti) in the norm || • ||w*(ß), H~k(Q) = (H¡¡(Q))' provided with the

dual norm. If X is a Banach space normed by || • ||^ and p > 1, we denote by

Lp(0, T; X), 0 < T < oo, the space of strongly measurable functions /: (0, T) - X

such that

\Lp(0,T;X) — fl|/(')Í*
•'O

dt
\/p

< 00,

with the usual p = oo  modification. By C([0, T]; X) we denote the space of

continuous functions /: [0, T] -> X normed by ||/|lc([o,r];-^) ~ maxie[o,r]ll/(OllAr'
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and by Co,1([0, T]\ X) the space of Lipschitz continuous functions. If m G

L'(0, T; X), we denote by u' the weak or generalized derivative of u (see Temam

[8, Lemma 1.1, p. 250]).

Now, we introduce three requirements concerning relevant spaces, differential

operators and data.

A. Let HM, M = R,S, be two (real) Hilbert spaces with scalar products (•, -)M

(the induced norms are denoted by \-\M), and let the Hilbert space H = HRX Hs

(with elements [vR, vs], vR E HR, vs G Hs) have the scalar product (•, •) such that

the norm |u|= (v, v)x/2 is equivalent with \vR\R + \vs\s. Further, let V C H be a

separable Hilbert space normed by || • ||, and let the vector spaces VM = {w| w =

vM, v E V) be subspaces of the Hilbert spaces BM C HM normed by || • \\M. Let

((■, -))XM be bilinear symmetric positive (not necessarily definite) forms on VM X

VM,VM being the closure of VM in BM. Then ||t>||, = [\\vR\\2x¡R + ||%||f,s]1/2 with

II^a/IIlm = {{vm> vm))\,m is a seminorm on F X V. We require that

h,x        IMi,m<cIKIIm.     ll»X+Nls<cIMI.l   w _ v
(2.1) \    Vu G V.

Il«lli +MvR\R>ß\H,       C,X,ß = const >0j

We denote by VR the closed subspace {ío\co = vR, v E V, vs = 0} of VR, and we

assume VR to be dense in HR and VR to be compactly imbedded in HR.

Example 1. Let ti, R, S be domains introduced in Section 1 with Lipschitz

boundaries. We choose HM = L2(M), (u, v)R = (au, v)L2(R), where a E Lœ(R),

a 3= a0 > 0,

{u,v)s = (u,v)LHs);    H = L2(ti),    {u,v) = (u,v)L*m,    V=Hx(ti),

VM= [u\u = Hx(M),u\dQndM = 0},        ||ü|U=||ü||ff.(M),

««.•»-■ /„|, £,%*■ M--{jis(^r*p
In three dimensions we take

H„= (L2(M))\    (u,v)R = (a\i,y\L2(R)f,    (u, v)s = (u,\),Li,Stf,

H=(L2(ti))\    (u,v) = (u,v)a2m>,    V=(H¿(ti))\

VM= {w|wG (H(M)f;cc\3QndM = 0},        \\v\\M =||v||(ffi(M))J,

(("»«))i,w= (curl u, curl v)(Z.2(A/))3,    ||u||, =||curlu||(L2(0))3.

As VR is dense in /iÄ, VR is also dense in HR. We identify //R with its dual space

by means of its scalar product ( •, • )R. From the continuous imbedding of VR into HR

it follows that HR can be identified with subspaces of VR and of VR, and we have

inclusions VR C HR C V'R, VR C HR C F¿ where each space is dense in the following

one and the injections are continuous. Furthermore, the scalar product ( •, • ) R in the

duality between V'R and VR is an extension of (•, -)R, i.e.

(u,v)R = (u,v)R    if u E HR,v E VR.

We denote the scalar product between V and V by ( •, • ) and between V's and Fs by
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B. Let AM(<p), M = R, S, be gradients of the functionals JM(y) defined on VM

and having Hessians HM(w). Further, let

(2.2)

and

(2.3)

JM(0) = 0,       AM(0) = 0

\(HM(w)<p,xp)M\<Cj<pl.MU\\XM

(HM(w)<p,<p)M^cM\\<p\\\,M

(Hs(w)<p,<p)s>0    VwGFs,

Vtv, <p, xp E VM,

Vqp {u)\u = vs,v G V, vR = 0},(p^0, 0<cM< CM< oo.

