
mathematics of computation
volume 43. number 167
iuly 1984. pages 289-311

A Monte Carlo Factoring Algorithm

With Linear Storage

By C. P. Schnorr* and H. W. Lenstra, Jr.

Abstract. We present an algorithm which will factor an integer n quite efficiently if the class

number h(-n) is free of large prime divisors. The running time T(n) (number of composi-

tions in the class group) satisfies prob[7"(m) <i n1/2r] > (r - 2)~<'~2> for random m e

[n/2, n] and r > 2. So far it is unpredictable which numbers will be factored fast. Running

the algorithm on all discriminants - ns with s < r' and r = ^/ln ?i/ln In n , every composite

integer n will be factored in o(exp^ln n In In n) bit operations. The method requires an

amount of storage space which is proportional to the length of the input n. In our analysis we

assume a lower bound on the frequency of class numbers h(-m), m < n, which are free of

large prime divisors.

1. Introduction. The problem of factoring an integer n into its prime power

divisors is computationally equivalent to determining all ambiguous, reduced posi-

tive forms ax2 + bxy + cy2 (notation (a, b, c)), a, b, c e Z, with discriminant b2 —

Aac = -nib2 - 4ac = +n, resp.). In fact these ambiguous forms correspond to the

relatively prime factorizations of n, i.e. to the pairs (nlt n2) with n = nxn2,

gcdinx, n2) = 1.

According to Gauss [5] the equivalence classes of forms with fixed discriminant A

form a group under composition, the class group G(A). The order /i(A) of this group

is the class number. Multiplication in G(A) can be done efficiently working with

representatives of classes. The ambiguous classes are the classes H with H2 = 1.

In case of negative discriminant A < 0 there is a unique reduced form in each

class, and this form can be efficiently calculated from any other class representative.

Therefore, factoring n is computationally equivalent to determining representatives

of all ambiguous classes in G(-n). The reduced forms of these classes correspond to

the relatively prime factorizations nxn2 = nofn.

In case of positive discriminants A > 0, under a different concept of reduction,

there are 0(\[K In A) reduced forms in each class. They form a cycle under the

reduction operation. Composition of forms yields a group-like structure on the

principal cycle. A reduced form (a, b, c) is ambiguous if its square under composi-

tion yields the unit form. Again, the ambiguous, reduced forms with discriminant

n > 0 correspond to the relatively prime factorizations nxn2 = n of n.

Several factoring algorithms have been developed on this basis. Here we are only

concerned with negative discriminants. For positive discriminants, see the algorithms

of Shanks as described in Monier [11] and Wagstaff-Wunderhch [22]. For negative

Received March 21,1983.
1980 Mathematics Subject Classification. Primary 10A30,10C07, 68C25.
'Research supported by Bundesminister für Forschung und Technologie under grant 08 30108.

©1984 American Mathematical Society

0025-5718/84 $1.00 + $.25 per page

289

290 C. P. SCHNORR AND H. W. LENSTRA, JR.

discriminants Shanks [17], after guessing generators for G(-h), computes the class

number /i(-n) by exploiting the group structure. Then Shanks computes

Hik):= Hh(~")/2k for the smallest k such that Hik) * 1 with H e G(-w) chosen

arbitrarily. Clearly Hik) is ambiguous. Under reasonable assumptions it takes

0(n1/4) steps to factor n in this way. This method can be speeded up to an

0(«1/5)-algorithm by approximating /i(-m) via the class formula (let (7) denote the

Kronecker symbol):

m ™ p<m P \ p)

which by the generalized Riemann hypothesis has an error term 0(ln(mn)nl/2m~x/1).

For this algorithm the amount of storage will be proportional to the running time.

In Schnorr [19] a method was proposed to generate ambiguous forms which is

similar to the Morrison-Brillhart factoring algorithm. We collect equations

Ü} = Yin?-', apJ e Z,
p

with Ht: œ G(— n) chosen at random and H =[(p,bp, cp)] for small primes p. By

combining these equations one obtains

h=n#,\ f=n#f'*,fl'-')/2
« p

such that H2 = F2, H ¥= F. Then HF'1 is ambiguous. Under reasonable assump-

tions n will be factored with o(exp/fln n In In n) steps and oiexpy'f In n In In «)

storage.

The new algorithm, given the first t primes px = 2, p2 = 3,... ,p, = nx/2r, needs

only to store a fixed number of forms which takes O(logn) bits. Let e¡ = maxfc:

Pi < Pf)- Then Stage 1 of the new algorithm computes

H = H^P'1

for an arbitrarily chosen H0 e G(-n). Then compute H2 for the smallest A: =£

log2 \fn such that H2 =1. Clearly /72 is ambiguous, n will be factored by Stage 1

if h(-n) divides 2*ni_2 PÎ' f°r some k. If Stage 1 fails then Stage 2 does a random

walk through the group generated by H.

Stage 2 will factor n if ord(/72) < p2 for some k, i.e. if h(-n) divides 2kYl'¡^2 p^q

for some <? < p2. With/?, = ni/2r Stage 1 of the algorithm takes Oip,) compositions

and for random composite m e [0, n] with probability > r~r detects a proper

divisor of m. Stage 2 also takes Oip,) = 0(n1/2r) compositions and with probability

> (r - 2) (r~2), r > 2, detects a proper divisor of m. Running Stage 1 on the

integers ns for s < rr, r = |/ln «/In In n , every composite integer « will be factored

within o(exp /In « In In «) bit operations. The latter bound already takes into

account the cost of the arithmetic. The cost for a composition in Gi~n) is

proportional to the cost of the extended Euclidean algorithm, which given integers

u,v<<fñ computes r,jeN with ru + sv = gcd(w, v). Using standard algorithms

for multiplication and division this takes 0(ln n)2 bit operations, i.e. binary Boolean

operations; see Knuth [7, 4.5.2, exercise 30 and algorithm X].

The particular features of the new factoring algorithm are:

(1) it can easily be operated with 0(log n) bit storage,

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 291

(2) it is Monte Carlo in the sense that every 1000th integer will be factored about

1000 times faster than average time,

(3) the integers which will be factored very fast are randomly distributed; there is

no way to predict whether a given m will be factored fast,

(4) the algorithm is of the parallel type, e.g. 1000 processors will factor 1000 times

faster.

Properties (2), (3) seem to endanger the RSA-cryptoscheme, see Rivest et al. [15].

In particular no methods are known that generate class numbers with large prime

divisors.

Stages 1 and 2 of the algorithm are presented in Sections 2 and 3. The main

algorithm which factors arbitrary integers is given in Section 4. Some computational

experience with the factoring algorithm is reported in Section 5. In Appendix I we

collect basic theorems and algorithms on quadratic forms. Appendix II contains

various tables which demonstrate the performance of the algorithm. We exemplify

the distribution of class numbers and integers which are free of large prime divisors,

the frequency of class numbers divisible by small primes, and the performance of

various pseudo-random functions used in Stage 2 of the algorithm.

2. Stage 1 of the Algorithm. Let n be the integer to be factored, -«is the

discriminant of some quadratic form if and only if - « = 1 mod 4 or - « = 0 mod 4.

The purpose of Stages 1, 2 is to find a non trivial divisor of n, provided —n is a

discriminant and «(-«) is a product of small primes. In order to factor general

integers «, the main algorithm in Section 4 applies Stages 1, 2 to multiples ns with

-ns = 0, 1 mod4. If —n is a discriminant, we can easily construct forms (a, b, c)

with discriminant -«: choose a small odd prime p with (^r) = 1 and solve

b2 = -«mod4/? which yields b2 = -n + 4pc for some c £ Z. Hence (p, b, c) has

discriminant -«.

Throughout Sections 2, 3 we restrict ourselves to the case -« = 1 mod 4; consult

Theorem III, Appendix I for the case -n = 0mod4. Then the unit leG(-«)is

represented by the form (1,1,(1 + «)/4). This ambiguous class yields the improper

factorization 1 « = «. The other ambiguous classes correspond in a 1-1 way to the

relatively prime factorizations of n with nontrivial divisors.

