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Global Estimates for Mixed Methods for

Second Order Elliptic Equations

By Jim Douglas, Jr., and Jean E. Roberts

Abstract. Global error estimates in L2(Q), L°°(Q), and H~S(Q), Q in R2 or R3, are derived

for a mixed finite element method for the Dirichlet problem for the elliptic operator Lp =

-div(a grad p + bp) + cp based on the Raviart-Thomas-Nedelec space V^ X Wh c

H(div; Í2) X L2(ü). Optimal order estimates are obtained for the approximation of p and

the associated velocity field u = -(a grad p + bp) in L2(fl) and H~S(Q), 0 < s < k + 1,

and, if ß c R2, for/? in L°°(Q)..

1. Introduction. Let ß be a bounded domain in R2 or R3 with boundary 9ß, and

assume that the Dirichlet problem

(a) Lp = -div(a(x) grad/) + b(x)p) + c(x)p = f(x),       x g ß,

(b) P = -g(x),       x g 9ß,

is solvable for {/, g) g ¿2(ß) x #3/2(3ß) and that

(1-2) IHl2<ß{||/||o + l*M,
where we shall indicate the norms in Wm,t,(Q) by || • ||m   with q = 2 being omitted

and in Wm'q(dQ) by | • \m  , respectively, again with q = 2 being omitted. Let

(1.3) u= -(agradp + bp),

and set

(1.4) a(x) = a(x)-\       ß(x) = a(x)b(x).

Then, the differential equation (1.1a) can be written in the form of the first order

system

(a) au + grad p + ß/> = 0,

(b) divu + cp = f,       x g ß.
(1.5)

Let

(16) (^   v = H(div;ß)= {uGL2(ß)2:divueL2(ß)},

(b)    W=L2(Ü).

Then, the weak form of (1.1) that we shall treat is given by seeking a pair

{u, p) g V X IT such that

/17) (a)    (au,v)-(divv,/>)+(ß/>,v) = (g,vv),       v e V,

(b)    (divu, w) +(cp, w) = (f, w),       w g W,
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where v is the outer normal to 9ß and the inner product in L2(ß)" is indicated by

(•, •) and in L2(9ß) by (•,•); the same notations will be used for the dualities

between HS(Q) or H¿(Q) and its dual and H~s(dQ) and /i0"i(9ß), respectively. It is

known [13] that v • v g H~1/2(dQ) when v g V.

Let

vA x wh = v(ß, $■„, k) x w(a, srh, k)

denote the Raviart-Thomas-Nedelec space [7], [8], [13] of index k associated with a

quasi-regular partition ^ of ß into triangles and rectangles (or parallelograms) of

diameter not greater than h such that every angle of each triangle is bounded below

by a positive constant. Boundary triangles or rectangles are allowed to have one

curvilinear edge. Let ß c R2 for the moment and let Pk(T) denote the restriction of

the polynomials of total degree k to the set T; similarly, let Qk(T) indicate the

restriction of Pk <8 Pk to T. Also, let Pk(T) = Pk(T)2. If T g yh is a triangle, let

V(r) = Pk(T) © Spm(xPk(T)),       W(T) = Pk(T).

Similarly, if T is a rectangle, let

V(r) = {vGQ,+1(7): du*+1/dxÍ+1 = 0j*i},       W(T) = Qk(T).

Then, let

Yh = \(k,¿Th)= (veH(div,ß): v|tg VÎT), lej,},

W„= W(k,yh)= {wGL2(ß): wir g W(T),T^^h).

The requirement that v g H(div, ß) is equivalent to asking for continuity in the

normal component across the edges of the elements; i.e., if e = T¡ n T, and v, is the

outer normal to T¡ on e, then v|T. • v(- + v|r. • v- = 0 on e. The above formulation of

the Raviart-Thomas spaces coincides with that of Raviart and Thomas [8] for

rectangular elements and is the modification due to Nedelec [7] on triangular

elements. With the obvious modification that Pk(T) indicate Pk(T)3 for T being a

simplex in R3, etc., the spaces \h X Wh defined above remain valid for ß c R3;

consequently, the method to be specified in (1.8) is applicable for problems in three

space variables.

