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On Optimal Shooting Intervals

By R. M. M. Mattheij and G. W. M. Staarink

Abstract. We develop an adaptive multiple shooting strategy, which is nearly optimal with

respect to cpu time. Since the costs of integration are the most important components in this,

we investigate in some detail how the gridpoints are chosen by an adaptive integration routine.

We use this information to find out where the shooting points have to be selected. We also

show that our final strategy is stable in the sense that rounding errors can be kept below a

given tolerance. Finally we pay attention to the question how the need for memory can be

minimized.

1. Introduction. Consider the ODE

(1.1) ^p- = L(t)x(t) + r(t),       <.<*<&

where L(-) is an n x n matrix function and /■(•) an n vector function. Assume that

the following boundary condition (BC) is given for x

(1.2) Max(a) + Mßx(ß) = b,

where Ma and Mß are n X n matrices. Most often both forward and backward

integration is unstable due to the presence of rapidly increasing and rapidly

decreasing solutions. This is the reason why a multiple shooting (M.S.) technique is

preferred. In such a method one selects a set of shooting points t0(= a), tx,..., tk

( = ß ) and restarts the integration on each interval ( t¿, f,,+, ) for i: = 0,..., k - 1. In

this way one computes for each i an approximate particular solution (if the problem

is inhomogeneous),/(/) say, and an approximate fundamental solution, $,(f) say,

on some grid c [t., ti+x]. Then an approximant, x(t) say, of the desired solution can

be written as

(1.3) x(t) = *,(t)v,+fi(t),

where v¡ is some fixed vector.

By matching the relations ( 1.3) at the shooting points, we obtain a relation for the

(1.4) Aiv,-B,v1 + x=Fi,       i = 0,...,k-2,

where

(a)    ¿,-*,(*,+ ,),

(1.5) (b)    j5, = $1+1(í,+ 1),

(c)     F^fi+X(tl+X )-f(ti+x),       0</</c-2.
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The relations (1.4) together with a transformed version of the BC (1.2) give the

following multiple shooting equations that determine the v¡ (and hence x):

(1.6)       PV = F, where

'¿o ~bo

A, -Bx 0

-Bk-i

V = ( vl,..., vl_ , )T and F = ( Fr7,..., FkT_, )r; for 0 < / < Â: - 2 the F, are defined

by (1.5) and moreover Fk_x:= b - Maf0(t0) - MßfN_x(tN). This description of

multiple shooting gets the general framework. There exist many variants which may

be considered as modifications regarding one or more of the following aspects: the

choice of the shooting points, the number of basis solutions of the homogeneous

system (i.e. the number of columns in the <!>,) and, finally, the way the desired

solution is computed from the matching recursion and the BC (cf. (1.7)). The last

question is dealt with either by using a special block LU solver or by using special

recursion techniques for solving (unstable) recursions, cf. [2], [8], [12], [16], [18]. The

problem of how many basis solutions should be integrated arises in so-called

(partially) separated boundary conditions (cf. [4], [13], [16]): By limiting the number

of columns in the <D, to / say, the efficiency of the method is expected to increase. If

I < n, one can reorder the matrix P such that one effectively deals with / X / blocks

only (cf. [13]). For our present discussion we are mainly interested in the question of

how the shooting points t, should be chosen. The simplest way for doing this is to

give them in advance (cf. [2], [3], [18]). However, as adaptivity is one of the most

appealing aspects of M.S., one rather would like to have a device that decides for

itself when the integration should be restarted (cf. [4], [13], [16]). There is still much

discussion about the optimal choice (cf. [1, p. 159ff.]). We can think of three

optimality criteria: The first one is stability. Originally this was one of the ideas

behind M.S. to improve single shooting by making the interval of integration

sufficiently small in order to limit growth of (rounding) errors. The second criterion

is the amount of work. In using an automatic integrator and a (rough) stability

check, we may be far away from optimally distributed grids, as described e.g. in [7],

[14], [15], and therefore have an inefficient algorithm. Another criterion is the

memory space that is required. Apart from situations where some shooting points

may be given in advance (cf. [2], [3]) or where the solution has to be computed on a

sufficiently dense grid, it quite often happens that one is merely interested in having

approximations at just some points; if more information is needed, one may restart

the algorithm on some smaller shooting interval. In the last situation it makes sense

to ask for the minimal number of shooting points kmin say; for the smaller k^, the

less matrices A¡ and B, have to be stored. This paper is intended to contribute to the

discussion about optimality regarding these three criteria, viz. optimal stability,

minimal complexity (or rather computing time) and minimal storage. For this we

will study in some detail a model problem from which we can draw a number of

(1.7) P =
0

"A;-2

A*.*o('o)
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conclusions. The results we will derive are likely to hold for more general BVP of

mildly stiff ODE. It should be clear, however, that we cannot be too ambitious and

may hope for a suitable divide and conquer strategy at most. For example, single

shooting is an optimal strategy from a storage point of view but is most often

unstable.

