Odd Triperfect Numbers

By Masao Kishore*

Abstract. We prove that an odd triperfect number has at least ten distinct prime factors.

1. A positive number N is called a triperfect number if $\sigma(N) = 3N$, where $\sigma(N)$ is the sum of the positive divisors of N. Six even triperfect numbers are known:

$$2^{14} \cdot 5 \cdot 7 \cdot 19 \cdot 31 \cdot 151,$$
 $2^{13} \cdot 3 \cdot 11 \cdot 43 \cdot 127,$
 $2^{9} \cdot 3 \cdot 11 \cdot 31,$
 $2^{8} \cdot 5 \cdot 7 \cdot 19 \cdot 37 \cdot 73,$
 $2^{5} \cdot 3 \cdot 7,$
 $2^{3} \cdot 3 \cdot 5.$

However, the existence of an odd triperfect (OT) number is an open question. McDaniel [1] and Cohen [2] proved that an OT number has at least nine distinct prime factors, and Beck and Najar [3] showed that it exceeds 10⁵⁰.

In this paper using the technique of [4], we prove

THEOREM. If N is OT, N has at least ten distinct prime factors.

2. Throughout this paper we let

$$N = \prod_{i=1}^r p_i^{a_i},$$

where p_i 's are odd primes, $p_1 < \cdots < p_r$ and a_i 's are positive integers.

The following lemmas are easy to prove:

LEMMA 1. If N is OT,

(1)
$$a_i$$
's are even for $1 \le i \le r$.

LEMMA 2. If N is OT and q is a prime factor of $\sigma(p_i^{a_i})$ for some i, then q = 3 or $q = p_i$ for some $j, 1 \le j \le r$.

LEMMA 3. If N is OT and r = 9, $p_8 < 80$.

Received July 6, 1981.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 10A20.

^{*} This paper was written as a quarter project when the author was in a programming language class taught by Mr. Joseph Klinger at the University of Toledo in Spring, 1981.

As in [4] we define

$$a(N) = \sigma(N)/N,$$

$$a(p) = \min\{a \mid a \text{ is even and } p^{a+1} > 10^{11}\},$$

$$b_i = \min\{a_i, a(p_i)\},$$

$$M = \prod_{i=1}^r p_i^{b_i}.$$

LEMMA 4. If N is OT, then

(2)
$$\log 3 - r \cdot 10^{-11} < \log S(M) \le \log 3.$$

Proof. Since $M \mid N$, $S(M) \le S(N) = 3$ and so $\log S(M) \le \log 3$. In [4] we proved that if a > a(p), then

$$0 < \log S(p^a) - \log S(p^{a(p)}) < 10^{-11}.$$

Hence

$$0 < \log S(N) - \log S(M) < r \cdot 10^{-11}$$

and we have

$$\log 3 - r \cdot 10^{-11} = \log S(N) - r \cdot 10^{-11} < \log S(M).$$

Q.E.D.

COROLLARY. If N is OT, $L = M/p_r^{b_r}$ and if $p_r > 3500$, then

(3)
$$\log 3 - r \cdot 10^{-11} - \log S(3499^2) < \log S(L) < \log 3$$
.

Proof of Theorem. We used a computer (PDP 11 at the University of Toledo) to find

$$M = \prod_{i=1}^{9} p_i^{a_i}$$

satisfying (1), $a_i \le a(p_i)$ for $1 \le i \le 9$, (2) with r = 9, and $p_9 < 3500$. There were 71 such M's; however, all of them had a factor $p_i^{a_i}$ such that $a_i < a(p_i)$, $\sigma(p_i^{a_i})$ had a prime factor q > 3, and $q \ne p_j$, $1 \le j \le 9$.

Next we tried to find

$$L=\prod_{i=1}^8 p_i^{a_i}$$

satisfying (1), $a_i \le a(p_i)$ for $1 \le i \le 8$, and (3) with r = 9. There were 12689 such L's; however, 12473 of them had a factor $p_i^{a_i}$ such that $a_i < a(p_i)$, $\sigma(p_i^{a_i})$ had a prime factor q > 3, $q \ne p_i$ for $1 \le j \le 8$, and

$$\log S(L) + \log S(q^2) > \log 3.$$

The remaining 216 of them had the following properties: there exist two consecutive primes u and v such that 3500 < u < v,

$$\log S(L) + \log S(u^2) > \log 3$$
, and
 $\log S(L) + \log v/(v-1) < \log 3 - 9 \cdot 10^{-11}$.

These three cases show that if N is an odd integer with r = 9, then N cannot be OT. Q.E.D.

The computer time was over five hours.

Department of Mathematics East Carolina University Greenville, North Carolina 27834

- 1. W. McDaniel, "On odd multiply perfect numbers," Boll. Un. Mat. Ital., No. 2, 1970, pp. 185-190.
- 2. G. L. COHEN, "On odd perfect numbers II, Multiperfect numbers and quasiperfect numbers," J. Austral. Math. Soc., v. 29, 1980, pp. 369-384.
- 3. W. E. BECK & R. M. NAJAR, "A lower bound for odd triperfects," Math. Comp., v. 38, 1982, pp. 249-251.
- 4. M. KISHORE, "Odd integers N with five distinct prime factors for which $2 10^{-12} < \sigma(N)/N < 2 + 10^{-12}$," Math. Comp., v. 32, 1978, pp. 303-309.