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A Modified Method for Reconstructing

Periodic Jacobi Matrices

By Daniel Boley and Gene H. Golub*

Abstract. In this note, we discuss the reconstruction of periodic Jacobi matrices from spectral

data. The method combines ideas and techniques from the algorithms given by Boley and

Golub [1], [2], and Ferguson [3], resulting in a numerically stable algorithm applicable to a

larger class of problems. The number of initial data items needed for this method equals the

number of items in the resulting matrix, namely 2n.

1. Introduction. In this note, we discuss the reconstruction of a periodic Jacobi

matrix of the form

(la) J =

a,

->n~\

from the eigenvalue data using methods that are numerically stable. Here the a, and

b¡ are real, and b¡ * 0 for all /'. Such problems arise, for example, in the study of

Toda Lattices [9], [10], and might also arise in the study of Sturm-Liouville and

Hill's equations [3]. In particular, we are given the following initial information: the

eigenvalues X¡, i = I,..., n of J, the eigenvalues ft,, / = 1,..., n - 1 of the subma-

trix / obtained from J by deleting the first row and column. We also need the

product ß = bxb2 ■ ■ ■ bn, or equivalently the eigenvalues X~, i = 1,..., n of the

matrix

(lb) /- =

*i

by

ln-\ Jn-\

a..
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The techniques used are based on the methods described in [1] and [2]. In [3], it

was pointed out that the method in [2] would fail on a certain class of matrices, and

a method was given extending the collection of solvable problems to cover this class.

The class in question can be described in terms of the interlacing property

(2) A,<fl,<A,+ 1, /=1.B-l.

If the inequalities are strict, then we say J satisfies the strict interlacing property. This

last property is necessary for the algorithm in [2] but not for the one in [3]. In

addition, unlike [2], the method in [3] does not require that the order of the system,

n, be even. However the method in [3] starts with substantially different initial data

and hence does not directly solve the problem posed in [2].

In this method, we need to assume only that the p¡ be simple. This is equivalent to

assuming that the off-diagonal elements of J be nonzero [8, p. 300]. In order to

ensure that a solution exists in the real numbers, we also need to assume that the Xi

satisfy (2), and that ß lies in an interval (0, ßmax), which will be defined below.

2. Preliminaries. We need to define the following two bordered diagonal matrices

A, A' [4] which appear as intermediate results in the course of the computation, and

which are similar to J and /", respectively, by the same transformation:

(3a) A =
0

PT
J

1     0
0    P

A~ =
1      0

0    PT
J

1     0
0    P

where P is the orthogonal matrix of eigenvalues of the submatrix J. Hence A and J

have the same characteristic polynomial, and so do /l" and J '.

The matrices A, A', can be written in the form:

(3b) A =
M

A' = (c-)J

M

where M = diag(fi,,..., ft„_,) = PTJP, and the eigenvalues of A and A' are A, and

a~, respectively. We shall later see how to define A~ using only ß instead of the X~.

In the following, we will denote the / th row of P as pf, that is PT = [p,,..., p„_,].

It is obvious that

(4a)
n- 1

au = trace(/4) - trace(M) = £\, - £ ft,.
i i

By expanding the determinant, the characteristic polynomial of A may be written as

(4b)      detiXl -A) = iX- au) U (* - ft,) - £ c
j-\ k=\

n(A-My)
J*k

Setting X = ft,,..., fi„_ , and solving the n - 1 equations for the c, yields

n;_, (/*,-*,)
(4c) c.2 =

n;:,U(ft,-ft,)
>o.

thus completely defining A up to the choice of signs of the c¡.
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If we let

«I   b\

b\      a2

0
'n-l

7-   1

and define p(X), r(X) as the charactistic polynomials of the tridiagonal matrices 5"

and /, respectively, then we may write

det(./ - XI) = piX) - b2riX) - 2i-l)"ß,

detiJ--XI)=piX)-b2riV + 2i-l)nß.

Subtracting yields

det(y- XI) = det(/T- XI) = det(A - XI) + 4(-l)"0.