An outline of this paper is as follows: In Section 2 we first consider optimal

shooting intervals in relation to the stability (or rather propagated rounding errors)

and derive a practical criterion for an automatic check. In Section 3 we introduce a

model problem and indicate why the adaptive integrator should be used only once.

In Section 4 we give an estimation theory for the number of gridpoints required by

an automatic integrator with local step size control. This is applied in Section 5,

where a bound is given for the total operational cost of a multiple shooting

algorithm; here we also derive an almost optimal strategy regarding the complexity.

In Section 6 we show how we may condense the multiple shooting equations in order

to minimize the storage. Several examples sustain the theory.

2. Shooting Intervals and Error Amplification. The most popular variants of

multiple shooting for linear problems use some reorthogonalization technique at the

shooting points; cf. [4], [8], [12], [13], [16]. In this the matrices $,(i,+,) are factorized

into an orthogonal and an upper triangular matrix. The orthogonal matrix appearing

in this factorization is then used as an initial value for <D, + |(i,+ 1). The information

contained in the upper triangular matrix may be used for selecting the shooting

points (cf. [4], [13], [16]). In our opinion the most appropriate criterion to select a

shooting point in order to limit the error growth is the one that is also mentioned in

[13], viz. a check on the incremental matrices A,B¿}\] in fact this criterion may also

be used if no orthogonalizations are used. Although a detailed description of

stability aspects is outside the scope of this paper, we certainly have to justify this, at

least qualitatively. (For analysis cf. [2], [10], [13], [18].)

For a proper understanding of the global error, it is useful to distinguish between

rounding errors and discretization errors. For the latter type of errors one can show

that the global effect of a local discretization error, with bound 5 say, is estimated by

~ kN8; here k is some constant, that is 0(1) if the BVP is well conditioned, and N is

the number of gridpoints (cf. [9], [10]). Of course this makes sense only in exact

arithmetic. The rounding errors, however, deal only with the discrete problem and

the way the computations are actually carried out. In particular for multiple

shooting we should reckon with rounding errors made in the two main steps. In the

first step we in fact solve k unstable initial value problems on the intervals (t¡, ti+x).

If £ denotes the relative machine accuracy, then we can expect propagated rounding

errors at tl+x with an error bound < H/1,5,".1,!^. The second step is the solution of

the multiple shooting equations. Assuming that P is well conditioned (cf. [9]), we

may deduce that errors made at this step are only moderate. (This argument is still

meaningful if the matrix P is not formed explicitly like in [16].) Hence we find that

the global rounding error mainly arises from errors in integrating the k unstable

initial value problems. From the general result given in [10], we therefore conclude

that a global error bound is given by

(2.1) - KfcmaxIK.ß-'.IIE,
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where k is a conditioning constant as above. (N.B. the factor k does not appear if we

have an exponential dichotomy, cf. [9, Section 5].) Having accepted (2.1) as a bound

for the global rounding errors, a practical check on allowed error amplification is

then given by

£
(2.2) \A.B.-Ml *

Kkf

where e is the required accuracy for the solution of the problem. Notice that (2.2) is

certainly an improvement of criteria, as e.g. mentioned in [4], [13], [16], since the

latter do not reckon with the required global accuracy at all.

Example 2.3. Consider the ODE

dx

dt

- 19cos2i
0

1 + 19 sin 2/

0
19
0

1 + 19 sin 2/
0

1 + 19 cos 2/

+ r(t),

where r(t) is chosen such that

x =

(l\
1

\1

20/•   g\9t   e- IX(is a solution. The homogeneous ODE has solutions growing like ~ e

Let Ma = Mß = / and [o, ß] = [0, tt\. It is not difficult to check that k = 1 (cf.