Stage 1. Let « e N, - « = 1 mod 4, be given.

1. For some t e N compute the t first primes px = 2, p2 = 3,...,/?,,

2. choose #0 e G(-«) arbitrarily,

3. H:= H0n'i-2P<' with e,:= max{p: p] </?,2};if H = 1, then stop (in this case

ord(//0) is odd and another H0 must be chosen),

4.H:= H,e*:= [\og2Jn~\,

5.foTp = l,2,...,e*do[S:= H,H:= H2,ifH= 1 go to 7],

6. go to Stage 2,

7. (at this point S is ambiguous and yields some divisor dofn).

Stage 1 by itself is the core of the new factoring algorithm. The improvements

resulting from Stage 2 are important for practical applications, but they scarcely

influence the asymptotic time bound of the main algorithm.

Fact 1. Suppose h(-n)\Yl'i=1pfi and ord(//0) is even, then Stage 1 generates

an ambiguous class S # 1.

292 C. P. SCHNORR AND H. W. LENSTRA, JR.

In case — « = 1 mod 4 every ambiguous class S # 1 yields a proper divisor of n.

In particular, when « has d odd prime divisors, then 2d~x\ «(-«), and there are

exactly 2d~x ambiguous classes corresponding to the 2d~x pairs («,, n2) with

nxn2 = «, nx < n2, gcd(«,, n2) = 1. Moreover, when n is composite and H0 e

G(-«) is chosen at random, then prob[ord(>70) even] > 1/2. Hence Stage 1 has a

chance > 1/2 to find a proper divisor of n, provided «(-«) |n'=1 pf'. A few

repetitions of Stage 1 almost surely generate a proper divisor of «, provided

«(-«) |n,'=1/?f' and « is composite:

Fací 2. Suppose «(-«) |l~Ii=1 pf' and n is composite. If Stage 1 is passed with H0

chosen independently k times, then with probability > 1 - 2~k a proper divisor of n

has been found.

Next consider the chance that for random m < n:
t

hi-m)\Y\PÏ', e, = max{k:/?,"</?2}.
(=i

Siegel [21] proved:

Ve: 3ne: Vm > «e: /i(-w) e [m1/2-£, w1/2+£].

We will base the analysis of Stage 1 on the following hypothesis

For all« and t:

#im^n:h(-m)\Upf')/i0.5n)

(2.1) * '-» '

3* #|m< /n":rñ|n/?f'j/v^.

H. G. Franke has tested this hypothesis experimentally, see Tables 1-3, Appendix II

for n ~ 4.7-108. In general the first term in (2.1) is considerably larger than the

second. Note that the frequency of class numbers «(-«) of fundamental discrimi-

nants (and a fortiori of general discriminants) which are divisible by p is larger than

\/p and is close to l/ip - 1) provided p is small with respect to n. These

experimental data and some recent calculations of Cohen and H. W. Lenstra, Jr.

indicate that class groups G(— n) of fundamental discriminants are distributed like

random Abelian groups of order 0{Jn log«). Cohen and Lenstra have calculated

prob[w divides |C7|] for m = 2,3,... and for random Abelian groups, where the

probability weight of G is proportional to l/|Aut(G)|.The values of Cohen and Lenstra

completely match with our experimental data. A corresponding observation with

respect to prime discriminants has been made by Leopoldt as cited in Zimmer [23].

Recently Canfield, Erdös, and Pomerance improved the theoretical lower bound

on the second term in (2.1). We refer in particular to the proof in Pomerance [14]:

Theorem 3. Let ^(«, v) := # [x < n: xfree of primes > v}. For every e > 0 there

exists c£ such that for all « > 10 and all r with nx/r ^ (In «)1+£: ^(n, nx/r)/n >

icerlnryr.

In practice, however, ¥(«, nx/r)/n is larger than the bound stated in Theorem 3.

From experimental data, see Table 2, Appendix II, we conclude

(2.2) for all « and r < /In «/In In« : *(«, n1/r)/n > r'

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 293

Corollary 4. Assume (2.2) and (2.1). Then for all « > 1020 and allp, = nx/2r with

r < /In «/In In « :

#jm< «: /i(-w)|n/jf'J/(0.5«)>0.83r-r.

Proof.

#|m<«:«(-m)|n/?rJ/(0.5«)

(2.1)

> ^,«i/2r)/vï-Lr1

(2.2)
> r-' - «_1/r'

> r~r - l.ln-l/rn1/2r/\a n1/2r (since t = 7r(n1/2r) < l.l«1/2yin «1/2r)

> r"r-2.2«-1/2Vln«

> r~r(\ - 2.2r/ln«)

(in fact r < /In n/lnIn n imphes /•"r > n~x/2r)

Ss 0.83r"r for n > 1020, r < /in «/InIn « . D

Runtime of Stage 1. If /F'' is computed by the binary method (see Knuth [7,

§4.63]), this takes

2 log2 />;< < 2 log2 /j2 < 4 log2 p,

compositions in G(-n). Since there are about

t < /?,/ln p,

primes ^ /?„ this yields a worst case bound of

4
y-^r-jE?, « 5.8/?, compositions in total.

On the average, the binary method is somewhat more efficient. It takes about

1.5 log p'' compositions to compute Hp'>' and therefore Stage 1 will only take about

4.4/?, compositions in total. All together we have proved the following

Theorem 5. Assume (2.1), (2.2), and that for every discriminant m < « (a single)

HQ e G(- «) in Stage 1 is chosen at random. Then for all « > 1020 and allp, = «1/2r

with r < /In n/ln In « : Stage 1 factors at least a 0.83«r"r fraction of the discrimi-

nants < « and takes about 4Ap, compositions in G(— «).

Remark. The discriminants which will be factored are "randomly" distributed in

[0, n\.
For practical applications we advise to choose somewhat smaller exponents e[

instead of the e,:

e\ := max{ v: /?," < /?,} with/?, = «= «l/2r

294 C. P. SCHNORR AND H. W. LENSTRA, JR.

We used the larger e, for proving Corollary 4 by a crude argument. Assuming

^(/j, nx/r)/n = 0(r"r) one obtains Corollary 4 for the e\:

#L^n:hi-m)\Y\ppyi0.5n)

(assuming that (2.1) holds for the e¡)

r ¿ _e,_x*inV2-1/2r,n1/2r)

> r LPi ' „l/2-l/2r
1 = 1 ' '

i '"'-°("",/2Ä(r"ir,"1

> r~r - 0(ir- l)"(r"1)/('-lnlnn)) = /-~r(l - G(l/lnln«))

(since r < /in «/In In n).

The choice of the e¡ are justified by our data in Appendix II. Tables 1, 2 show that

there are only a few discriminants «(- m), m « 4.7 108, such that «(- m) = Fli=1 pf'

with e~¡ > e'¡ for some i 3* 2.

Table 4, Appendix II, by Odlyzko considers large integers. This table shows that for

r < /In «/In In «

(m < «: m even, m| lcm(2,3,...,/?,)}/« > r""r.

Note that m |lcm(2,3,. ..,/?,)<=> m = FI, /?,e/ with ê, < e,' for all /'. Hence in practice

Corollary 4 even holds when the e\ are taken for the e„ and the constant 0.83 can be

replaced by some constant > 1. If we use the e'¡ then Stage 1 will only take about

2.2/?, compositions.

3. Using a Pollard-Brent Recursion in Stage 2. If «(-«) + 2etYi'i=2pfi with e¡

= [log2 «/log2 />,],£* = [log2 v7«], then Stage 1 fails to factor « and computes

/7 := äJ1''-^', H:= Hr\

Stage 2 uses H, H and will most likely find a proper divisor of « within 0(/?,) steps,

provided that ord(//) < /?2 and ord(//0) is even.

Stage 2 generates a random walk through the cyclic group (H) with generator H.

With some function/: (H) -> (H) let

Hx:= H, Hi+1 :=/(//,).

The function/must be chosen such that

(3.1) /is easy to compute,

(3.2) /is sufficiently random,

(3.3) every relation H} = Hk with/ ¥= k yields an ambiguous

class 5, depending on H,f,j, k.