So we can solve for c~ as in (4c) to obtain

n;_l(fi,-x;) + 4(-i)"/3
(4d) (cD2 =

Hence we can define A', either with ß using (4d), or else by using (4c) with X~

substituted for X,. Note that (4d) defines the interval (0, )8max) in which ß must he by

the requirement that (c~)2 > 0.

If we equate the first columns from Eq. (3a), we get

(5a) [bx,0,...,0,bn]T = Pc,       [bx,0,...,0,-b„]T = Pc-,

in which the left-hand sides are (n - 1)-vectors. Subtracting yields

[0,...,0,2bn]T = 2bnen_x = Pic-e-),

which, applying PT to both sides, yields

(5b) 2¿>„p„_,=c-c-.

Similarly, if we add the two parts of (5a) together, we get

(5c) 2¿>,p, = c + c".

In (5b), (5c) the left-hand sides are determined up to sign by the requirement that

IIPill = llPn- ill = 1- Note that we have a choice of signs in taking the square roots of

the quantities defined in (4c), (4d), to obtain the c¡, c~. A different choice of signs

will give rise to different vectors Pi,p„_i and hence a different /. Thus, except in

certain degenerate cases, there will be more than one matrix satisfying the initial

eigenvalue conditions.

3. The Method. What have we now? We have p,, that is, the first row of the

eigenvector matrix P for a tridiagonal matrix /. We also have the eigenvalues ft; of /,

so J is completely determined (elementary consequence of Theorem 4.2 of Chapter 7
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of [6]). We can computey an element at a time, and P a row at a time, by alternating

between the formulas

(6a)

(6b)

y = pmpt,

PTJ = MPT.

The method that results from this is the Lanczos Algorithm [7], [8], and proceeds as

follows:

Lanczos Algorithm

Start with p, an (« - l)-vector with 2-norm 1, and M = diag(ft,.M,,-i), a

diagonal matrix.

Object: compute orthonormal vectors p2.p„_ | and an n - 1 X n - 1 tridiago-

nal matrix

y =

/,

'n-2       S

■1„-2       t

»1-2

(1-2       'n-1

satisfying (6).

1. begin

2. /, <- tfA/p,;
3. for. «- 2,_n - 1 do

4. begin

5. z, ^ (if / = 2

then A/p, - p,/t

elseA/p,., - p,„,f,_, - P,-2-5,-2);

5,-l  ^ M*iTI2'6.

7. p,^z,/v_,;

8. ., - pfMp,;
9. end

10. end.

Step 5 is mathematically equivalent to saying

z, «- A/p,_,

Orthogonalize z, against all p, _,, p, by Gram-Schmidt.

What was actually implemented was the original step 5, followed by a complete

Gram-Schmidt reorthogonalization. The Lanczos Algorithm is stable only if some

reorthogonalization is used [11, Theorems 2.3, 2.4,2.5], and for simplicity we chose to

use complete reorthogonalization.

In step 7, Sj_t * 0 is guaranteed from the assumption that the eigenvalues ft, are

distinct [8, p. 300].

It must be noted that the tridiagonal matrix J may be constructed by using

Householder Transformations instead of using the Lanczos Algorithm with complete

reorthogonalization. The details are given in [4], and this method can be substituted



RECONSTRUCTING PERIODIC JACOBI MATRICES 147

for the Lanczos algorithm giving theoretically equivalent results. However, it was

noted in [4] that the method using Householder Transformations is more expensive,

but on badly conditioned problems it may be more stable, depending on the kind of

reorthogonalization used [11]. On the other hand, the Lanczos Algorithm is much

more suited for large sparse problems. Further comparison between the methods is

necessary.

The algorithm to reconstruct J is then as follows:

Reconstruction Algorithm

Compute then -lX/i-1 submatrix/(defined just below (la)):

1. Compute c, c" using (4c), (4d).

2. Compute bt and p, by (5c) subject to ||p,||2 = 1.

3. Apply   the   Lanczos Algorithm  starting with vector p,   and matrix M -

diag(ft,,... ,fi„-|), obtaining vectors P and tridiagonal matrix /.