[9]). Since x should be integrated exactly, we are mainly confronted with errors due

to rounding. To solve this problem we used an M.S. code as described in [12], with

various choices for the increments H^B,"1,!!, on an IBM 370/165. Table 2.1 gives the

errors in || • H^. for single precision (£ = 4.7 10"7) and Table 2.2 the errors in double

precision (£=1.1 10 ~16). The influence of the incremental value is as predicted

indeed. (N.B. the factor k does not appear in this case, cf. [9, Example 6.3].) Here §

denotes the maximal increment, error the actually found maximal error, and nos the

number of shooting points.

Table 2.1 (e = 10'6)

error

nos

10 100 1000

9.2 10"6 4.6 10- 7.5 10
-4

28 14 10

error

nos

103

Table 2.2 (e = 10"8)

10" 10*

1.1 1013 1.4 10"12 3.3 10""

10

106

2.6 10"

3. The Model Problem. The question of optimal complexity that will be discussed

in Sections 4, 5 is closely related to the optimal integration strategy. In this paper we

assume that we are using an adaptive integrator. Such an integrator will always

produce overhead, mainly due to rejecting step size choices. Since we have to
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compute several solutions on each interval, we basically have several times this

overhead. However, in general, a solution will always contain a dominant mode, and

it is this mode that is actually responsible for the step size choice. Therefore it seems

sensible to use the adaptive feature of the integrator only once on each interval for a

certain solution and to use the integrator as such for computing the remaining

solutions on the same grid. The savings thus obtained are considerable as one may

check e.g. from Table 3.1, where we have given in column two the cpu time (in

millisecs) that was needed to compute the particular solutions / in Example 2.3 by

the adaptive method RKF45 (cf. Example 4.7). The number of gridpoints found by

this integrator (N) is given in column three. Finally in column four we have given the

cpu time for the computation of the fundamental solutions $,, only using the fourth

order Runge-Kutta method on this grid.

Table 3.1

io-3

10"4

IO"5

10"6

total cpu part. sol.

126

150

224

337

N

121

175

269

418

total cpu fund. sol.

129

190

283

439

In order to get an idea of how large the interval must be, or how many points per

interval should be chosen to have an optimal computing time, it makes sense to

consider this problem for a simplified model first.

The model is based on the following ideas: First, it is assumed that the adaptivity

feature is applied to the inhomogeneous problem only (see however Remark 3.4). In

agreement to what has been said above, the fundamental solution therefore is just

integrated on the thus computed grid. Second, we assume that there exists some

smooth particular solution (even for boundary layer problems this is quite often the

case). We can then always scale the solutions of (1.1) such that this particular

solution is of order 1 (this is only for reasons of simplicity), and we assume this has

been done. In the third place, by absence, in general, of other information, we

assume that the particular solution on each interval (t¡, tj+x) has been given the

initial value 0. As a consequence, this particular solution is expected to have anO(l)

component of the fast mode at t = t¡. Finally, we assume that L(t) does not vary

much on [a, /?]. For this kind of problems, the following scalar ODE gives a

qualitatively satisfactory description regarding the growth behavior of the solutions:

dx(t)
(3.1) dt

= \x - Xg(t), A > 0,

where g(-) is a smooth scalar function with V,g(t) ~ 1. On each of the intervals we

then compute an approximant of the (exact) particular solution <?,(•) say, defined by

(3.2)

Hence

(3.3)

q,(t) = \f'g(T)e^dr, t, < t «í t1+1-

?¡(0*«(')e Mt-t,) _ g(ti).
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Remark 3.4. For homogeneous problems we should take just some homogeneous

solution rather than an inhomogeneous solution for approximation by the adaptive

integrator. The initial value should then be some normalized value as is common

practice in M.S. algorithms. Therefore a qualitative description of this integration is

properly simulated by considering the homogeneous part of (3.1) only. The solution

that is actually approximated by the adaptive method can then be assumed to be

5,(0 := eX('"'*). The smoothness properties of s,(-) and q¡(-) (cf. (3.3)) are quite

similar. On account of this observation, we shall not treat the homogeneous problem

separately.

4. Estimates for the Number of Integration Steps on an Interval. In order to get an

idea of the computational cost of the integration, we first investigate the number of

gridpoints that is needed for an adaptive solver to approximate a solution on a given

interval within a certain accuracy. We do this for the model problem that was

defined in Section 3.

Most adaptive methods are based on the use of local error estimates (cf. [17], [2, p.

19]). Let est be such an estimate at a certain point toXd. Then a new step size, /inew, is

found from an old step size, hoXd, using a formula like

(4.1) Anew = 0.9/Io|d| ~jt | VP.