It is known (see Knuth [7, Exercise 3.1.12]) that some/ < k < /îr/2 p, with i¥7 = Hk

can be expected if/is sufficiently random and ord(.f7) < pf.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 295

We have two methods to design/and to associate the ambiguous class S to H,f,j,

k. Both methods will produce ambiguous classes S with S ¥= 1 whenever ord(i/) is

even. Experience must decide which of the methods is more efficient.

Method 1. For some q e N choose random integers a¡ e [pf, 2pf] for / = 1,... ,q.

Precompute Fl•:= Ha>,i = \,...,q. For some random function g: (H) -* {1,...,<j}

and recursively compute:

HX = H, Hl+l = H,Fg(H¡).

Use the procedure rea/r« below in order to find some/ < k with i/. = Hk. Then

¿-i

//¿z//1 = ht = i with r = E «?(#,)■
'=7

Most likely we will have k < 2/?, which implies 7 < 4/?,3.

Now suppose that ord(/7) = 2e mod2e+1. We can easily compute ë with T = 2e

mod 2f+1. Then HT1 ' has order 2e and yields an ambiguous class

5 := ht2' 'l with S # 1 provided e > 1.

Comment. A theoretical analysis of this method has been done by Sattler and

Schnorr [16]. For small values of q, e.g. q = 2,3,4, the commutativity of the

recursion steps increases the number of recursion steps as compared with a pure

random recursion /: (H) -* (H). By experience this slow-down is negligible as

soon as q is > 16. We have tested this recursion scheme in class groups (see Table 5,

Appendix II) and in cyclic groups (h) = Z/«Z, in particular with « prime. Method

1 even works well for nonrandom a, like a, = c' with c fixed. The advantage of

Method 1 over Method 2 is that it explicitly yields a multiple T of the order of H.

Also, Method 1 only takes a single group operation (i.e. composition in the case of

class groups) per recursion step.

Method2. Choose a random functiong: (H) -* {l,...,q}, choose random values

ax,...,aq e [/?„ 2 pf] and precompute F,:= H"',i = l,...,q.

Recursion on H. (We compute H¡ = Hc> and di with d, = c,mod232.)

Hx := H, dx := 1;

for /' = 1,2,... till search finds some/ < k with //, = Hk do

i(tf,3,3</,mod232) if gW « «7/2,

(Hi+1, dl + x).- UH¡F^^ d¡ + a^ mod232) otherwise.

Use the procedure search below in order to find some/ < k with H- = Hk. Since

H, = Hc< and H = H2'', it follows that H2'*(c'~Ck) = 1. We compute t such that

dj-, - dk = 2'mod2'+1. Almost surely t will be less than 32, and this implies

Cj - ck = 2'm for some odd m. It remains to compute Hm, since Hm/r is ambiguous

for some v < /. We do not compute «i explicitly, but we retrace the above recursion

on H. In the following assume / > 1. If f = 0, then Hm can easily be computed from

theg(//,).

Recursion on H. (We compute H¡ = H tc</2'¡ and r¡ = c,mod2' for / > 1.)

296 C. P. SCHNORR AND H. W. LENSTRA, JR.

Hx := 1 (the unit class), rx := 1;

for/' = 1,2,...,A: do

ÍHfH\ 3r, - s2') with s = [3r,/2'j if g(H,) < «7/2,

ÍHi+ur¡+1)^(fftffs,ri + ag{H¡)-s2')

with s = |(r, + ag(H/))/2'j if giH,) > q/2.

It can easüy be verified that //; = // LC'/2'J. Hence ÄJÄ^1 = H(cJ-Ck)/2' = /7m with

m odd. This yields

Fact 6. Let ord(J7) =■ 2*mod2'+1, e < 32, and HjHkl = 1, then ordiHjHkx) =
2e.

TT TV-^ »•)«-?

Therefore S = iHjHkx)v ' is an ambiguous class with S # 1 whenever e # 0.

Comment. We have tested Method 2 in class groups and in cyclic groups

(H) = Z/«Z, in particular with n prime. For random functions g: (H) -*

{1,...,«7} we obtained average values of about /w/2 /« for the smallest index k

such that there exists some/ < A; with Hj = Hk, see Table 6, Appendix II. On the

average, Method 2 takes 1.5 group operations (i.e. compositions in the case of the

class group) per recursion step. A recursion step takes 2 compositions if Hi+1 = H?

and 1 composition if Hi+X = H¡F (H). By reducing the frequency of the Hi+1 = Hf-

steps the average number of compositions per recursion step can still be reduced.

Method 2 also works well with nonrandom a, like a, = c',i = \,...,q, with c fixed.

Because of the noncommutativity of the recursion steps, Method 2 works with a

smaller number q of multipliers F, = H"1 than Method 1. We successfully applied

Method 2 with q = 4.

The following pseudo-random function g: (H) -* (1,... ,q) works well for both

methods (let (a, b, c) be the reduced form in H):

giH)= [ib2mod p)q/p\+l

with/? a prime, q < p < /A ; see Tables 5, 6, Appendix II, for/? = 213 - 1.

The search for Hk = Hj withj < k. Let Hx = H, H¡+1 = fiH¡). We follow an idea

of Brent [1] and do not store all the H¡ but only a fixed number of them. When

computing H,, the stored classes

H.o(r)> 12 7

for sufficiently large i, will be such that

aiv) - 0(1)1.1', v = !,...,!,

with l.Tb(l) < i < l.l8a(l) « 2.14a(l).

The recursion for H, is continued until some Hk = Ha(y) has been found. The

corresponding program looks like

Search. Hx := H, a(j») := 1 for v = 1,..., 7; for /' = 2,... do

compute H, from fi^j

if 3»»: H0(v) = //, then [/ := aiv), k := i stop]

ifl.l8a(l) < ¿+ lthen

store H¡ instead of H.

aiv):-

°(D

a(c + l) fori-#7

/ for v = 1

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 297

Let a be the period and p the length of the nonperiodic segment of the sequence H„

eg-

H,-H,+x, H,±H, fori </<** +A.

Fact 1. The procedure search finds some/ < k with Hk = Hj within < 1.1m + X

recursion steps, m := max(Â, p).

Proof. Since a increases by the factor 1.1, a will take some value aiv) with

m < aiv) < 1.1m. Hence the for-loop stops.at the latest, with

k = a(v) + X < 1.1m + X, j = a(v),

and finds the equality Hk = Hj. D

Under the assumption that each of the ord(//)ord(//) functions/: (H) -» (H) has

probability ord(/7)"ord(H), the stochastic behavior of ¡u, X have been well analyzed

(see Knuth [7, Exercise 3.1.12]).

The expected values of p and X are

1T£W = £W./^T1A

E(p + X) * 1.25^ord(>7) - 1/3,

= e-"/4 „ 0-46-/x +\< /|ord(/7)Prob

We conclude from Fact 7 that the number of recursion steps in search will be about

1.1 (E(p) + E(X)) * 1.32/ord(/7),

provided that/: (H) -» (#) is sufficiently random.

If in Stage 2 we compute the H, for /' < 1.32 /?,, then most likely some relation

Hj = Hk, j < k, will be found, provided ord(/Y) < pf. It remains to analyze the

chance that ord(/7) </?,2. For each prime p, p, < p < pf, we assume that the

frequency of class numbers /i(-m), m < «, which are divisible by /? is > p~x, and

we assume that /z(-m)//? factors like random integers of size v7«//?. By retracing

the proof of Corollary 4, we conclude from the assumptions (2.1), (2.2):

(3.4)

For all r, «, t with « 3* «0, /?, = «1/2f, r < /in «/In In « :

and for all primes /? = «1/2i < pf

#|m<«:«(-m)|/?ri/?f. j/(0.5«)

>0.83/?^1('--'-A)"(r"r/i)-

Summing over all/?, «r /(1+e) < /? < «1/r, this yields

#(m <«:/j(-m)|/?n/?;<with/? </>,2 }/(0.5«)

^0.83 £ /?-1(r-2/(l + £))-(^241+E))

„rlAl + ,)<p<„l/r

(using Theorem 4.27 in Hardy and Wright [6] there follows)

> 0.83 ln(l + e)ir - 2/(1 + £))-<-2^1+£».