Fill in the first row and column of y defined in (la):

4. Compute a, = L"Xt - EJT1 ft, (Eq. (4a)).

5. Compute bn by either (5b) or from the definition of ß:

ßb  =
(*l     ■■K_x)

4. Numerical Results. A RATFOR program has been written to test this method.

It successfully reconstructed the example suggested in [3], with n = 4,5,6, namely

1 1

1

0

for which the ft, are simple, but the X, are not. The initial data used in these test

cases, as well as the vectors c, c", are listed below:

n - 4, ß - 1

initial X,

0

2.00000000

2.00000000

4.00000000

initial ft,

0.58578644

2.00000000

3.41421356

1.00000000

0

1.00000000

0

1.41421356

0

5,0-1

initial X,

0.38196601

0.38196601

2.61803399

2.61803399

4.00000000

initial ft,

0.38196601
1.38196601

2.61803399

3.61803399

0
1.20300191

0
0.74349607

0.74349607

0
1.20300191

0
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n = 6,ß=l

initial X,

0

1.00000000

1.00000000

3.00000000

3.00000000

4.00000000

initial fi,

0.26794919

1.00000000

2.00000000

3.00000000

3.73205081

0.57735027

0

1.15470054

0

0.57735027

0

1.00000000

0

1.00000000

0

The following example illustrates the fact that the bi need not be positive. This

example is simply the J~, defined by (lb), corresponding to the J used in the above

case n = 4.

n = 4,ß = -l

initial X,

0.58578644

0.58578644

3.41421356

3.41421356

initial u,

0.58578644

2.00000000

3.41421356

0

1.41421356

0

1.00000000

0
1.00000000

The above cases all have remarkable property that for all i, / = 1,..., n - I, either

c, = 0 or c~ = 0, so that the reconstructed matrix J is essentially unique (up to signs

of the off-diagonal elements). In the following example, we show a more general

case, in which the answer is not unique. The results were obtained by starting with

one set of eigenvalue data and cycling through all possible sign combinations for the

c,, c~. The initial data and the c vectors were:

n = 4, ß = .25

initial X,

0

2.00000000

2.00000000

4.00000000

initial ft,

0.58578644

2.00000000

3.41421356

1.00000000

0

1.00000000

0.86602540

0.70710678

0.86602540

The 4 distinct matrices that were computed are given below. For brevity, we show

each distinct matrix only once, since each one actually appeared 8 times. Since there

were no degeneracies encountered in this example, and by observing that any matrix

satisfying the initial conditions (given by X,, ft,, ß) must satisfy (4a)-(4d) and (5c), it

follows that the following are all the possible distinct answers for the given initial

data above.

2.00000000

2.00000000
2.00000000

2.00000000

1.36602540

1.36602540

0.36602540

0.36602540
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2.00000000

2.00000000

2.00000000

2.00000000

a¡

2.00000000

0.77525513

2.00000000

3.22474487

«i

2.00000000

3.22474487

2.00000000

0.77525513

0.36602540

0.36602540

1.36602540

1.36602540

1.00000000

0.50000000

0.50000000

1.00000000

b,
1.00000000

0.50000000

0.50000000

1.00000000

As a final example, we tried the example 3 of Table 2 on page 1218 of [3], in

which the matrices in question were reconstructed only with large errors. The

matrices are defined as follows, for n = 5,10,15,20,25,30:

a,=- - 2,       i = l,...,n - 1,

b¡= I - -,       i= l,...,n-2,

bn = b„_x = l,

an = 0.

The algorithm was suitably modified to account for the fact that the submatrix J in

this example was obtained by deleting the last row and column rather than the first.

Unfortunately, there are too many combinations of signs for the c„ cj to compute

all the possible matrices. For n = 10 alone there are 262144 different choices of

signs. However, in each case we are able to compare the eigenvalues of the

reconstructed matrix with the initial eigenvalues. Since the eigenvalues for symmetric

matrices are always well-conditioned, the discrepancy between the two sets of

eigenvalues is a good indicator of the error in the reconstructed matrices.

n Norm of discrepancy

5 .364539663e - 15

10 .558570184e - 15

15 .130290552e - 14

20 .191718261e - 14

25 .304003744e - 14

30 .340721065e - 14
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Here, the norm of discrepancy is the square root of the sum of the squares of the

differences between the two sets of eigenvalues.
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