Here p is the local order of the method, e the prescribed accuracy and 0.9 a safety

factor. In particular in our model problem, est is determined using approximants for

(derivatives of) qt(t) on the interval (/,, t,+ x). Ideally we must have (cf. (3.3))

(4.2) est » i(hM)p\"exp(\t<M)g(ti),

where f is a kind of error constant (depending on the integration method). So we find

(4.3) hnev/ » 0.9^
&k)

exp(-a/„,„//>)■

Therefore, by virtue of (4.2), we can in principle determine the number of gridpoints

that we ideally need on (t¡, /,+ ,), %(t¡, tl+x) say. We will already be satisfied with a

reasonable estimate of %(t¡, t,+, ):

Property 4.4. 91 (f,, t,+,), the number of gridpoints on (/,, tl+,), that is found by the

adaptive integrator is approximately equal to

S(f„i/+i):- -Q-
Hfci',)'1"

p{txp(X[t,+ x -t,}/p)- 1}.

Proof. Let i be fixed. Let us denote the step sizes as found from the method by

5,, s2,...,sN, i.e. we have gridpoints /,, ?, + sx,..., /, + E^.,5; = tJ+x (the last step

size must be chosen such that we arrive at tl+,). From (4.3) we then find

/       '     \
(a) si+x = jttexp\-i> £ Sj \,   wherefi = 0.9t-

fck)
and v = —

P

Now let 5(/) be a differentiable function, for which

(b1) s(t) = nexpi-i> ('s(t) dr)    for 1 < t < N,
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and

(b2) 5(1) = 5,=M.

Then s(l) can be expected to be a good estimate for s,. Differencing once in (b1)

yields the Riccati equation

(c)

Hence

jts(t) = -vs2(t).

t \   !   1*(') = -
V t + c

where c can be found from (b2 ). We obtain

(d) 5(0
vp(l- \)+\'

In order to estimate N we use s(l) in (d) as an estimate for s¡ and moreover

L"Sj » tl+x - t,. We thus obtain

tf*—<«pr[//+1-/,]-l).
fly

D

Remark 4.5. For fixed /,, the function S(r) = §(r(, 0 lS monotonically increasing

for / > /,. By expanding it in powers we moreover see that it is increasing more than

proportional with (/ - /,).

Remark 4.6. A most interesting feature of the estimate in Property 4.4 is that it

shows the dependence of §(?;,?, + ,) in terms of A(r,+ 1 - f,) or rather of the

incremental growth exp(X[i, + , - tlX). This is important for the generalization later

on. Note that we also found this incremental growth as the important quantity to

determine the length of a shooting interval in Section 2.

Although the result of Property 4.4 is based on first order estimates it is

remarkably sharp as can be seen from

Example 4.7. A very nice and easy to handle integration code is provided by

RK.F45 (cf. [5], [17]). Effectively it uses local error estimates with p = 5 and

f = 1/1040. We have applied RK.F45 to a model problem, where we have chosen

g = 1. (Note that the results are independent of ; now.) The solution was approxi-

mated for several interval lengths, which were determined by prescribing certain

incremental growth values, § say. We have also tried several values for e (the

tolerance), between 10"3 and 10"6 and X, between 1 and 20. As was to be expected,

for a given value of §, the number of points was independent of X. In Table 4.1 we

have listed the actual number of gridpoints, "91" values, followed by their estimates,

"§" values, between brackets.

Table 4.1

io-3

10"4

HT5

IO"6

1000

16(16.4)

25 (26.0)

41 (41.2)

67 (65.4)

100

8 (8.3)

13(13.2)

21 (20.9)

34(33.1)

10

3 (3.2)

5(5.1)

8(8.1)

13(12.8)

1 (1.2)

2(1.9)

3 (3.0)

5 (4.5)

1 (0.9)

2(1.4)

2 (2.3)

4 (3.6)

Note that the estimates are relatively sharper the larger 91 is.
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5. Optimal Shooting Intervals and Complexity. Suppose we divide the interval

(a, ß) into k subintervals. For the model problem we saw in Remark 4.5 that, for a

given tolerance e, the number of gridpoints per subinterval increases more than

proportional with the interval length. Hence if the function g(-) is smooth we can

expect the optimal distribution of the shooting points to be such that each interval

contains the same number of gridpoints (at least if k is not too small). This can be

thought of as equidistributing the shooting points (cf. [7], [14]).