C. Let/W, M = R,S, be functionals from C°'([0, T]; V'M) and u0 E HR.

Example 2. We consider the spaces of Example 1 and the problems (1.1)—(1.3) and

(1.7)—(1.9). In applications, v(xx, x2, f ) is of the form v(xx, x2, £) = vM(£) on M

with vM(£)EC[( [0, oo)). Then

A»{<P) = - 2 ¿-

2

W/=l

"w(llgrad<p||2)a
3rjp

3^

3<p dxp
(A»(vU)M = j 2"«(llg«av||2)U|Jdx,

•>Mi=\ axi  oxi

JM(<p) = /"/^(Hgradvydx,

where FM(£) = f¿svM(s) ds. In three dimensions

¿M{<p) — curl(j>M(||curi<p||2)curl<p),

(AM(<p),xp)M=  ( vM(\\cmlq>\\2)(cml(p)Tcmlxpdx,
J M

J"(cp)= ( F„(\\cati<p\\2)dx.
'M

We shall prove in the last section that B is satisfied if

(2-4) cM<±[ZvM(i)]^CM   Vf 6 [0,oo).

The last notations which we need are

WR ={u\uE L\0, T; V); u'R E L2(0, T; V'R)},

a(u,v)= (AR(uR),vR)R+ (As(us),vs)s   Vu,dë V,

(f,v)=(fR,vR)R+(fs,vs)s   VvEV.

The abstract problem in which we are interested can be formulated in two equivalent

(see [9]) ways as follows: Find u E WR such that

(P) u'R+AR(uR)=fR,    u(0)R = u0,   As(us)=fs

or

(P')    Tf{uR,vR)R + a(u,v) = (f,v)    mW((0,T))    Vo G V,    u(0)R
dt «o-
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If the condition A is satisfied then it is easy to see that the condition 1) of Theorems

1 and 2 of [9] is fulfilled. We shall later show that if also B is satisfied, then the

assumptions 2,3,4,5 of the mentioned theorems are fulfilled (with p = 2 and

[v] — ||u||,). Therefore, the problems (P) and (P') are equivalent and there exists just

one solution of these problems.

3. Approximate Solution, Convergence. To define the approximate solution we

discretize (P') in space and in time. The discretization in space is carried out by

means of a generalized Galerkin method (see Necas [7, p. 47]). To this end we

assume that there exists a family {Vh), 0 < h < h*, h* > 0, of finite-dimensional

subspaces of V such that

D. lim^o+ dist(F\ v) = 0 Vu G V

(see three remarks following Eq. (3.22) in [9]). We also consider a partition

0 = t0 < f, < r2 < tr = T of the interval [0, T], where r, = i At, i = 0,...,r, At =

T/r. We choose the constants ®M to satisfy

(3.1) 8*>Ka/-

We denote

i3 2) \l(«, v) = ©«(("«> »ä))i.ä + ®s(("s> «k))i.s.

\u(u,v) = l{u,v) - a(u,v)

and we write (P') in the form

(33)     jt{uR,vR)R + l(u,v) = o>(u,v)+(f,v)    inW((0,T))VvEV,

"(0)r = "o-

Discretizing in space and integrating the left-hand side of (3.3) by the Euler implicit

method and the right-hand side by the Euler explicit method, we get a scheme which

is linear:

(3.4) l(VÁ-UÍ-i,vR)R + Atl(Ui,v) = AtU(Ui-x,v) + At(f'-x,v)

{ Vu G V", i 3= 2.

The existence and uniqueness of U' E Vh follows from the fact that the quadratic

form (vR, vR)R + Atl(v, v) is bounded from below by cA/||u||2 (in the sequel, c and

C denote generic positive constants which do not depend on 8 = (h. At) and which

are not necessarily the same at any two places). The boundedness is a consequence

of the inequality

(3.5) |u/Ä + C,A/|M|Î > cx(Cx, ß)At\\v\\2   Vu G V,

which is true for any C, > 0 and for At < c2(X, C,) owing to the third inequality of

(2.1).
In (3.4) we cannot choose / = 1 as u(0)s is not given. Therefore, Ux must be

defined in a different way. Before doing this we introduce the last assumption.

E. The initial value u0 belongs to VR, i.e. there exists g E V such that u0 = gR.

Evidently, if E is satisfied, then from D it follows that there exists gh E Vh such that

K - S¿ I* - 0, ||g"|| < C for 0 </,</**.