Our mixed method for approximating the solution of (1.1) is defined by the

determining of a pair {uA, ph } g \h x Wh such that

(18) ^    (au*'v)-(divv'/,'')+(ß/''''v) = (g'v' v)'       VGVA'

(b)    (divuA,w) +(cph,w) = (f,w),       w^Wh.

This procedure, which was given explicitly by the authors in [2], represents the

simplest and most direct extension of the standard mixed method [1], [4], [5], [8],

[10], [13].
We shall establish the existence and uniqueness of a solution of (1.8) for

sufficiently small h; moreover, we shall show that the differences/» - ph and u - uh

are of optimal order in L2(ß) and in H~S(Q) or Hs(ü)' for s < k + 1, provided, of

course, that the domain ß and the solution p are sufficiently regular. Indeed, we shall

prove that

(19) (a)    \\p-phl<Q\\p\\k+ihk+\       ||u - uj0 < ÔlHU+2/,^1,

(b)    \\p - PhLk-i + II" - uJU-i < Q\\p\\k+ih2k+2.
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We shall show as a trivial corollary of our basic duality lemma that, when ß c R2,

(1.10) lb - pJo.» < ß{ll/4+i.« +\\p\\k+2}hk+\

a result obtained earlier by Scholz [10] for the Laplace operator; he has since [11],

[12] found a better result for the Laplace operator than (1.10).

An entirely analogous development can be given for the Dirichlet problem

(111)    ^    _div(fl(*) •8rad/') + b(x) -grad/) + c(x)p =f(x),       x g ß,

(b)   />= -g(jc),       ^G9ß.

In this case the auxiliary variable is chosen to be

(1.12) v = -a grad/>;

see [2] for the corresponding L2(ß)-estimates for the error. The basic arguments of

this paper can be applied to obtain negative norm and L°°(ß) estimates of the same

nature as those we derive.

The extension of our convergence results to the case ß c R3 will be noted in the

last section of the paper. Until then, consider ß to be a planar domain.

2. The Raviart-1 homas Projections and the Error Equation. The Raviart-Thomas

spaces that we use consist on each triangle (we include "rectangle" as a special

meaning of " triangle") of exactly the sets of polynomials that would have resulted

on the triangle when all of its edges are linear; i.e., the space is unmodified on

boundary triangles. Thus, we preserve the relation

(2.1) divV, = W„.

For polygonal domains Raviart and Thomas [8] defined a projection

(2.2) UhxPh:\XW^\hXWh

having the properties:

(i) Ph is L2(ß)-projection;

(ii) the following diagram commutes:

div
V      -     w

n* 4 [ph

div
V„        -       W„      -     0;

onto

i.e., div II, = P„div:V-» Wh;

(iii) the following approximation properties hold:

(a)    ||u - Ij>||0 < ô||u||^r,       1 < r < k + 1,

(2.3) (b)    lldiviu-n^ll.^ßlldivull^,       0<r,s<* + l,

(c)    \\p-Php\\-s<Q\\p\lhr+s,      0<r,i<fc + l;

(iv) (redundant)

(2 4) (a)    (div(u - 11», w„)-0,       wheWh,

(b)    (divv/l,Jp-PA/?) = 0,       vagV,.
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In the next to last section of this paper, Douglas N. Arnold and we present a way to

modify the definition Uh restricted to a boundary triangle having a curved edge so

that all of the above requirements are met when the resulting local projection is

combined with the standard local version.

Let

i25v (a)  €-■-■*.     a = U^-uh,

(b)    f\=p-ph,   r = Php-ph,    p=p-Php.

It then follows immediately from (1.7) and (1.8) that

(2-6)
(a)    (aC,v)-(divv,7j)+(ßr,,v) = 0,       veV„

(b)   (div5,w)+(c7,,w) = 0,       tvelTj,

or, equivalently, that, as a result of (2.4b),

(a) (a4,v)-(divv,T)+(ßT,T)= -(ßp,v),       VGV„

(b) (divi,w)+(cr,w)= -(cp,w),       w^Wh.