298 C. P. SCHNORR AND H. W. LENSTRA, JR.

Conclusion. Assume (2.1), (2.2) and that for every discriminant m < «, H0 in

G(-m) is chosen at random. Then Ve > 0: 3ce > 0: V« 3* «0 an<* a^ Pt = «1/2r»

r < /in «/In In « : Stages 1 and 2 with 0(/?,) compositions, factor at least

ceir - 2 + e)~ir~2+e)n discriminants < n.

If one assumes that very large class numbers «(-«) factor like even integers of

size Jn~, then we can compare the efficiency of Stages 1 and 2 by Odlyzko's Table 4,

Appendix II. The table indicates that for class numbers «(-m) * 10', / = 15, 20,

25, 30, the success frequency of Stages 1 and 2 is at least r~r and is at most er2 times

the success frequency of Stage 1. Note that (r - 2)~ir~2)/r~r approaches er2 for

large r.

Remark. There is a well-known deterministic method for doing Stage 2 within

J2p, compositions and with G(/?,) storage. The method is explained in Shanks [17,

p. 419] in terms of "baby" and "giant" steps. In our situation we can even speed this

method by a constant factor if we exploit the fact that ord(/Y) will most likely have

no prime divisor < /?,.

4. The Main Algorithm. The new algorithm can be used for factoring any

composite integer «. We apply Stage 1 to multiples ns of « such that — ns is a

discriminant. Here we exploit the observation that class numbers h(— ns) of funda-

mental discriminants - ns are uncorrelated for distinct values of 5. The nonfunda-

mental discriminants - ns should be discarded as far as possible. The discriminant A

is fundamental if

-3w e N, w ¥= 1 : A/w2 is a discriminant.

In fact, the class number formula (see Dirichlet [8]),

hi-m)=^- n fl-1! — I)"1 form < -4,
» ^primel P\ P II

imphes for gcd(w, m) = 1 and w square free:

"-'»^»='n.H(f)l = !j(Hf!
Hence for small w, h(-m) and «(-mw2) have the same large prime divisors,

provided gcd(m, w) = 1.

Main Algorithm. Let « be the number to be factored and px = 2, p2 = 3,...,/?, the

first t primes, /?, = «1/2r (the appropriate choice of t, r will be determined by the

subsequent analysis).

1. j:= 0
2. take the next s with gcd(«, s) = 1, -ns = 0, 1 mod4 and -[Iw e N: w2\ s,

w ¥= 1, -ns/w2 = 0,1 mod 4]

3. run Stage 1 on ns, which takes 0(/?,) compositions. If Stage 1 yields an

ambiguous class 5 then go to 4, otherwise return to 2 and take the next j

4. if S yields a factorization of n then stop, otherwise go to 5

5. return to 3 and repeat Stage 1 on ns with independently chosen classes H0 e

G(-«j) until some factorization of « has been found. In order to prevent that

merely useless ambiguous classes are generated, continue to build up the

2-Sylow group S2i~ns) of Gi~ns). Use Stage 1 to generate classes in

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 299

S2i~ns). Apply the recursion step of the method below whenever a new

A e S2i~ns) has been found.

The 2-Sylow group 52(-«j) is a direct product of cyclic groups of order 2m',

m, > 0: S2i~ns) = ®f_xZ/2miZ. Let X be the number of cyclic components, then

S2i~ns) has 2X ambiguous classes. Let d be the number of odd prime factors of ns.

Then by Theorem III, Appendix I, X is d - l,dord+ 1 depending on the maximal

power of 2 which divides ns. The ambiguous classes that do not yield a factorization

of n form a subgroup S2(- ns) of S2(- ns). Let d„, ds be the numbers of distinct odd

primes of n and s. Since gcd(n, s) = 1, we have d = dn + ds. It follows immediately

from Theorem III, Appendix I, that the number X' of cyclic components of S2i~ns)

is<\-d„<d,+ l.
Constructing S2i~ns) till a factorization of n is found. Given a procedure that

generates elements of 52(- «*) (this will be done by Stage 1) we recursively construct

subsets {Ax,... ,AX} c 52(- ns), X < X' such that

(4.1) \(A1,...,Ax-)\=YlordiAI).
i-l

Let_ ordK) = 2s', B¡ = Af"\ (AX,...,A¿) = S2(-«s). Then S2i~ns) s
©,A=1 Z/2„,z and Bx,... ,B^ generate the subgroups of ambiguous classes of S2i~ns).

After each recursion step either a factorization of n has been found or the new group

S2i~ns) will be the subgroup of S2i~ns) which is generated by the previous

S2(- ns) and the element A e S2(- ns) obtained in step 1.

(4.2) Algorithm for S2(-ns).

0. X := 0, Al := 1 (= the unit class)

1. generate another A e S2(-ns), A # 1

2. compute A, A2,... ,A2" ¥= 1, A2" = 1 and put B := A2"

3. if B yields a factorization of « then stop

4. test whether B e (Bx,... ,2>\-); if B <£ (Bx,.. .,B¿) then go to 5 else compute

/ c {1,..., A} with B = YljejBj and go to 6

5- ̂ x+i:= -¿> ̂x~+i:= B, A := A + 1 return to 1

6. If 3/ e J: m¡ < m then select/ e J with m7 minimal and interchange/I with^,

B with jB,, and m with m

7. (we have A2""1 = n/«/i4j"r\ m < iWy for/ e 7). Put /I :=^ • UJKjAfJ""\ if

v4 = 1 go to 1 else go to 2 (the new m to be computed in 2. will be smaller than

the present m since /a2"" =1 holds for the new A)

Run Time Analysis of the Main Algorithm. We separately bound

1. the number T(n) of bit operations to be done till some s has been reached with

t

h(-ns)\Ylpf', e¡ = man{v:p¡4pf}.
i — l

2. The number Tin) of bit operations for building up the 2-Sylow group S2i~ns)

of G(- ns) till a factorization of « is found.

300 C. P. SCHNORR AND H. W. LENSTRA, JR.

1. Tin). We will assume that Corollary 4 extends to multiples of «:

3c, «o > 0: Vm: V« 3* nQ: V/?, = («m) rwithr < /In «/InIn « :

#lns:s <m A h(-ns)\f\pf'\/(0.5m)> cr~r.

Our experimental data in fact confirm the lower bound r~r. The assumption (4.3)

implies

V« > «0: V/?, = («3r7c)1/2r, r < /lnn/lnln«

3j< 3r'/c: ft(-ns)|]!/>''■
r-i

Since Stage 1 takes 0(/?,) compositions, we have

T(«) = o(/?,r'(ln«)2) = 0(nx/2rrr+1/2(lnn)2).

Here O(lnn)2 takes into account the costs for the arithmetic. We choose r

= /In «/InIn«,/?, * («3ryc)1/2r = Oinx/lrfr). Then all together (4.3) implies

T(n) = o(exp /In n In In «).

2. T(n). In order to factor « we need only to find at most ds + 2 cyclic

components of S2i~ns). If the passes through Stage 1 generate independent

elements of S2i~ns) then k passes of Stage 1 with probability 3* 1 - 2~k detect a

new cyclic component of S2(-«s). Hence almost surely we need at most Oid5)

passes through Stage 1, and each pass takes 0(/?,) compositions. The number of

steps for updating the information on S2(-«s) can be bounded as Ois): the most

costly operation in Algorithm (4.2) is to check whether B e (BX,...,B¿) (step 4).

Since X < A' < ds + 1 this can be done in a crude way by comparing B with each of

the 2X < 2d'+x = Ois) elements of (£,,... ,BX). This takes Ois) steps and is

sufficient for our purposes. We obtain

f(«) = 0(dsip, + s)(ln«)2) = 0(loga(ii1/2Vr + i)(ln«)2)

with s < rr, r < /in «/InIn« . Here again 0(lnn)2 bounds the cost for the arith-

metic. It follows immediately that Tin) = o(7X«)).