In order to optimize for k we first consider ODE's for which the model problem

with g = 1 gives an appropriate description regarding the adaptive integration. In

this case equidistributed shooting points are also equidistant. From Property 4.4 we

therefore find that the total number of gridpoints is estimated by

*-i 10
(5.1)      ?T(*):-   ES(/„f,+ l) = *--£

i = 0

The computational complexity of the integration can now be estimated by using

(5.1). In order to make our discussion as general as possible we include methods like

these in [13], [16], where the 0, consist of / columns (/<«). We obtain

Property 5.2. Let the computational cost of one integration step be Kxn2 flops, for

some constant k,. Let $, consist of / columns for all i. Then the total cost of

integrating the fundamental solution is estimated by Kx"J(k)ni flops. (A flop is one

multiplication plus one addition.)

The constant k, strongly depends on the problem, i.e. k, will be larger if the

evaluation of L is more costly.

The cost of the adaptive integrator is more complicated. Of course, in general

there are more integrations than actually used gridpoints. In particular restarting the

integration may cause quite a bit of overhead. A realistic model is given by

Assumption 5.3. Let the overhead of the adaptive integrator on a subinterval be

estimated by k,[y, + y2S(/,, t, + (ß — a)/k)]n2 flops, where k, is as in Property 5.2

and y, and y2 are positive constants, independent of k.

Combining Property 5.2 and Assumption 5.3, we find

Corollary 5.4. The total cost of integration is estimated by

Kx{["l(k)(l+ \) + y2]+kyx)n2

flops.

There are two other possible sources of computational labor. The first one is the

solution of the linear system PX = F (cf. (1.6)). A solution of (1.6) can e.g. be found

using one of the special solvers (cf. [8]) or by direct recursion (cf. [2], [12], [16]).

Therefore the following makes sense.

Assumption 5.5. Let the computational cost of solving (1.6) or its related subsys-

tem be given by k2A73. If orthonormalization is used, then this has a cost of k3/c/«2.

Here k2 ^ 2 and k3 < 1.

From this we now find

Property 5.6. The total computational cost of the M.S. algorithm is estimated by

(/ + 1 + y2)Kß(k) +   k,y, + k2-^ + K2l\k\n2

'/i'

pUxp
A(fl-q)

kp
- 1
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flops. The number of shooting intervals is bounded above by

m1"lim %(s) = JO
9

\(ß-a)

(here \a] denotes the smallest integer greater than or equal to a). For the optimal k,

k   ,, i.e. the number of intervals with minimal cost, there holds

k     = k
/3   K,

iî(i+i + y2)z-f + if + yl,
n   K\       K\

*opt Ä
]0
9

fl'*x(i-.). C+1 + *)'.
K2r/n¿ + k3/ + y,

,   otherwise.

/Voo/. The complexity estimate is a consequence of Corollary 5.4 and Assumption

5.5. Furthermore we observe that 'ö(s) is monotonically decreasing (for 5^1) and

approaches

lim <5(s) = -£
Wp

X(ß-a);

note that /cmax should be an integer. Since §>(•) is an estimate for the number of

points/interval, we see that

Hence, if

I3   K7
(/+l+Y2)^1T71 + e + Y1,

n   *i

we have that /copt » A:max. Finally, if this is not the case, the approximate optimal

value follows from solving

(/+   1  +y2)Kx<5J{kapl)=  UA + K3/+YlK,Wop«-     D

Corollary 5.7. For the optimal number of points per interval we have

(i)

(Ü)

S/,,f,+
ß-a

lopt

-1,   if{l+\+y2)>L7^ + l^- + y„
n   *\

ci ß~a\      K2l /»2 + /k3 + Y,k,
S  /,, f, + ^-    - -—-;-   x ,    otherwise.

koçx (l+l+y2)Kx

The preceding estimates mainly give a good qualitative insight in the optimal

complexity. On account of the fact, however, that S(r¿, /, + (y8 — a)/k) is a

relatively more inaccurate estimate of 9t(f,, t^ß - a)/k) the closer

%(t„t, + (ß-a)/k)

is to 1 and at the same time *5(k) (the dominant factor in Property 5.6) is almost

independent of k for larger k, it seems advisable to take for 9l(/,, t, + (ß - a)/k)

values that are not too small integers.
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Remark 5.8. If / < n, the result of 5.7(H) seems to indicate that the optimal

number of points might be slightly smaller than in case I = n. However, as a whole,

the qualitative conclusion, viz. about a fixed number of points, is similar.