The argument to be presented below is a refinement and extension of that given

briefly by the authors [2]. As such, it also represents an extension of some results of

Johnson and Thomée [5] and is a natural analogue of the argument developed by

Schatz [9] for treating Galerkin methods for the Dirichlet problem for noncoercive

operators. We shall first demonstrate several forms of a duality lemma and then

derive error estimates.

The orthogonalities given in (2.4) play a fundamental role in our discussion of

duality. Elsewhere, Arnold, Chaitan Gupta, and Douglas treat the plane elasticity

problem in a similar fashion using a mixed method based on a new family of

elements designed to satisfy relations corresponding to (2.4) and having approxima-

tion properties of a somewhat more complicated nature than those of (2.3). Arnold,

Brezzi, and Douglas will discuss a yet different approach to plane elasticity based on

a set of finite elements which do not satisfy the usual symmetry properties for the

stress tensor but do satisfy (2.4). Also, Douglas and Milner have developed interior

and superconvergence results for the mixed method (1.8).

3. The Duality Lemmas. We shall employ duality with respect to Hs(ti) in place of

#oXß); i.e., if <p g L2(ß), then

(3.1) IMI-,HW-,.2.o=      sup      ijiil,      s>0.
0* + eff'(Q)     \m\s

Nothing of interest would change if the usual dual space H~S(Q) = (Hq(Q))' is used.

We shall say that ß is (s + 2)-regular if the Dirichlet problem

(32) (a)   ¿*<P = ^   *Gß,

1 ' ' (b)   <p = 0,       x g 30,

is uniquely solvable for t|/ g L2(ß) and if

(3.3) |M|f+2 < QUI

for all t// g HS(Ü).
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If /e V", the dual space of V, then it can be represented by a pair {f0, fx) of

functions such that f0 g L^ß)2,/, G L2(ß), and

(3.4) /(v) = (f0,v)+(/1,divv),      vGV.

The first version of our duality lemma is as follows.

Lemma 3.1. Let the index kof\hX Wh be at least one and let 0 < s < k - 1.

Assume that ß is (s + 2)-regular. Lei Ç G V,/ = {f0, /,} G V, and g G W' = L2(ß).

// z G Wh satisfies the relations

(a)    (a$,v)-(divv,z)+(ßz,v)=/(v),       v G V„,

{) (b)    (divS, w)+(cz,w) = g(w),       w^Wh,

then, for sufficiently small h,

(3.6) M- < ô{*I+1USllo + Aí+2||div|;||o + ||f0||-,_1 + Äi+1||follo

+ IAI-.+ *'ll/ilo + 11*11 -s-2 + /»i+2llg||o}.

Proof. Let ^ g Hs(Û), and let <p g #i+2(ß) n #0x(ß) be the solution of (3.2). By

(3.5a) and (2.4a),

(z, 4>) = (z, -div(agrad<p) + ß • a grade» + cq>)

= - (al,nh(a grad <p))+f(U„(a grad <»))

+ (ßz,agrad<p - nA(agrad<p)) + («,<p).

Then, by (3.5b),

(cz,<p) = (cz + di\t,,(p- Phtp) + g(Ph<p) -(div£,<p)

and

-(divj.tp) = (5,gradqp) = (a£,agrad<p)

= (a5,nA(agrad«)p)) +(«5, a grad <p - IIA(agrad<p)).

These relations combine to show that

(3.7) (z,^)=/(nA(ûgrad<p)) + g(PA<p)

+ (aj + ßz,agrad<p - Uh(a gradtp)) + (divj + cz,<p- PA<p).

Then,

|/(n,,(agrad9))| «|/(a grad<p)| + \f(a grad«p - nA(a grad <p))|

< ll/oll -,-> grad «PlUi + ll/ill -Jdiv(a grad <p)||,

+ ll'ollolla grad <p - Tlh(a grad«¡p)||0

+ l^illolMûgrad<p - nA(agrad<p))||0

< Q{M-,-i + A'+1|IUo + ll/ilU + «lAlojM..
by (2.3) and (3.3). Similarly,

|f(i»l<fi{IWI-.-2 + A'+2IWIo}ll*|..
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Again by (2.3),

I(a£ + ßz,agrad<p - IIA(agrad <p))| + |(divÇ + cz, <p - Ph<p)\

< Q{*'+1(Kllo + Ikllo) + A,+2(||divJ;||o + ||z||o)}Ul.