Conclusion. If (4.3) holds, then the Main Algorithm, using only Stage 1, takes

c?(exp /In « In In n) bit operations to factor arbitrary, composite integers «.

If we also apply Stage 2, then s will be bounded as G((r - 2)(r_2)), and this will

save a time factor of about r2 = In «/In In n.

5. Some Computational Experience. The new factoring method has been pro-

grammed in Fortran on a DEC-1091 at Frankfurt University. The core of the

algorithm is a subroutine for composition of quadratic forms written in machine

language and based on the improved composition method proposed by Seysen [20].

The arithmetic operations and the gcd-calculations have been programmed for two-

word integers, i.e. for integers =¿ 270. This means that the. program can factor

integers =£ 2130 = 1039 using multipliers =í 210. Stage 1 uses the exponents

e'i := max(•>: p" </?,}. Hence the number of compositions per multiplier for Stage 1

is about 2.2 /?,. Both methods for Stage 2 have been tested and they are comparable

in efficiency.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 301

t = # of primes

compositions

per multiplier

in Stage 1

in Stage 2

average number

of multipliers

median of the
numbers of
multipliers

of integers

factored

seconds per

composition

average time

for factoring

median of the
factoring time

Table 0

n * 1030 n ~ 1034

4093 8191

563 1027

104 2- 104

3 ■ 103 3.7 • 103

14.4 18

50 20

n ~ 1038

16 381

1899

4- 104

3 • 10"

31

23

20

1.4 • 10 3 1.5 • 10^3 1.57 -10~3

4.4 min 10.7 min 57 min

2.4 min 5.3 min 42 min

The integers « which have been factored for Table 0 are products of two distinct

primes px, p2 of nearly the same size. It turns out that the median of the factoring

time is considerably smaller than the average factoring time. This is due to a small

fraction of integers « which take extremely many multipliers. On the other hand

there is a considerable fraction of integers which only take very few multipliers. For

instance the seventh Fermât number F1 = 22 + 1 ~ 3.4 ■ 1038 only took 7 multi-

pliers and was factored in about 7 minutes. Here we used p, = 16381 but we run

Stage 2 for only 7500 compositions, hence each multiplier took about 1 minute. The

multiplier 15 has been successful.

We observed that the factoring method is somewhat faster for integers with more

than 2 prime divisors. By our observation class numbers of discriminants with many

prime divisors tend to have fewer large prime divisors compared with class numbers

of discriminants which are prime or products of two primes. For instance, for

« « 1030, « a product of 5 primes/?, = 106, the algorithm on the average only took

8.7 multipliers. The median of the number of multipliers has been 5, compared with

14.4 and 8 in Table 0. We have factored a sample of 200 of these integers «.

Appendix I on Quadratic Forms. We report classical theorems and algorithms on

quadratic forms, see Gauss [5], Mathews [10]. A quadratic form ax2 + bxy + cy2

with a, b, c e Z is denoted as (a, b, c). Its discriminant is A = b2 - Aac. (a, b, c) is

positive if a > 0, primitive if gcd(a, b, c) = 1. Two forms (a, b, c), (a, b, c) are

equivalent if there exists a linear transformation with integer coefficients and

determinant 1 transforming the one form into the other, i.e.

T
ft/2

ft/2
T =

ft/2

ft/2

302 C. P. SCHNORR AND H. W. LENSTRA, JR.

for some integer matrix T with det T = 1. Let [(a, ft, c)] be the class represented by

(a, ft, c). For negative discriminants we always restrict to positive forms.

Two classes [(a, ft, c)], [(3, ft, c)] yield a new class [(^4, B, C)] by composition as

follows (for explanation see Lenstra [9]):

d:= gcd(a,ä, (ft + ft")/2)

Let a,j3,yeZbe such that aa + ßä + ^(ft + ft) = d.

(5.1) A = aa/d2

„ r 25fi = ft + — ^ V^ - yc1 mod S

C= i-A + B2)/i4A).

[iA, B, C)] does not depend on the particular choice for a, ß, y, B, and C. iA, B, C)

will be primitive, if (a, ft, c) and (a, ft", c) are primitive.

Theorem I. The equivalence classes of primitive quadratic forms with discriminant A

form an Abelian group G(A) under composition. Its order h i A) is the class number.

The unit class 1 in G(A) is represented by the form

(1,0,-A/4) ifA = 0mod4,

(1,1,(1 -A)/4) ifA = lmod4.

The inverse of [(a, ft, c)] is [(a, -ft, c)].

A class H e G(A) is ambiguous if H2 = 1. The following assertions are equiva-

lent:

(1) H is ambiguous,

(2) every form (a, ft, c) in //"is equivalent to (a, -ft, c),

(3) r(a b/2)r = (a b/1
y ' \ft/2 c) \b/2 c

for some integer matrix T with det T = -1,

(4) there is a form (a, ft, c) in // with a|ft.

For negative discriminants A, classes in G(A) correspond to reduced forms, (a, ft, c)

is reduced if (1) |ft| < a ^ c and (2) ft 3* 0 if |ft| = a or a = c (i.e. if [(a, ft, c)] is

ambiguous).

Theorem II (Gauss, [5, Art. 172]). In every equivalence class with negative

discriminant there is exactly one reduced form.

Gauss also gave a gcd-like reduction algorithm which transforms a given form

(a, ft, c) into an equivalent reduced form:

(5.2) reduction process for (a, ft, c)

1. find v e Z: -|a| < ft + 2^a < |a|

2. ft := ft + 2pa, c := (ft2 - A)/(4a)

3. if (a, ft, c) is not reduced then replace (a, ft, c) by (c, -ft, a) and go to 1.

The reduced forms of ambiguous classes with A < 0 are of either of the following

types:

(i) ft = 0, (ii) a = ft, (hi) a = c.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 303

These forms are called ambiguous. Every ambiguous form corresponds to a factoriza-

tion of the discriminant as

(i) A=-4ac, (ii) A = ft(ft-4c), (iii) A = (ft - 2a)(b + 2a).

In order to describe this correspondence more precisely, let

Fin) = {(«!, «2) g N2: « = nxn2, gcd(«l5 «2) = l}

be the set of relatively prime, ordered factor pairs of « g N. We have #F(«) = 2d,

where d is the number of distinct prime divisors of «.

Let A = 2i'mod2',+1, A < 0, then the set .4(A) of ambiguous forms with discrimi-

nant A is either in 2-1 or in 1-1 or in 1-2-correspondence with Fi - A/2e).

Theorem III. Let the discriminant A < 0 have d odd prime divisors. Then the set

Ai A) of ambiguous ireduced, positive, primitive) forms with discriminant A = — 2en, «

odd, is obtained from the («,, n2) G Fin) with nx < n2 as follows:

case e = 0 (i.e. A = 1 mod 4):

(ii) («!,«!,(«!+ «2)/4)

(iii) ((«! + «2)/4, («2 - nx)/2, («! + «2)/4)

case e = 2, « = 1 mod 4, « + 1 :

(i) («i,0, n2)

(ii) (2«1,2«1,(«1+ «2)/2)

(iii) (("i + n2)/2, n2-«!,(/., + n2)/2)

case e = 2, « = -1 mod 4:

(i) («!,0, «2)
case e = 3,4:

(i) (min(«12e"2, «2),0,max(«12e_2, «2)j

(min(«22e_2, «^,0,max(«22e"2, nx))

case e 3* 5:

(i) (min(«12e_2, «2),0,max(«12<?~2, «2))

(min(«22f,~2, «1),0,max(«22e_2, nx))

(ii) (4,4,1 + 2*-4«!«2)

#AiA) = {-#Fin) = 2d-1

if3nx < n2

if3nx 3* n2
#AiA) = #Fin) = 2d

if3nx < «2

i/3«! > «2

*M(A) = è#F(/i) = 2d~l

#AiA) = #Fin) = 2d

#AiA) = 2#Fin) = 2d+l

(iii) (2e"4«2 + «1,2e

(2e"4«! + «2,2 <?-3,

2«!,2e 4n2 + nx)

2n2,2e~4nx + n2)

if3nx > n22e~4

if3nx < n22e~4

We have hsted pairwise inequivalent forms corresponding to distinct positive

ambiguous classes. They have been arranged according to their types (i), (ii), (iii) as

introduced above.