Having adopted the strategy of a fixed number of gridpoints per interval, for the

model problem with g = 1, it seems quite reasonable also to use this for more

general model problems. Indeed, as observed before, for larger k (i.e. a smaller

number of points per interval) an optimal strategy (i.e. equidistribution of shooting

points) would require the same number of gridpoints in each interval. Although an

analogue to the function ^(k) now is more complicated, it seems very likely that the

qualitative conclusions will be the same. We can then generalize further: if it is the

equidistribution that counts, then the complexity arguments are likely to be valid for

cases where the homogeneous solutions rather grow like exp(/a'X(0) da) for some

nonconstant function X(o).

In order to give the algorithm as much flexibility as possible, we therefore propose

to choose 91 ( = steps/interval) such that it is close to the optimal value, but not too

far from I. From our experiments, 5 was found to be fairly satisfactory when

RKF45 was used.

Below we give some examples which illustrate all this.

Example 5.9. Consider the ODE in Example 2.3, now with r(t) such that

x(t) = e'
( Mi
Iw

We used an M.S. algorithm that picked a new shooting point either if a certain

incremental growth was detected or if the number of gridpoints on the subinterval

was equal to a given input parameter. The initial value for the particular solution

was chosen to be 0. In Figures 5.1 and 5.2 we have indicated the total number of

gridpoints 91T as a function of the parameter § that sets the maximal incremental

growth per interval.

As can be expected this number is monotonically increasing for large §. For §

close to 1 this is not the case; this last effect is caused by inefficiencies if the

shooting interval is too small (N.B. one step per interval is minimal). In Figures 5.3

Figure 5.1. e = 10" FIGURE5.2. £ = 10"6
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and 5.4 we have indicated the cpu time (in milliseconds) that was needed to compute

the desired solution in double precision. Of course, the actual magnitudes of the

figures are less important than their qualitative meaning: For e = 10"4 we again see

that too small increments are less efficient; however, for e = 10 "6 this is no longer

really to be seen from such a picture. The reason is that for smaller tolerances the

number of points per subinterval is larger and therefore the overhead is less felt for

e = 10-6

Figure 5.3. e = 10" Figure5.4.£ = 10~6

We also have tried the M.S. algorithm with shooting intervals consisting of a fixed

number of points. In Table 5.1 we have given the total cpu time (in millisecs) and the

number of points (indicated between the brackets) for several values of the tolerance

e and the fixed number of gridpoints per interval 91.

Table 5.1

.91

io-3

10"4

IO"5

317(108)
443(162)

684 (256)

308(113)

399(165)

625 (260)

296(116)

385 (170)

590 (264)

290(121)

384(175)

580 (269)

289(125)

380(181)

580 (274)

290(130)

380(186)

575 (280)

In all these computations at least 90% of the cpu time was needed for integration.

Example 5.10. As a first major deviation from the model problem, we choose r(t)

in 2.3 such that a particular solution is given by

sin 30f
1

U

This means that this solution will dominate the "activity" of a general solution. In

Table 5.2 we have given cpu time and number of grid points (in brackets) for several

tolerances and maximal growth per interval §. In Table 5.3 we did the same but now

with the number of points per interval fixed (cf. Table 5.1).
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100 200

Table 5.2

1000 10,000 100,000

io-3

io-5

io-8

255(103)

520 (268)

1931(1100)

254(110)

472 (283)

2212(1196)

295(134)

670 (337)

2619(1399)

375(179)

887 (467)

3147(1690)

491 (252)

1215(653)

3614(1940)

Table 5.3

91

io-3

io-5

io-8

254 (90)

610(207)

224 (824)

242 (87)

524 (207)

2031 (824)

235 (89)

482 (206)

1935 (825)

237 (90)

462(197)

1855(826)

257(101)

472 (209)

1805(828)

255(100)

488(217)

1815(827)

Qualitatively these tables give a result similar to that in the previous example, in

favor of choosing 91 fixed. Since the activity of sin 30i is more or less dominating the

integration step, we may expect that the total number of gridpoints is fairly

independent of 91 (= points/interval). Indeed, it turned out that for e = 10~8,

9" * 825 for all larger values of 91, with natural deviations roughly equal to 5" -

(W9L] - 1)91.
Example 5.11. Consider the ODE

dx

dt
*(0 0

2*(0     -*(/)
x +

(\-xp(t))e'

2e'
xp ( t) = 20 sin t + 20/cos/.

