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Odd Triperfect Numbers

By Masao Kishore*

Abstract. We prove that an odd triperfect number has at least ten distinct prime factors.

1. A positive number TV is called a triperfect number if a(N) — 37V, where o(/V) is

the sum of the positive divisors of TV. Six even triperfect numbers are known:

214 • 5 • 7 ■ 19 • 31 - 151,

213 - 3 • 11 • 43 • 127,

29-3 • 11 -31,

28 • 5 • 7 • 19 • 37 • 73,

25 • 3 • 7,

23 • 3 ■ 5.

However, the existence of an odd triperfect (OT) number is an open question.

McDaniel [1] and Cohen [2] proved that an OT number has at least nine distinct

prime factors, and Beck and Najar [3] showed that it exceeds IO50.

In this paper using the technique of [4], we prove

Theorem. // jV is OT, N has at least ten distinct prime factors.

2. Throughout this paper we let

N-YÍPÍf
i-i

where p, 's are odd primes, p, < • • •  < pr and a, 's are positive integers.

The following lemmas are easy to prove:

Lemma l.IfNisOT,

(1) a/s are even for 1 < I < r.

Lemma 2. // TV is OT and q is a prime factor of a(pf-) for some i, then q = 3 or

q = pj for some j, 1 ^ y < r.

Lemma 3. If N is OT and r = 9, ps < 80.
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As in [4] we define

S(N) = a(N)/N,

a(p) = Min(a|aisevenand/7a+1 > 10"},

b: = Min{a,, a(Pi)),

Lemma 4. IfN is OT, then

(2) log3 -r- IO"" < logS(/tf)<log3.

Proof. Since M\ N, S(M) < S(N) = 3 and so log S(M) < log3. In [4] we proved

that if a > a(p), then

0 < \ogS(pa) - logSip«")) < IO"".

Hence

0<logS(/V)-logS(M)<r- 10-",

and we have

log3 - r- 10"" =\ogS(N)-r- IO'" < logS(M).

Q.E.D.

Corollary. IfN is OT, L = M/pb/ and ifpr > 3500, then

(3) log3 - r ■ 10"" - IogS(34992) < logS(L) < log3.

Proof of Theorem. We used a computer (PDP 11 at the University of Toledo) to

find

M=Y\pf'
7=1

satisfying (1), a¡ < a( p¡) for 1 < ; < 9, (2) with r = 9, and pg < 3500. There were 71

such M's; however, all of them had a factor /?,"' such that a, < a(pt), o(pf') had a

prime factor <? > 3, and q * />-, 1 < y < 9.

Next we tried to find

;=1

satisfying (1), a, < a(/0 for 1 «s / < 8, and (3) with r = 9. There were 12689 such

L's; however, 12473 of them had a factor p°' such that a¡ < a(p¡), a(p°') had a

prime factor q > 3, q * pj for 1 < y < 8, and

logS(L) + logS(?2)>log3.

The remaining 216 of them had the following properties: there exist two consecu-

tive primes u and v such that 3500 < u < v,

logS(L) + logS(u2) > log3,   and

logS(L) + \ogv/(v - 1) < log3 - 9 • IO"".
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These three cases show that if TV is an odd integer with r = 9, then TV cannot be

OT.   Q.E.D.
The computer time was over five hours.
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