NONLINEAR QUASISTATIONARY MAGNETIC FIELDS 431

Ux is defined as follows:

(3.6)     (Ux -U°,vR)R + Ata(Ux,v) = At(fx,v)    Vu G V, Í/R° = ghR.-

(3.6) is a nonhnear scheme considered (for arbitrary i > 1) in [9]. Hence, the

existence and uniqueness of Ux follows from Theorem 2 of [9].

Remark. In computations we do not need to know the extension g of u0 which one

can see at first glance from (3.6). We need gR only, and we can choose gR = the

interpolate of u0.

We extend the approximate solution on the whole interval [0, T\.

Us=Ui-x + t—^(Ui-Ui-x)   in[ti_x,ti],i=l,...,r,

U° = gh,8 = (h,At).

Evidently Us E C([0, T\, V).

Theorem 3.1. Under the conditions A, B, C, D, E and (3.1) the approximate solution

Us is uniquely determined by (3.4), (3.6) and (3.7), it belongs to C([0, T\, V) and

(3.8) \\uR - UsR\\ca0T],HR) - 0,    ||u - UX\o,T;V) ^ 0   if 8 - 0;

here u is the unique solution of the problem (P') and u E L°°(0, T; V).

Proof, (a) We use the compactness method (see Lions [6] and the references given

there). We show that from any sequence {Us>} of the family {{/*} with 5. -> 0 one

can choose a subsequence t/^<" such that

S/<,) "* °>    \\UR ~ ^'"ilcdo.T-];//«) -* °>    II" - t/e/<"l|i.2(0,r,K) -♦ 0

and that u is a solution of the problem (P'). As (P') has a unique solution, (3.8)

follows,

(b) From Taylor's formula (see, e.g. Céa [1, p. 52]) and from (2.2) it follows that

J"M = 2-(HM(»<p)<p,q>)l4,       O<0<1.

Hence by (2.3)

icjJMI \,m < JMM < ècJkllî.A#.
Setting J(v) = JR(vR) + Js(vs), we see that

(39) kolklli < J(v) < Kolkll'    Vu G V,
c0 = min(cR,cs)>0,       C0 = max(CR, Cs).

Further,

aM(<p, xp) = (AM(<p), xp)M = (HM(ê.tp)tp,xp)M,       0 <*< 1.

Therefore,

\aM(<p, xp)\ < CJM|,,w|HIi,m,       aM(xp, <p) > cJq>\\lM.

Also

aM(<p, œ) - aM(xp, u) = (HM(xp + d(<p - ^))(<p - ^),<o)w.
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\aM(<p, a) - aM(xp, u)\ < Cjcp - xP\\XM\\u>\\XJ

aM(<p, cp-xP)-aM(xp,<p-xP)> cjtp - xp\\XM,

so that aM(<p, xp) are monotone and as(<p, xp) fulfils (3.7) of [9]. It follows that

2
\a(u, v)\ < CollulliHull,,    a(u,v) s= c0||k||,,

a(u, u — v) — a(v, u — v) > c0\\u — v\\x,

\a(u, w) — a(v, w)\ < C0||w — u||i||vv||i    Vw, u, w E V.

Obviously, the assumptions 2,3,4,5 of Theorems 1 and 2 of [9] (with p = 2 and

[v] = \\v\\x) are satisfied. Further,

a»(<p,xp - <p) + J"(<p) - J»(xp) = (A"(<p),xp - <p) + J"(<p) - J"(xp)

= -{(HM(<? + 9(xp - <p))(xp - <p),xp - q>)M,       0 < #< 1.

Hence

aM(cp, xp-9)+ JM(<p) - J"(xp) > -KJI<P - *||,.*,

so that

(3.11) a(v,u - v) +J(v) - J(u) > -\[CR\\uR - vR\\XR + Cs\\us - vs\\x s\.

We set

(3.12) km=®m-{Cm.

We have km>0 owing to (3.1), hence

(3.13) k0 = min(icÄ, ks) > 0.

From (3.11) it follows that

(3.14) l(u — v, u - v) + a(v, u - u) 3= k0||m — u||, + J(u) — J(v)    V«, u G V.

(c) First, we prove that

(3.15) ||tf'||<C.