Choosing the boundary condition x(0) + x(2) = (2¡i++e^)), one can easily check that

x = (x2)e'. A fundamental solution is given by

F(0 = ( 1     0
1     1

,*<<>

0

0 <í>(0 = 20/sin/.

Apparently the basis solutions in this problem have a significantly varying growth

behavior on [0,2]. Tables like 5.2 and 5.3 are given below, viz. Table 5.4 and Table

5.5.

Table 5.4

§ 100 200 1000 10,000 100,000

io-3

io-5
IO"8

126(71)

256(180)

929(717)

92 (77)

264(194)

960 (749)

155(91)

325 (236)

1021 (819)

170(118)

399 (304)

1089(871)

208(156)

504 (392)

1137(904)
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.91

io-3

io-5

IO"8

129(61)

263(133)

1014(526)

127 (63)

246(136)

971 (529)

126 (65)

234(139)

926 (532)

127 (68)

233(142)

879 (536)

125 (70)

232 (145)

871 (539)

129 (73)

236 (149)

868 (542)

Example 5.12. Consider the ODE

dx     11(\ - cos2/)       1 + /sin2/

\ -\ + /sin2/     /(l + cos2/)

where r(t) is chosen such that

x + r(t),       0 < / < 4,

x —
1 + cos /
1 - sin /

A fundamental solution is given by

F(t) =
cost

-sin/ cos//^o

In this example all solutions are varying with time, and moreover one of the basis

solutions has a very rapidly changing growth behavior (as compared to a solution

growing like eKl, X constant). Some results are given in Tables 5.6 and 5.7.

Table 5.6

S 100 200 1000 10,000 100,000

io-3

io-5

IO'8

52 (27)

96 (66)

348 (264)

51(25)
99 (65)

327 (250)

60 (34)
133(88)

394 (309)

66 (42)

151 (106)

420 (335)

81 (55)
184(137)

435 (343)

Table 5.7

IO"3

IO"5

IO"8

50 (20)

97 (46)

341 (180)

47 (20)

91 (47)

304(177)

48 (22)

87 (48)

391 (177)

51 (24)

86 (48)

271 (178)

52 (25)

86 (50)

269 (178)

52 (26)

87 (50)

268 (175)

Example 5.13. Our final example is the well-known artificial layer problem (cf. [1,

p. 52], [3, p. 455], [16, p. 60]). Consider the ODE

3M „       ...    ,„ ,x , „ ., 0.1

(M + z2)
■x = 0,   withx(O.l) =-x(-0.1)

(/i+ 0.01)
1/2
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For small p, there is only activity in a region of thickness \fp around x = 0. Hence a

reasonable code should choose almost all points in this region. Below, in Tables 5.8

and 5.9, we have given cpu time and number of gridpoints for p = IO'6.

Table 5.8   (/i = IO"6)

100 1000 10,000

3

5

0-8

10"

10"

72(21)

58(40)

114(144)

42 (26)

54 (48)

112(159)

38 (26)

54 (49)

112(163)

38 (26)

54 (47)

110(155)

28(18)

52 (56)
122(187)

46 (47)

58 (62)

128(190)

44(47)

64 (95)

175 (290)

Table 5.9   (p = IO"6)

.91

IO3

IO"5

IO"8

39 (28)

60 (52)

181(182)

33 (26)

56 (54)

150(181)

30 (26)

54 (54)

145(181)

33 (29)

49 (53)

129(181)

31 (28)

49 (53)

130(181)

32(31)

47 (54)

120(181)

Since the basis solutions do not grow substantially on this interval (viz. a factor

500-1500, depending on the accuracy of the computation), a strategy with S fixed

means that a choice of S > 1500 will result in single shooting. It appears that the

integrator needs a number of steps before it has relaxed the step size, after having

passed the high activity region. Because of the starting strategy of RKF45, a new

shooting point outside of this high activity region will automatically relax the step

size. This explains why the total number of steps 9lr is independent of the 91. The

results are also in agreement (perhaps better, even taking into account that we used

the adaptivity feature for one solution only) with the results in [16], where e.g. for

£ = 10"8, 9lr = 190. The numbers given in [3] do not lend themselves to compari-

son. However, since they are computed by a code, which is designed to handle

nonlinear problems, they involve the computation of 5 basis solutions, instead of 2

like the code in [16] does; hence we do not expect the results in [3] to be competitive.