Thus,

(3.8) \\z\\-s < Q{h^\\Uo + As + 2||divS||o + Hfoll_x + 11/ilL + hs + 1¥o\\o

+ Al/1|lo+l|g||-i-2 + ^ + 2||g||0+^ + 1||z||o}.

Consider s = 0. For h sufficiently small, the A||z||0-term on the right-hand side can

be absorbed into the left-hand side, and the inequality (3.6) has been established for

s = 0. Then, for 0 < s < k - 1, (3.6) holds, provided that ||g||_2fci+1 can be

bounded by the terms on the right-hand side of (3.6). But, standard interpolation

theory for the spaces HS(Q)' [6] implies that

mu < Q\\gCs+1\t-l\2) < e{%iio + A-*/2yu-2},

and the proof of the lemma has been completed.

The cases k = 0 and s = k when k > 1 are not covered by Lemma 3.1. Because of

reaching the limits of approximability provided by (2.3), a change in the form of the

estimate occurs. In the applications below to finding error estimates, we shall be able

to maintain optimal order estimates when the s = k lemma is used, but a cost of

additional regularity results.

Lemma 3.2. Let the index k of\h X Wh be nonnegative, and letübe(k + 2)-regular.

Let f G V, /= {f0,0} G V, and g g L2(ß). // z G Wh satisfies (3.5), then for h

sufficiently small,

(3.9) ll^ll-^ < öCä^^HUSIIo -•- lldivSHo H- llffotlo -^ ll^llo) -^ llfoll-^-! + llirn-^-2} -

Proof. The relation (3.7) remains valid, except that fx has been set to zero. Now,

the limit on approximability for <p — Ph<p reduces the exponent s + 2 = Â: + 2to

k + 1 in two places in the arguments; otherwise, the proof is unchanged.

It should be noted that all factors of h occurring in the estimates (3.6) and (3.9)

come from the use of (2.3). Since the projections IIA and PA are defined locally

through moments over individual triangles (including boundary ones), these bounds

can be sharpened to become more local in character, since we have assumed a

minimum angle condition for the polygons le^. We have actually proved, in

place of (3.6), that (when, say,/, = 0 and diam(r) = hT),

(3.10)    ||z||!,<ß(   E   [^í+2(Ello,r + l|f0llo,r)+4í+4(l|div5||o,r + l|g||o,r)
Te¿rh

+H0I-.-1+W-.-2}

for 0 < s < k — 1. We shall not pursue these additional refinements.

4. Error Estimates in L2(ß). Assume momentarily that (1.8) has a unique solution,

at least for small h. That it does, will be easily observed from the convergence

analysis. Now, apply either Lemma 3.1 with s = 0 or Lemma 3.2 with k = 0 to the
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error equations in the form (2.7). Then, for h small and for ß 2-regular,

Ho < ß{A||6||o + A2-s-||divÉ||0 +W-! + AIIpHo}.

Since

\\p\\-i + h\\p\\o*iQ\\p\\rhr+1

for 0 < r < k + 1 by (2.3c),

(4.1) ||t||o « ß{A||6||o + A2-s-||div4||o + \\p\\rhr+l)

for 0 < r < k + 1, and

(4.2) ||ij||o<ß{||6||oA + A2-**°||div€||o + ||p||rAr},       0 < r < * + 1.

Since, by (2.4a), (diva, w) = (div£, w) for w g Wh, it follows from (2.6b) and the

choice w = div o G Wh that

(4.3) Hdivollo < ßhllo,
so that

(4.4) lldivCllo^edhllo+lldivulliA«},       0<î<* + 1.
Next, take the test function v = a in (2.6a) to see that

(ao,o) = (diva,i)) -($j),o) -(a(u - ITAu),o);

consequently,

(4.5) Ho<ß{Nlo + HrA'},        1<Í<* + 1,
and

(4-6) ll€llo<ß{Nlo + M|,A'},       l</<* + l.
If (4.4) and (4.6) are substituted into (4.2), then forO<r<A:-l-l,0<o<^ + l,

and 1 < t < k + 1 it follows that

hilo < ß{ Afollo + WpW + ||u||,A'+1 + ||divu||?A*+2-s-}.