Choosing v = Ux — gh in (3.6), we get (using the inequality ab < ¿êa2 + j&~xb2,

&>0),

H - gRfR + £ita(Ux - gh,UX - gh)

= At[a(Ux - g\ Ux - gh) - a(Ux, Ux - gh)]

+ Cê~xAt + CdAt\\Ux -ghf,       d>0.

From (3.10) and from the assumption E it follows that

\Ur - 8r\2r + c0At\\Ux - gh\\2 < icoA/IJc/1 - g*||, + CVxAt + 0>At\\Ux - gf.

By (3.5)

exilic/1 - gh\\2 < Cê-xAt + C2dAt\\Ux - gh\\2.
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Setting # = c,/2C2, we get \\UX — gh\\2 < C. (3.15) is a consequence of this estimate

and of the assumption E.

Now, we prove the following inequality:

m . m

(3.16) 2 \Wr\r + cAí 2 Wwf + cAí||í/m||2
i=2 i" = 2

m

<CAr + CAí2 2 \\U'\\2,       2<m<r;
i = 2

here, AU' = U' — I/'-1 and the positive constants c, C do not depend on 8 and on

w. We choose v = AU' in (3.4), write this equation in the form

\AUR\2R + A?/(Ai/', At/') + Ata(U¡~x, AU') = Ar(/'~\ Al/'),

and we use (3.14). We get

\AUR\2R + K0A/||Ai/'||i + At[j(U') - J{U'~X)] *£ At (/'-', Ai/').

Applying (3.5) to iflAI/jHJ + 2k0Aí||Aí/'||2), adding to both sides (Af/¿t/¿)R and
summing up, we get easily

x.   m -> m r

y 2 \AuR\R + cxAt2 \\wf + At mRm\2R + Aum)-\\ux\2R-j(ux)
Z i    2 i=2

Ar2(A^,[/¿)A + Aí2 </'"', Ac/')-
i=2 i=2

By (3.9), (3.5) and (3.15)

i|t/«'l« + -W") > ciicz-n2,     u^'li + J(UX) « C||l/'||2 *s C.

Estimating the first term on the right-hand side by

l2M« + CAr22||i/f,
<=2 i=2

we come to the inequality

"' 2 m 2 2

(3.17) 2 \Wr\r + cA/ 2 l|Ai/'||   + c2At\\Um\\
i=2 i=2

ni m

=sCAí22 ||c/'||2 + CAí 2 (/'"', At/').
í=2 í=2

As

m m— 1

A? 2 {f-x,AU')= -At(fx,Ux) + At(fm-x,Um)- At 2  (A/',i/')
i=2 1=2

and/ G C01([0, 7"]; V), we have

m m—1

Ai 2 (f-\ AU')^ C&-xAt + C2ÜAt\\Um\f + CAt2 2 \W\\ .
1=2 i=2

Setting t> = c2/2C2, we arrive at (3.16).
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(d) The first consequence of (3.16) is that ||IH|2 < C + CAiS™ 2\\Vi\\2- By the

discrete Gronwall inequality and by (3.15) \\Um\\ < C for 1 < m < r, hence

(3.18) ||í/5(0||<C   VrG[0, T].

Further,
m

(3.19) Ai 2 WàU'f < CA/
i=2

/i I 2and 2,121AUR | j, < CAí. This does not mean anything other than

(3.20) f
'T\ d

dtUR

2

dt^C.
R

We shall consider sequences of functions from the family {Us} and their subse-

quences. We shall leave out subscripts and use always the same notation {Us} for

these subsequences, and always 8 is such that 8 -> 0.

From (3.18) and from the well-known compactness theorem (see, e.g., Céa [l,p.

26]) it follows that there exists a subsequence {Us} and an element u E L°°(0, T; V)

such that

(3.21) Us - u   inL°°(0, T; V) weakly*.

From (3.20) it follows that

I i/**('2 )-*#('. )|# /"!<*>
dt C|/2-/,|l/2   Vtx,t2E[0,T];

therefore the sequence UR(t) is equicontinuous on [0, T] in the norm | • 1^. Owing to

(3.18) it is bounded in VR, \\UhR(t)\\R < C Vf G [0, T\. As the imbedding of VR into

HR is compact (see A) the set {UR(t)} is relatively compact in HR for any f G [0, T].