Theorem III can easily be obtained from Gauss[5,Art. 257-259]. Observe that our

classes with discriminant A = 0mod4 (A = 1 mod4, resp.) correspond to primitive

Gauss classes with determinant D = A/4 (improper primitive Gauss classes with

determinant D = A, resp.). The number of ambiguous classes has also been listed in

Cassels [2, p. 342].

The Efficiency of Composition. An efficient composition algorithm is the main

requirement for a satisfactory implementation of our factoring algorithm. All

304 C. P. SCHNORR AND H. W. LENSTRA, JR.

calculations in G(A) are done with reduced forms. Composition consists of two

parts:

1. evaluation of (5.1): (a, ft, c), (a, ft, c) -» (A, B, C) (this amounts to an extended

gcd-calculation on integers of size 0(/|AJ)),

2. reduction of (A, B, C).

If the reduction is done as in (5.2) this corresponds to an extended gcd-calculation

on integers of size 0(|A|). However, M. Seysen [20] found a faster reduction

algorithm for this particular situation. Reducing (A, B, C) by this algorithm corre-

sponds to only half an extended gcd-calculation on integers of size 0(/|Aj).

Appendix II: Statistical Tables. Table 1 shows the distribution of class numbers

h(-m) without large prime divisors for discriminants -m in the interval / = [-472

650 003, - 472 600 000]. There are 25 002 discriminants, the minimal, maximal, and

average class numbers are 1518, 47 452, and 9 469.77. We put

t?,(m):= m&x(v: p"\h(— m)}.

For every prime /?, = 2, 3,..., 89 we record the percentage of those discriminants

- m g I satisfying the following conditions:

column 1 h(-m) is free of primes > /?,, i.e. h(-m) = \~[pfi(m\

column 2 for all i > 2: ë,(m) < e¡ := max{ v: p' < pf),

column 3 for all i 3* 2: ë,(m) < e¡ := max{ v: p] </?,},

column 4 h(-m)\Y\pf'(m) • q for some q < pf, q prime,

t

column 5 h'i-m)\Y\pe,'q • 2ei(m) for some q < pf, q prime,
i = 2

t

column 6 «(-m) \Y\ ppq ■ 2e,(m) for some q < pf, q prime.
i = 2

Moreover we note in

column 7 r = In «/(2 In /?,)

column 8 102 • r~r.

Observe that the entries in columns 1-3 of Table 1 are always greater than 102r~r,

which confirms Corollary 4. For r < /in «/In In « (i.e. r 3^ 2.58, /?, ̂ 53) the entries

in column 3 are only slightly smaller than those in columns 1, 2. This suggests that

Stage 1 should be done with the smaller exponents e'¡ instead of the e¡.

Table 2 has the same meaning as Table 1 but is restricted to fundamental

discriminants in the same interval /. Minimal, maximal, and average class numbers

are 1518, 47 425, and 10 033.9. There are 15195 fundamental discriminants in /.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 305

Pi col 1 col 2

2 0.18 0.18
3 2.08 0.82
5 5.70 2.70
7 10.21 7.55

11 14.43 12.60
13 18.87 17.64
17 22.47 21.75
19 26.04 25.55
23 29.28 28.79
29 32.10 31.93
31 34.70 34.52
37 37.00 36.87
41 39.24 39.10
43 41.30 41.16
47 43.18 43.12
53 44.92 44.88

59 46.48 46.45
61 48.02 48.00
67 49.44 49.41

71 50.65 50.63
73 51.58 51.80
79 53.06 53.04
83 54.08 54.07
89 55.12 55.11

p, col 1 col 2

2 0.17 0.17

3 1.26 0.51
5 3.69 1.65
7 6.96 4.98

11 10.22 8.68
13 14.02 13.04
17 17.09 16.46
19 20.14 19.69
23 23.09 22.64
29 25.73 25.55
31 28.21 28.03
37 30.42 30.29
41 32.66 32.53

43 34.68 34.56
47 36.59 36.54
53 38.37 38.33

59 39.94 39.91
61 41.46 41.43
67 42.84 42.81
71 44.02 44.01
73 45.08 45.07
79 46.45 46.44
83 47.60 47.59
89 48.69 48.69

Table 1

col 3 col 4 col 5

0.18 0.44 0.44
0.44 5.39 2.82

1.00 18.32 12.55
2.00 32.52 28.95

6.12 49.58 47.47
8.92 58.26 56.95

11.51 68.90 68.16
14.12 73.57 73.08
16.77 79.60 79.11
24.73 85.48 85.30
27.13 87.27 87.09
29.32 90.69 90.56
31.46 92.49 92.36
33.43 93.30 93.16
35.25 94.43 94.38
38.93 95.71 95.67

40.46 96.66 96.63
41.98 97.02 96.99
43.38 97.64 97.61
44.59 98.02 98.00
45.74 98.13 98.11
46.97 98.56 98.54
49.59 98.77 98.76
50.63 99.00 98.99

Table 2

col 3 col 4 col 5

0.17 0.31 0.31
0.31 3.17 1.69
0.67 12.93 8.90
1.36 25.44 22.53
3.96 41.54 39.70
6.19 50.71 49.63
8.37 61.77 61.11

10.57 67.04 66.57
12.89 74.04 73.58
19.23 81.03 80.85
21.47 83.22 83.04
23.57 87.39 87.27
25.69 89.78 89.65

27.61 90.82 90.69
29.44 92.28 92.23
33.02 94.01 93.97

34.56 95.26 95.23
36.06 95.75 95.72
37.42 96.63 96.60
38.59 97.16 97.14
39.63 97.29 97.28
40.97 97.90 97.89
43.35 98.17 98.16
44.44 98.50 98.49

col 6 col 7 col 8

0.44 14.408 .000
1.46 9.090 .000

6.46 6.205 .001
14.45 5.132 .023
35.57 4.165 .263
43.27 3.894 .503
53.20 3.525 1.179
57.57 3.392 1.588
63.43 3.185 2.497
77.38 2.966 3.978
79.09 2.908 4.484
82.46 2.766 5.999
84.25 2.689 6.992
85.03 2.655 7.480

86.16 2.594 8.438
89.58 2.515 9.825

90.52 2.449 11.147
90.88 2.429 11.574
91.50 2.375 12.813
91.88 2.343 13.606
91.98 2.328 13.993
92.41 2.286 15.117
94.27 2.260 15.837
94.50 2.225 16.875

col 6 col 7 col 8

0.31 14.408 .000

1.00 9.090 .000
4.62 6.205 .001

11.79 5.132 .023
29.83 4.165 .263
37.90 3.894 .503
48.16 3.525 1.179
53.10 3.392 1.588
59.89 3.185 2.497
73.64 2.966 3.978
75.73 2.908 4.484
79.86 2.766 5.999
82.22 2.689 6.992
83.24 2.655 7.480
84.69 2.594 8.438
88.48 2.515 9.825

89.73 2.449 11.147
90.22 2.429 11.574
91.10 2.375 12.813
91.62 2.343 13.606
91.75 2.328 13.993
92.36 2.286 15.117
93.89 2.260 15.837
94.22 2.225 16.875

306 C. P. SCHNORR AND H. W. LENSTRA. JR.

Table 3

v 23456789 10

alldiscr. 93.64 51.25 82.53 24.70 48.18 16.92 63.44 20.30 23.18
fund.discr. 91.83 42.49 78.51 23.94 38.97 16.41 56.90 15.41 21.97

v 11 12 13 14 15 16 17 18 19 20

all d. 9.83 42.42 8.33 15.98 12.58 43.54 6.07 19.09 5.36 20.50

fund. 9.35 33.15 8.42 15.16 9.95 36.62 5.96 14.11 5.22 18.85

v 21 22 23 24 25 26 27 28 29 30

alld. 8.77 9.27 4.45 32.64 5.03 7.77 7.15 14.13 3.62 11.85
fund. 7.13 8.65 4.48 23.88 4.99 7.67 5.27 13.02 3.67 9.12

v 31 32 33 34 35 36 37 38 39 40

alld. 3.13 27.09 5.10 5.68 4.15 16.90 4.66 5.01 4.26 15.73
fund. 3.17 21.38 3.91 5.44 4.00 12.04 2.71 4.76 3.61 13.55