Thus, for small A and the choices r = t + l = q + 2-8k0,

/ß|H|2A     if*-0,

|ß||/7||rAr    ifA>land2<r«* + l,

since ||u||r_1 + ||divu||r_2 < ß||p||r. The estimates can be written in a more compact

form for k > 0 and 0 «; q < 2 as

(4-7) Nlo < ßl|p||r+,A',       2-î<r<* + l.

It then follows immediately that, for k 3s 0 and 0 < q < 1,

(4g) (a)    Mo^Q\\p\\r+i+qhr,       l-q<r<k + l,

(b)    ||divi||o<ß^||f+2Ar,       0<r<* + l,

and the analysis of the errors, as measured in L2(ß), is finished.

Before collecting the results of the error analysis in a theorem, let us demonstrate

the existence and uniqueness of the solution of (1.8). Since (1.8) is linear, it suffices

to establish uniqueness; thus, we suppose the data functions / and g to vanish. The

choice w = divuA in (1.8b) implies that

l|divuj0< ßllpjrj.
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Next, note that Lemma 3.1 or Lemma 3.2 implies that

HpJo< ß{A||uJ0 + A||divuJ0},

so that, for small A,

IIPaIIo < ßAll«*llo-
If the test function v in (1.8a) is taken to be uA, then it follows that

Kilo < ßlbJo < ßA||u*||0,

so that uA vanishes for small A, along with ph. So, uniqueness has been demon-

strated. We have proved the following theorem.

Theorem 4.1. Assume that the Dirichlet problem (1.1) has a unique solution

p g H2(ü)for every pair {/, g} g L2(ß) X #3/2(9ß) and that ß is 2-regular. Then,

for h sufficiently small there exists a unique solution {uA, ph} g Va X Wh of the mixed

method equations (1.8). Moreover, the error {u - uh, p - ph) can be estimated by the

inequalities

, x ,i h ^ \Q\\p\\ih    ifk-0,
(a) \\p-Ph\\o<    „„  i, ,,.,,,      ... ,     ,

,,.*                                         \Q\\p\lhr    ifk>land2çrçk + l,
(4.9)

(b) ||u - uA||0 < ß||/7||r+1Ar   //l<r<* + l,

(c) ||div(u - uJHo < ß||p||r+2A'   //0<r<* + l.

Theorem 4.1 was obtained by the authors in [2]; however, the proof given above is

more direct, in that an unnecessary step in which Brezzi's general saddle point

approximation results [1] were applied to a reduced problem has been avoided. The

bound given by (4.1). above will allow us to obtain an Lx(&) estimate for p — ph

very easily. It should also be noted that the weak problem (1.7) for nontrivial b and c

is not a compact perturbation of that for b and c vanishing; thus, Theorem 4.1 is not

a straightforward corollary of the approach of Falk and Osborn [4], who have

proved (at least implicitly) the same estimates (4.9) when k > 1, b = 0, and the form

is coercive.

The constraint that A be sufficiently small in Theorem 4.1 results from not having

assumed the original problem to be coercive. If in (1.8) we take v = uA and w = ph,

and if the two equations are then added, we see that

(auA,uA) +(cph, ph) +(ß/7A,uA) = (/, ph) + (g,uh ■ v).

It is then easily seen that, if c(x) > 0 and

b(x)2 < 4(1 - y)a(x)c(x)

for some y g (0,1), the algebraic equations of (1.8) are solvable; moreover, the error

estimates hold without the constraint on A.

5. Error Estimates in L°°(ß). In this section we shall impose the additional

constraint on 3~h that

(5.1) diam(r) = hT> y0h,        Ig^,

for some yQ g (0,1). Then it follows from (4.1) and (4.9) that

(5-2) Ho < ß||p|L1+8t0A'+\       1 < r < k + 1,
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and that, using (5.1) as well as the angle constraint for^"A,

(5-3) IHIo,0o<ßA^1Ho<ßll/'IU1+8toAr,       Kr<k + 1.