According to the generalization of the Arzelà-Ascoli theorem (see, e.g., Kufner,

John, Fucik [5, p. 42]) there exists a subsequence UR such that ||w — UR\\C{,{) Ti ¡t , -•

0, where to G C([0, 7"]; HR). With regard to (3.21) w = uR, i.e.

(3.22) ||"«-^||r,[o,r|;//A,-0.

Further, a(Us, •) G V, and if we denote it by (x*, •), we conclude from (3.10) and

(3.18) that xs G L°°(0, T; V) and ||xa||/-(o.r:n < C. Similarly, aM(U*M, )EV'M and

denoting it by <X"'Ä, ■) M, we find XMS E L*>(0, T; V'M) and llx^ll^o.r;^, < C.

Therefore, there exist subsequences {x*}. {xMS} sucn 'hat

(3 23)       K"X   inL°0(°'7''K') weakly*, xeL»(0,r;r),

[XM-S - Xw   in ¿~(0, r; F";) weakly*, XM G L»(0, 7", F¿).

(e) Consider a function A(f ) G ^((0, T)), and let us define the function

AA, = A'   in (/,_,, i,],       / = l,...,r,A' = A(f,).

For a given z G V we choose {zA} such that zh E Vh, \\z — zh\\ -* 0, we set u = zhh'

in (3.4), u = zAA' in (3.6) and we sum up. We get

(3.24)     2 (Ai//», zR)Rh' + Ato(t/', z^A1 + A/ 2 a(tf'~', **)*'
i=l i=2

r r

= -At 2 l{AUi,zh)h' + At(fx,zh)hx + At 2 {fi~\zh)hi.
i=2 i=2
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Concerning the first term on the left-hand side we have

2(au¡t,4)Rhi = £(iu°>4)htdt

The last two terms converge to zero and

j^jtUlzR)Rhdt = ~j\usR,zR)Rh'dt^-j\uR,zR)Rh'dt.
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Further,

Ata(Ux, zh)hx + At 2 a(U'~]. z'')h' = / a(Us. zh)hltdt + R,

where

R = hxf'ia(U], z") - a(u{) + ¿At/1, _-»)}<//

+ 2J"  {a(U-x,z»)-a(u'-x + '-^ — At/', zh | }A.,A-0

owing to (3.10), E, (3.15) and (3.19). As

(Ta(U\ z")h„dt=(T{x\ z")hAldt ^fT{x^)hdt,
Jo Jo Jo

the left-hand side of (3.24) converges to

-f {uR,zR)Rh'dt+ f (x.z)hdt.

From (3.19) and from / G C01([0, T]; V) it is easy to prove that the limit of the

right-hand side of (3.24) is /0r< /, z ) A dt. Therefore, we have

d
(3.25) dt

{uR. zR)R +{X,z)=(f,z)    inûD'((0, T)) Vz G V.

In the same way as in [9] (see the text following (3.50)) we prove that u E WR,

u'r + XR = fR, "(0)« = «o, Xs = fs and that

(3.26) r<X, u) dt = j>ol« - i\u{T)r\2r + fT(f, u) dt.
•TtX Jf\

(f) We choose v = Ux in (3.6) and v = U' in (3.4). Summing up we get

2(AU¿,UJ<)R + At
i=i

a(Ux,Ux)+ 2<*{Ui~i>Ui)

i = 2

-At 2 /(Aí/',í/') + Aí
1 = 2

(f\ux)+2(f-\u')
1=2
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Now, taking into account (3.20) and (3.22), we see that

2 (wR\uR)R = ±\us(t)r\r - ¡\us(o)R\R + { 2 \wi\R
i=i i=i

2 2

_>2|M(-'   )r\R  ~   2lUol«.

Further, it is easy to show that

At a(Ux,Ul)+ Sait/'-',!/'')
i = 2

fTa(Us,Us)dt^0,

-At 2 1{AU',U') + At
i = 2

(f\ux)+ 2 (/'-',t/')
i = 2

>(T(f,u)dt.
Jc\

Thus, with regard to (3.26)

(3.27)     (Ta(Us, Us)dt -*i|«0fi " ¿l«(r)*ll + /^(A ") * = f^X- ">
•'o •'0 •'0

dt.