„ 41 42 43 44 45 46 47 48 49 50

alld. 2.53 8.30 2.27 8.21 5.10 4.19 2.04 22.33 2.42 4.70

fund. 2.64 6.58 2.34 7.40 3.56 4.15 2.13 15.42 2.29 4.57

v 51 52 53 54 55 56 57 58 59 60

alld. 3.12 6.89 1.86 6.74 2.35 10.74 2.75 3.40 1.66 10.43
fund. 2.54 6.58 1.95 4.81 2.22 9.44 2.26 3.39 1.70 7.71

v 61 62 63 64 65 66 67 68 69 70

alld. 1.65 2.95 3.46 15.67 2.03 4.84 1.49 4.96 2.16 3.88
fund. 1.67 2.95 2.59 11.66 2.03 3.62 1.49 4.57 1.75 3.65

v 71 72 73 74 75 76 77 78 79 80

alld. 1.27 13.10 1.18 2.53 2.53 4.39 1.62 4.02 1.28 10.87

fund. 1.27 8.73 1.08 2.53 2.09 4.00 1.53 3.32 1.42 8.65

v 81 82 83 84 85 86 87 88 89 90

alld. 2.45 2.38 1.03 7.33 1.36 2.11 1.82 6.38 1.06 4.81
fund. 1.84 2.44 1.18 5.67 1.30 2.12 1.57 5.36 1.12 3.25

v 91 92 93 94 95 96 97 98 99 100

alld. 1.38 3.78 1.64 1.89 1.26 13.85 1.00 2.30 1.99 4.19

fund. 1.35 3.63 1.40 1.92 1.17 8.91 1.05 2.12 1.45 3.98

Table 3 shows the percentages of discriminants (fundamental discriminants, resp.)

- m g / such that v divides « (- m) for v = 2,..., 100. These percentages are always

greater than 100/?, which confirms hypothesis (2.1). For small primes /? these

frequencies are close to 100/(/? — 1).

Table 4 is due to A. Odlyzko. The entry a, kr in the line starting with /, k and

column headed with v (v = 2k, 8,... ,0) is the number of integers m from among the

first 100,000 even integers > 10' which have the property that

m/gcdim,\cm(l,...,2k)) ^ 22k~v.

The last two columns record r = In lO'/ln 2k and 105r"r.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 307

15

20

25

30

35

6
7

8

9

10
11

12
13
14

15
16
17

18

9

10

11

12

13
14

15

16

17

18

11

12
13
14

15

16

17
18

12
13

14

15
16

17

18

15
16

17

18

2 k

0
0

1

6

27

110
326
691

1425
2416

3 852
5 691
7 979

0

0
0

6
25
71

163

320
604

1019

0

0

0
2
8

21
43

105

0
0

0
0
0

0

6

0

0
1

3

0
0

2

17
162
585

1806
4075
7 716

12 853
19174
26 485
34478

0
0
9

70
218
625

1410

2 787
4952
7 744

0

2

7

35
98

240
567

1176

0
0

0
1
9

43
122

0
2

8

21

0
1

6

68

316
1043
2 805
5 854

10462

16 521
23 694
31787
40 349

0

1
22

118

345
907

1937
3 689
6 257
9 640

0

3
9

48
128
339
767

1532

0
0

0
1

15
66

170

0
3
8

22

Table 4

4

0
2

15
129
530

1661
4059
7956

13 538

20 531
28 542
37273
46 620

0

3
48

190

510
1258
2 579

4719
7 800

11764

0
3

16

63
182
474

1014
1911

0
0

0

3
22
94

234

0
3
9

22

0
2

36
210

859
2447
5 565

10434
16 981
24 871
33 620
43148
52 592

0
6

85

271

725
1672
3 331

5 930
9 590

14156

0
3

21

93
262
635

1273
2 367

0
0

1

5
35

130
297

0
3
9

27

0

0
3

49

336
1282
3 445
7 388

13 307
20 804
29 519
39114
49122
58 262

0
17

120

384

967
2182
4258

7 353
11639

16 640

0

3

33
134
357
809

1610
2 895

0
1

1
11

56
166
375

0
3

13

34

8.305
7.118

6.229
5.537
4.983
4.530
4.152
3.833
3.559
3.322
3.114

2.931
2.768

7.382
6.644
6.040

5.537

5.111
4.746
4.429

4.152
3.908

3.691

7.550
6.921

6.388
5.932
5.537
5.191
4.885
4.614

8.305
7.666

7.118

6.644
6.229
5.862
5.537

7.751
7.267

6.839
6.459

10Vr

.002

.086
1.127
7.674

33.460
106.655
270.747
579.832

1090.481
1853.443
2907.505
4276.365
5968.217

.039

.344
1.917

7.674

23.945
61.742

137.169
270.747

485.833

806.566

.024

.153

.711
2.590
7.674

19.395
43.121
86.333

.002

.017

.086

.344
1.127
3.144
7.674

.013

.055

.195

.585

Table 4 also confirms our assumption (2.2). Note that a¡ k x is the number of

integers m among the first 100,000 even integers > 10' such that

m = Y\pf'{m) with/?f-(m) < 2k
i

(which implies m \T\'=1pf' for the first prime/?, > 2k). The table shows

alkX > 10 Vr forr = lnlO'/h^ < /lnlO'/lnlnlO7

308 C. P. SCHNORR AND H. W. LENSTRA, JR.

This suggests an even stronger assumption than (2.2):

#lm^n:m\Y\pf' \/n > r~r

for all «, r < /in «/InIn « and/?, < «1/r. Here e'¡:= max!»»: p] < /?,}.

Table 4 can be used to balance Stages 1 and 2. If we factor a discriminant

« » 102/, then h(-n) will be about 10'. We choose /?, « 2*. Then hypothesis (2.1)

suggests that there is some í < 105/a¡ k v with

h(-ns)\Y\pf-q and q < 22^".
;=i

Hence Stages 1 and 2 will run on at most 105/ak lv multiples -«5. Stage 1 with the

exponents e¡ takes about 2.2/?, compositions. If we run Stage 2 with Method 2 for

2/i""/2 recursion steps, then Stages 1 and 2 will most likely factor this particular ns

(see Table 6, Appendix II, for the performance of Method 2 in Stage 2). In this way

Stage 2 takes about 1.5 2k~v/1 compositions. Therefore the total number of composi-

tions of the Main Algorithm will be bounded by

ft^:=^2*(2.2 + 1.5 2-/2).
"l.k.v

Examples. « ~ 1030. Choose k = 12, v = 0, a15120 = 7 388. We have [fti5,i2i0J =

205132, and « will be factored in about 2 • 105 ~ «°18 compositions.

n « 1040. Choose k - 14, v = 0, a20a4io = 2 182. We have [ft20,14,0J = 2778221,

and « will be factored in about 2.8 • 106 = «016 compositions.

« - 1050. Choose k - 17, v = 0, a25170 = 1 610. We have lft25,17,0J = 30122136,

and n will be factored in about 2.9 • 107 ~ «°15 compositions.

« « 1060. Choose A: = 18, v = 0, a30180 = 375. We have [ft30,i8,oJ = 258648746,

and « will be factored in about 2.6 • 108 = «014 compositions.