Thus, for k > 0,

(5.4) ||p-pJo.„<IIP-^Pllo.o0+IHIo.»

<ß{llp||r.oo+l|p|Li+«M)A',       l«r«fc+l.

Note that (5.4) is an optimal order estimate; the regularity required of the solution

of the differential problem is not minimal, since we need p to belong to Hr+1(Q)

when k > 1 and to H3(Q) when k = 0 to obtain 0(hr) or 0(A), respectively, in

L°°(ß). Scholz [10] has demonstrated (5.4) for k > 1 when the differential operator

L has the form —Ap + cp,c> 0; his method of proof employed weighted L2-norms.

Recently, [11], [12] he has improved his earlier results to obtain optimal L°°-esti-

mates for p - ph that are optimal with respect to order and regularity; he also

obtained an estimate in L°° for u - uA that is optimal modulo a factor of |logA|.

These results were presented for the Laplace operator. Johnson and Thomée [5]

obtained a slightly weaker result than ours for p - ph by essentially the same

observation as ours, again limited to k > 1 and the Laplace operator. Our result for

k = 0 seems to be new, even for the Laplace operator. The argument above is sharp

only for ß c R2.

Our result can be summarized as follows.

Theorem 5.1. Let 3~h be quasi-regular and let (5.1) hold, and assume that ß is

2-regular. Then, for h sufficiently small,

(5-5) llp-pJo.co^ßfllPlUco+llplUi^jA'
for 1 < r < k + 1.

6. Error Estimates in iP(ß)'. Let ß be (s + 2)-regular, and consider first the range

0 < s < k — 1 (which requires that k > 1). Then the application of Lemma 3.1 and

(2.3c) to the error equations (2.7) produces the bound

IMI-* < ß{Ai+1||4||o + As+2||divÉ||o + A'+I+1||/4}

for 0 < r < /c + 1. It then follows from Theorem 4.1 that

(6.1) IMI-,<ß||p||,+ iAr+'+1,       Ur<* + 1,

from which we see that

(6.2) Nl-S< ßl|p||rAr+i,   if2<r<fc + landO<í«A:-l.
The estimate (6.2) is optimal with respect to regularity and is the desired result over

the range of s admitted.

We can also employ Lemma 3.2, now for k ^ 0 and s = k. Then, using Theorem

4.1 again,

(6.3) H-* < ß{A*+1(ll*llo + ||div6||0 + ||p - P*p|lo) +l|p - PkP\\-k-i}

< ßl|p||r+2Ar+*+1,       0<r*k + l.

Thus, (6.3) can be used to obtain each of the following inequalities:

(6.4) NU < ß||/>||r+1A'+\       r<r<* + l,
and

(6.5) M-k-i<QMr+ihr+k+l,       0<r<Jfc + l.
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The regularity of ß needed for (6.5) is the same as for (6.4); i.e., (k + 2)-regular.

Note that both (6.4) and (6.5) are optimal order estimates, in that 0(h2k + l) and

0(h2k + 2) bounds are obtained when r is allowed to assume its maximum value

k + 1 ; however, one extra derivative is required of p for the s = k estimate and two

for s = k + 1. Consequently, these bounds are not of the nature that would be

expected to result from the general stability approach of Brezzi [1] and Falk and

Osborn [4].

Consider next the divergence of u - uA. Let k > 0 and 0 < 5 < k + 1, and let

9 g Hs(ü). Then, by (2.6b),

(div Í, <p) = (div Í, PA<p) + (div Í, <p - Ph<p)

= -(c7j,<p) +(ctj + div£,<p - Ph<p),

so that

(6.6) ||dM||_,< ß{W-, + Alfolio + ||div€||o)} <Q\\p\\r+2hr+s

for 0 < r < k + 1, by Theorem 4.1 and (6.2), (6.4), or (6.5). This estimate is optimal

with respect to both rate and regularity for all admitted choices of r and s.