Conclusion. The use of an adaptive integrator is undoubtedly one of the best

features of M.S. as e.g. Example 5.13 confirms (see also the conclusion in [16]). If

one chooses to determine the shooting points by checking some kind of dependence

of solution vectors (cf. [4], [16]), then one does effectively the same as checking the

growth of solutions (cf. [13]), as this growth generates errors, which in turn cause the

dependence. However, as can be seen, both from the examples and from the theory,

a reliable growth tolerance does not seem obvious. In fact, since rounding errors of

order ¿ (the machine precision) are often considerably smaller than (global!) discreti-

zation errors of order e (the tolerance), an acceptable bound for the growth (from a

stability point of view) would be 0(e/i-), see also Sections 2 and 6. Note that in our

examples this bound would be at least as big as IO8, which would lead to extremely

inefficient strategies of course. In [2], [3], [18] the M.S. codes require the user to
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specify the shooting points. Only if a good knowledge of the growth of solutions is

available this may work well. After what we have found above, however, it goes

without saying that such a strategy may be far from optimal, regarding the

complexity. In that respect the results in [3] should be interpreted in a relative sense,

i.e. only in relation to that special implementaion. Concluding we may say that the

fixed number of integration points per interval option seems to work equally well or

better than the others. Moreover it is based on a theoretical model which lends itself

to a more extensive analysis.

6. Minimization of Storage. As we noted in Section 1, a third optimality criterion

is given by the requirement to minimize the storage for the matrices A¡ and 2?, and

the vectors F¡, i.e. to minimize the order of the matrix P (see (1.6)). We shall now

show that we can reduce this order without really affecting the complexity and the

stability, the latter at least to a certain extent. Such a reduction of the order is also

important in order to make the previously obtained complexity strategy practical;

indeed, following the recommendations of Section 5, we may end up with a very

large value for k (number of shooting intervals), which might make the proposed

strategy less attractive, if not impractical.

The solution to those problems is very simple though. Indeed, all we have to do is

to assemble as much of the recurrence relations (1.4), as is allowed by stability

considerations, in order to build a condensed "major shooting step". Below we

describe this condensation.

If for a given f., the point tj+l is such that

(6.1)        ||»y+/-1((/+,)[»y+/-,(í/+,-,)]'1--- •j(tj+l)[*j(tj)]~in<-¿£>

then it follows, from what has been observed in Section 2 (cf. (2.1)) that forward

recursion on (tr tj+l) gives global rounding errors of maximal order e. Hence rather

than ( 1.4) for i = j,...,j + I, we use the major recursion step

(6-2) Cj+i-\vj - £,+/-!«,+/ " Gj+i-u

where C+/_ x and GJ+,_, are recursively defined by (6.3) and (6.4), respectively:

(6.3) Cj-Aj-,    CJ+s+x=AJ+s+xB¿sCj+s,       5 = 0,...,/- 1,

(6.4) Gj = Fy,    Gj+S+X - AJ+s+xBfxfij+s + FJ+S+X,       s = 0,..., / - 1.

It goes without saying that the condensed relations like (6.2) together with the BC

give a significantly lower order M.S. system if the ratio e/£ is large. Moreover,

condensing the system plus solving it has approximately the same complexity as

solving the uncondensed one; for this one should note that each recursion step

approximately requires /3 flops (cf. Example 6.6).

Remark 6.5. The recursive formulations (6.3) and (6.4) show that the matrices

Cj+i_x and Gj+i_x can be found from updating Cj+S and GJ+S at each minor

shooting step (proceeding from tj to tJ+l). As a consequence one only needs some

limited work space, but no extra memory.

The threshold criterion (6.1) may be implemented in the following way. Assuming

the problem is well conditioned, we just choose some constant tj, equal to 10 say, to

serve as an upper bound for k. A good guess for k is given by (ß - a)/(tJ+l - tj).
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Hence, in practice we suggest to use

(6.5)
£ £   1   tj + l

£k/c      ¿t/   ß — a

Example 6.6. We performed this condensation strategy for the problem given in

Example 2.3, for which we used an M.S. code based on RKF45 and 5 integration

steps per (smaller) shooting interval. The major shooting intervals were found by

requiring that the maximal increment should not exceed some preset value §. Table

6.1 now confirms our expectation that the total cpu time (in millisecs) is practically

independent of this value of § indeed.

Table6.1.   e= 104

cpu

103        104        IO6        108        1010       IO12       1014       IO16

10

415  412  412  416   408   407   410   414
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