From (3.21), (3.23) and (3.27) it follows that

-7

lim f \a(u, u- Us)~ a(U\ u - U*)] dt = 0.
8-0 A)

As a(u, u- Us)~ a(Us, u- c/s) 3= c0||« - £/Ä||2 (see (3.10)), we have

lim [T\\u
8-0 A)

c/Ä||7i/f =

(3.22) gives

lim (T\uR - URv\Rdt = 0,
8-0 A)

and by means of the last assumption in (2.1) we get (3.8). Also, we have

I (T[a(u,v)- (xs,v)]dt\=\fT[a(u,v) -a(Us,v)]dt
Ko II Jo

< C0fT\\u - Us\\x\\v\\{dt -0,

i.e.

fT[a(u, v) - (x, u)] dt = 0   Vu G L°°(0, T; V).
Jo

Setting v = zh(t), z G V, A G ^((0, 7")), we get (x,:)=a(i(,z) Vze K, hence w

is the solution of the problem (P') (see (3.25)) and the proof is finished.

4. Nonlinear Magnetic Field. We consider the problem (1.1)—(1.3), and we specify

the boundary condition:

(4.1) u = 0   ondtiX(0,T).

We assume that dti and dR are polygons. The condition A is satisfied, and || - ||, is a.

norm on V = H¿(ti) (see Example 1). Let v(xx, x2, £), a and the operators AM(y),

M = R, S, be of the form introduced in Example 2. We also assume (2.4) to be
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fulfilled, and we want to prove that condition B is satisfied. We have

(HM(w)<p,xp)M

f J     tt\ V  9<P 9l^ -u ¿-i ' , t\ V  3w 3tp  i,   3w 3^ I
iJ"wU)2,3^3^ + l   ^U)2,3^3^?,3^3^i^'

£ =||grad tv||2.

1=1      '      ' i=i ""' "'v'/=i ""V ""7

If y and tp denote the vectors grad <p and grad xp, respectively, and A denotes the

matrix

dw dw\"

dx, dx,
JJi.j=\

then

(4.2) (HM(w)<p,ip)     = f <pTBxpdx,    B = aI + ßA,

a = vM(t),    ß = i-xv'M(^).

'si

(I is the unit matrix). We easily find the eigenvalues of B:

'a + \(ß+\ß\)t2,

a + \(ß-\ß\)f-.
*>.2

If ?'(£)< 0, then

if v'(i)>0 then

A \a = vM(Z),

'•2    \« + ße=[ivM{i)\;

'•2   Ku).

From (2.4) it follows that

(4-3) c„<vM{£)<CM   V|G[0,oo),

and we easily get that ||Z?||2 = max|X,|< CM. From (4.2) follows the first inequality

in (2.3). Concerning the second inequality it is also true because

(HM{w)<p,<p)M=(   ^(Ollgradmll' + r'^U)
JM

Y   3tv 3<í>

,r, 9*, 3x,.
dx,

and the integrand is bounded from below by

"A#(£)llgrad «p||2 3= cJIgrad (¡d||2   if v' > 0

and by

[MO + «"'"«(Oí2] ügrad «PÜ2 3= cjgrad <p||2   if v> < 0.
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The third inequality in (2.3) is obvious. In three dimensions we easily find that

(HM( w)<p, xp)=f {MíXcurl ^)rcurl <jp + Í~xv'M(í)
JM

X [(curl w) curl «¡pj [(curl w) curl xp\ j dx,

where £ = ||curl w||2, and the proof of (2.3) is similar to that given above.

We will assume that J E C°'([0, T]; L2(ti)) and u0 = g\R where g G H¿(ti).

Further, let us consider a regular family of triangulations which consist of triangles

belonging either to R or to S, and let us take, for simplicity, piecewise linear

functions (belonging to C(ti) n H¿(ti)) as trial functions. The approximation gh is

determined according to E. Obviously, the conditions C, D, are also satisfied. The

approximate solution Us is determined by (3.7) and by the equations

(4.4) (AUx,ov)Li(R) + Ata(Ux,v) = At(J],v)L2(U)   Vu G V, U°\R = gh\R,

(4.5) (AU',ov)L2(R) + Atl(U',v)

= Atw(U'-x, v) + At(J'-], v)L2(Q)   Vu G V, i > 2,

where again u(u, v) = l(u, v) — a(u, v),

2

a(u,v) = 2 f "wOlgrad h||2) 2 äT" äT"4*'
M    M ,     i   ox,   °X¡

2

M JM,     I   9jC'   dX'

and we assume ®M to satisfy (3.1). From Theorem 3.1 we get

Theorem 4.1. Under the above conditions we have

\\u —   US\\c([0,T];L2(R)) — 0,      ||w —   US\\l*(0,T;ll¡,(a» — 0.