Finally, let us consider bounding £ in /F(ß)'. Let 4? g /P(ß)2. We should like to

have a function <p g Hs+1(Q) such that $ = -agrad <p and y = 0 on 9ß; unfor-

tunately, this overspecifies <p, so that a new argument must be given. Let <p G

#i+1(ß) n //¿(ß) be the solution of the Dirichlet problem

(a)    -div(a gradqp) = div \J?,       x g ß,

^J' (b)    <p = 0,       x g 9ß.

Assume that ß is (s + l)-regular for (6.7); this is no more a requirement on ß than

(s + Irregularity for L*. Then,

(6.8) \\<p\\,+i<Q\\divML-i<QHl-
Furthermore, \|? = - a grad <p + 8, where div 8 = 0 and

(6-9) ||8||, < fi«,.

Now,

(6.10) («£,*)= - (a£, agrad (p)+(«Í 8) = (div£,(?)+(«£, 8).

As in the argument for (6.6),

|(div$,(P)|<ß{||T)||_J_1+(||r,||o+||div4||0)A-1}Ws

for 0 < s < k. Hence,

(6.11) \(àiwi,<p)\^Q\\p\\r+1hr+s+lU\\s,       0<r<fc + l.

Then, since div 8 = 0 and by (2.4),

(aí,8) = (aí,nA8)+(«4,8-nA8)

= (diviïA8,„) -(ßT,,nA8) +«8- n„8)

= (div(nA8-8),x)+(divnA8,p)

-(ßT,,8)+(ßT, + a4,8-nA8)

= -(ßT,,8)+(ßw + «i,8-nA8),
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from which it is apparent that

(6.12) |(a5,8)|<ß{|h||_J+(||r,||o + ||£||o)Ai}Wi

for 5 > 1; (6.12) follows trivially from (6.9) for s = 0. It should be noted that (6.12)

holds when s = k + 1 as well as for 0 < s < k. Thus,

(6 13)    \(a£ 8)| < /ôlWI'+lAr+,H+ll* farO<J<*andl<r<* + lf

lßll/>IU2Ar+*+1|hHU+1    fori = A + land0<r<A + l.

The inequalities (6.11) and (6.13) can be combined with (6.10) to imply that

(6 14)      HEU     < /Oll'"'-1*'**        farO<j<*andl<r<* + l,

lßl|plU2A,+* + 1    for¿ = A + landO<r<A + l.

The estimate (6.14) is optimal in order for 0 < 5 < k + 1 and is optimal in

regularity for 0 < s <; k, with one additional derivative being required of p for

s = k + 1.

Note that we have proved, in particular, that

(6.15) \\p-Ph\\-k-i+h - uJU-i +||div(u - uA)|U_, < Q\\p\\k+3h2k+2

for k > 0. Since the mixed method is more nearly associated with L2-projection than

projection into any other Sobolev space Hq(il), certainly no greater exponent than

2k + 2, which is the maximum occurring in L2-projection, could be expected. The

regularity required to obtain this exponent is correct for the divergence term; a

similar observation has been made by Arnold, Douglas, and Gupta for a related

mixed method for the equations of plane elasticity.

Our results can be summarized in the following theorem.

Theorem 6.1. Let ß be (s + 2)-regular. Then, for h sufficiently small,

(a)    llp-pj-,

f Q\\p\lhr+S forO < s < k - 1 and! < r < k + 1,

< { ôllp||r-nA,+* fors = kandl < r « k + 1,

(ß||/4+2Ar+* + 1 fors = k + 1 andO < r < * + 1,

(6.16) (b)    llu-uJU

, í ßlMlr+iAr+I for 0 < s < k and 1 < r < A + 1,

S \ß||/7||r+2A''+A:+1    fors = k+ land0^r^k + 1,

(c)    ||div(u-uA)|U

< ßlbl|r+2A''+i   forO ̂  s < A + 1 ö/k/O < r < k + 1.