The examples show that the number of compositions while factoring n is smaller

than exp /in « In In n . For instance, for « = 1060 we have 2.5-108 = 0.00116 •

exp /In « In In « . The examples indicate that our algorithm will be faster on integers

n ^ 1040 than the Morrison-Brillhart algorithm. Wunderlich [22] reports that the

Morrison-Brillhart algorithm for « = 1040 takes about 322 «°152 « 3.8 • 108 ~ «021

divisions of Q¡, Q¡ = 0(Jñ), by small primes /?. Meanwhile the above estimations

have been verified by a program running on the DEC-1091 in Frankfurt; see Section

5.
Table 5 demonstrates the performance of Method 1 of Stage 2. We choose the

pseudo-random function g: G (A) -» (1,...,16)

g(//)=[[ft2mod(213-l)]l6/(213-l)j+l,

where (a, ft, c) is the reduced form corresponding to H. We consider the method

with 6 distinct samples of exponents ax,...,aX6: three samples with a, chosen at

random and three samples with regular a,, a, = c' + 31mod270 /' = 1,...,16 with

c = 2,3,5. We have the recursion

Hi+l := HtH^H'

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 309

Table 5

10- io8 io10 1012 1014

sample 1 29 84 252 698

16 47 99 281
71 176 535 1401
49 109 332 783

sample 2 28 87 237 605

19 56 130 241
53 171 531 1314
38 109 413 930

sample 3 28 88 219 606

20 49 117 266
57 184 469 1501
45 130 402 982

a, = 2' + 31mod270 19 61 176 504

9 29 98 269

44 121 319 1010

31 85 163 692

a, = 3'+31mod270 31 65 211 585

20 28 102 380
57 168 477 1485
40 111 385 945

a, = 5' + 31mod270 28 79 217 819

20 56 152 388
59 174 480 1733
44 113 414 1013

with H0 g G(A) chosen at random. We apply this recursion to the 50 largest

discriminants A < - 10m with A = 1 mod 4 for m = 8,10,12,14.

For every sample the 10 ""-column records four values

1. the average period length,

2. the median of the period lengths,

3. the average number of recursion steps till search finds some k with 3/ < k:

Hj = Hk,
4. the median of the number of recursion steps.

The particular favorable performance of a, = 2,+31 mod270 and of a, =

3, + 31 mod 70 can be explained by the fact that the order of most class groups is even

and is a multiple of 3 for about half of the class groups. Despite this favorable

performance for random class groups the choice of a, = 2,+31 mod 270 is unfavorable

for the factoring algorithm since in the particular situation of Stage 2 the class

numbers are free of small prime divisors.

Table 6 shows the performance of Method 2 in Stage 2 for the pseudo-random

functiong: G(A) -> {1,...,4}

g(#)=[[ft2mod(213-l)]4/(213-l)j+l,

where (a, ft, c) is the reduced form corresponding to H. We used a, = d\ i = 3,4,

with constants d = 2,3,..., 8. The recursion scheme is

310 C. P. SCHNORR AND H. W. LENSTRA, JR.

\Hf iîg(Hi)<2,

i+1 \ #,/#""" otherwise,

H0 g G(A) is chosen at random.

For every d = 2,3,..., 8 and m = 8,..., 14 we applied this recursion to the 50

largest discriminants A « -10m with A = lmod4. For every d and m the table

records four values:

1. the average period length,

2. the median of the period lengths,

3. the average number of recursion steps till search finds some k with 3/ < k:

Hj = Hk,
4. the median of the number of recursion steps.

Table 6

based IO8 1010 1012 1014

2 21 63 178 684
12 42 112 289

51 158 395 1513
43 92 322 1099

3 28 116 231 783
17 53 86 555
63 219 503 1519
50 157 260 1118

4 24 76 185 780
15 41 83 277

48 165 360 1260
31 123 285 688

5 34 103 273 746
22 58 143 429
74 224 570 1613
50 161 357 1013

6 23 43 98 435
12 24 79 196
55 114 299 927
35 72 188 684

7 28 90 276 713
24 74 154 376

63 224 516 1533
51 159 386 925

8 26 76 209 763
13 47 129 445

53 144 391 1449
41 94 228 918

Acknowledgement. Several members of the Frankfurt working group participated

in implementing this algorithm. H. G. Franke produced Tables 1-3 and imple-

mented large integer arithmetic and an efficient composition algorithm in machine

language. J. Sattler produced Tables 5, 6 which compare Methods 1, 2 of Stage 2.

A MONTE CARLO FACTORING ALGORITHM WITH LINEAR STORAGE 311

Thanks are due to the computer centres of Frankfurt and Amsterdam university for

providing computing time on the DEC-1091 in Frankfurt and the CDC-Cyber in

Amsterdam. We also like to thank A. Odlyzko for the permission to include in this

paper Table 4 which is part of a larger statistic made at Bell Laboratories.

Fachbereich Mathematik

Universität Frankfurt

6 Frankfurt am Main, West Germany

Mathematisch Instituut

Universiteit Amsterdam

1018 WB Amsterdam, The Netherlands

1. R. P. Brent, "An improved Monte Carlo factorization algorithm," BIT, v. 20,1980, pp. 176-184.

2. J. W. S. Cassels, Rational Quadratic Forms, Academic Press, London, New York, 1978.

3. H. Cohen & H. W. Lenstra, Jr., Divisibility by Small Primes of Class Numbers, Personal

communication, 1982.

4. J. D. Dixon, "Asymptotically fast factorization of integers," Math. Comp., v. 36, 1981, pp.

255-260.

5. C. F. Gauss, Disquisitiones Arithmeticae, Leipzig, 1801: English transi, by A. A. Clarke, Yale

University Press, New Haven and London, 1966.

6. G. H. Hardy & E. M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ.

Press, Oxford, 1979.

7. D. E. Knuth, 77ie Art of Computer Programming, Vol. 2, Seminumerical Algorithms, 2nd ed.,

Addison-Wesley, Reading, Mass., 1981.

8. P. G. Lejeune Dirichlet & R. Dedekind, Vorlesungen über Zahlentheorie, Braunschweig, 1893;

reprint, New York, 1968.

9. H. W. Lenstra, Jr., On the Calculation of Regulators and Class Numbers of Quadratic Fields,

Journées Arithmétiques 1980 (J. V. Armitage, Ed.), Cambridge Univ. Press, Oxford, 1982, pp. 123-150.

10. G. B. Mathews, Theory of numbers, 1892; Reprint, Chelsea, New York, 1962.

11. L. Monier, Algorithmes de Factorisation d'Entiers, Thèse d'informatique, Université Paris Sud,

1980.
12. M. A. Morrison & J. Brillhart, "A method of factorization and the factorization of F7," Math.

Comp., v. 29,1975, pp. 183-205.
13. J. M. Pollard, "A Monte Carlo method for factorization," BIT, v. 15,1975, pp. 331-334.
14. C. Pomerance, "Analysis and comparison of some integer factoring algorithms," Computational

Methods in Number Theory (R. Tijdemen and H. Lenstra, Eds.), Mathematical Centrum, Amsterdam,

1981.

15. R. L. Rivest, A. Shamir & L. Adleman, "A method for obtaining digital signatures and public key

cryptosystems," Comm. ACM, v. 21,1978, pp. 120-126.

16. J. Sattler & C. P. Schnorr, "Ein Effizienzvergleich der Faktorisierungsverfahren von Morrison-

Brillhart und Schroeppel," Computing, v. 30,1983, pp. 91-110.

17. D. Shanks, Class Number, A Theory of Factorization,and Genera, Proc. Sympos. Pure Math., vol. 20,

Amer. Math. Soc., Providence, R. I., 1971, pp. 415-440.

18. J. Sattler & C. P. Schnorr, Generating Random Walks in Groups, Preprint, Universität Frankfurt,

1983; submitted for publication.

19. C. P. Schnorr, "Refined analysis and improvements on some factoring algorithms," J. Algorithms,

v. 3,1982, pp. 101-127.

20. C. P. Schnorr & M. Seysen, An Improved Composition Algorithm, Preprint, Universität Frankfurt,

1982; submitted for publication.

21. C. L. Siegel, "Über die Klassenzahl quadratischer Zahlkörper," Acta Arith., v. 1,1936, pp. 83-86.

22. S. S. Wagstaff & M. C. Wunderlich, A Comparison of Two Factorization Methods, Unpublished

manuscript.

23. H. G. Zimmer, Computational Problems, Methods, and Results in Algebraic Number Theory, Lecture

Notes in Math., Vol. 262, Springer, Berlin and New York, 1972.