Now we derive error estimates under the condition that the exact solution is

smooth in R and in S. For the initial value U°\R we can take w0 or any approxima-

tion Uq such that ||u0 — "Sil/.2««) * ^A.

Theorem 4.2. Besides the above conditions we assume that

u\ME C([0, T);H2(M)),    M = R,S,    u' G L2(0, T; Hx(ti)),

u"\REL2(0,T;V'R).

Then we have

(4-6) |aí £ \\u(t¡) - U'YtpA      = 0(h + At).

Proof. First, we estimate the Hessians KM of the functionals

iejJMI?,« - JMW) = f [iejgrad <p\\\ - FM(\\grad <p||2)] dx.
JMí J

We have

{KM(w)<p,xp)M=( <pTD^dx,       D = @MI-B.
JM
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The eigenvalues p of D are of the form p = ®M — X, where the A's are eigenvalues of

B. As cM < X < CM (see above) and &M > \CM, one can easily prove that

(4.7) \p\<eM-yM,       yM = min(cM,2(<dM-\CM)),       0 < yM < @M.

Hence

\(KM(w)q>,xp)M\ < Tj|qp||liA/MliA/, 0 < TM = @M - yM < @M

and

(4.8) \oM{iP,w)-aM(^w)\<Tjtp-4uJw\\UM   V<p,xp,wEVM.

We denote by û' a modified Clement approximation of u(t¡) (see [9, Section 4]).

For ¡> 2 we have

(Aû',av)L2iR) + Atl(û',v)

= Afw(û'-', u) + At(J'~x, v)L2tQ) + At(AJ¡, v)oiü)

+ (Au* - Aík'(0, ov)LitR) +(A(Ü¡ - u'), av)Li(R)

+ At[u(û',v)-o}(û'-x,v)] + At[a(u\v) -<i(ii',o)].

If we prove that Aí2;=1||e'||2 = 6>(A2 + Ai2) where e' = û' - U', then (4.6) follows

by means of Lemma 3 of [9]. Subtracting (4.5) from the above equation and

choosing u = e', we get

(Ac', ae'V<*> + Ai{/(e', e') -[«(fl'"1, e') - a(U'-\ e')]}

= (A«'" - Atu'(t,), oe')L2{R) + (A(h' - «'), oe')L2,R)

+ At[a(û', e') - a(u', e')] + A?(A/', e')z.2(í¡) + At[u(û', e') - a(û'~\ e')].

By (4.8) the second term on the left-hand side is bounded from below by

M

>2-yMW\\2 + *A*2 [eM||£'||2,M - rje'-'llî.j,       y0 = min(yR, ys) > 0.
M

Therefore, if we sum up from i = 2 to i = r, we find that the left-hand side is

bounded from below by

r
2

-He1, oex)L2(R) + J-y0Aí 2 \Wh ~ i^iA^He11|^,        t, = max(T/j, ts).
i=2

The first three terms of the right-hand side are equal to the right-hand side of the

equation (4.21) in [9], After summing up we get as in [9] the following bound from

above:

hoA'2 M2 + C(A2 + Af2).
i=2

Here, the constant C depends on u. The same result is true for the remaining terms

of the right-hand side. It follows that

(4.9) At 2 Ik'ilî < C{||e'||2a(R) + Af||e'||2 + A2 + At2}.
1=2
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For i'■ = 1 we have

(Au1, av)L2(R) + Ata(ûx, v)

= (Au] -Atu'(tx),av)L2(R)+ (A(û] - ul),av)L2(R)

+ At[a(û],v) -a(ux, u)] + At(Jx, v)lMa).

In a similar way we obtain

(Ael,oEl)i:-(R) + At[a(û\ex)-a(U],E])]

= (A«' - Atu'(tx),aex),MR) + (A(û] - ux), ae1),.^,

+ At[a(û],e]) -a(ux,ex)].

By (3.10) and the assumption a E U°(R), a 3= <j() > 0 we easily get

aje'll2.^, + c0Af||e'||2 ^ c[||e°||2,(/il + A2 + Af2] + U0Af||e'||2,

so that

||e'||22(/i) + A/||e'||2 = 0(A2 + At2).

This together with (4.9) proves the theorem.
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