7. The Projection IIA on a Boundary Triangle. We shall consider the case of a

triangular element T with two straight edges, say e, and e2, and one curvilinear edge,

ev The rectangular element can be handled similarly. Recall that we have defined

the restriction of the Raviart-Thomas spaces to the curvilinear triangle to be the

extension of the polynomials that would have been associated with the ordinary

triangle with the same vertices. There are five objectives in the definition of IIA on
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an ordinary triangle: unisolvence, the reproduction of Pk(T), the orthogonality

of (u — IIAu) • v to polynomials of degree k on the edges, the orthogonality of

div(u - IIAu) to polynomials of degree k on T, and the existence of a bound on the

map IIA: H^T) -» L2(T). Now, it is a simple exercise to show that the degrees

of freedom chosen by Raviart and Thomas are equivalent on an ordinary triangle to

the requirement that

(a)

(v.i) (b)

(c)

This can be seen perhaps most easily by observing that the following sequence is

exact (Pk is the space of polynomials of degree k in one complex variable with

complex coefficients):

c grad + curl

0^pc^pkXpk-►P,_1^0.

We shall select our degrees of freedom from the above list of possibilities

augmented by allowing \p G Pk+l(T) in (7.1c), noting that we do not need to

constrain IIAu • v on the curvilinear edge ev It is clear that we can give our degrees

of freedom on a reference triangle S = S(T) having vertices at (0,0), (0,1), and

(1,0), where S is obtained affinely from T with ex going to ex = ((0,0), (0,1)) and e2

to ê2 = ((0,0), (1,0)). Note that, since 9ß is smooth, the image of e3 is smooth and

lies in a lense of width 0(h) about the segment ((0,1), (1,0)). First, let us preserve

the orthogonalities (7.1b) and those of (7.1a) on êx and ê2:

(a) f div(u - ñu)¿ dx = 0,       $ g Pk(S),

(7.2) *
(b) f(û-îlû)Pyds = 0,       çePt(f.),i = l,2.

Let

Y = (v G V: v ■ v = 0 on ê, and ê2, divv = 0),

and note that Y is independent of S and that, since the conditions v • v = 0 on ê,

and ê2 and divv = 0 are linearly independent, Y has the correct dimension to

provide the required additional degrees of freedom. Now, recall that IIA is used

solely for analytical purposes and not for computational ones; thus, we can let S* be

the triangle with vertices (0,0), (0, \), and (2,0) which lies inside S for A even

reasonably small, and then impose moments against Y over S*:

(7.3) f (u- tlu)-\dx = 0,       íe Y.

Note that, if t e Y, v e Pk, since divv = 0; this is one of the properties used by

Raviart and Thomas to define V.

/ (u - nAu) • v<pds = 0,       <p G Pk(e¡), i = 1,2,3,
e¡

/"div(u-IlAu)»Mx = 0,       ^^Pk{T),
Jrp

f(u - nAu) • curl ̂ dx = 0,       4> g Pk(T).



MIXED METHODS FOR SECOND ORDER ELLIPTIC EQUATIONS 51

The space Y is trivially found for small k. For k = 0, Y is the null space. For

k = 1, Y is one-dimensional and is the span of the vector (x, -y). For k = 2, Y has

dimension three and

x(a + bx + 2cy)

-y(a + 2bx + cy)

Note that Y C curl (Pk+1(S)).

It is clear that IIA reduces to the identity on V. It is also clear that

(7.5) ||div nu||0,s + llftù ■ vilo,*,uê2 + llProJy Ûû||0iA. < ß|u||U,

which establishes the boundedness of fl as a map from H:(S) to L2(5), since the

vanishing of the terms on the left-hand side of (7.5) requires IIû to vanish. Finally, a

version of the Bramble-Hilbert lemma given by Dupont and Scott [3, Theorem 5.1]

shows that there exists a constant ß, that is independent of S within the set arising

herein such that

II" - ftullos < ßjl - Û||^(H'(S),L2(S))lU|r,S < ß|u|r,s

for 1 < r < k + 1, where | • |r ¿ is the seminorm associated with derivatives of exact

total order r over the set 5. The usual scaling shows that

(7.6) ||u - nAu||0 T < ß|u|rTAr,       1< r < k + 1,

where IIA is the projection operator on H^r) such that

(7.7) U^à= ft«,       ft = tig.

This completes the description of the restriction of IIA to a boundary triangle. If

Ph remains the L2-projection onto Pk(T) when restricted to L2(T), then the global

nA-projection of V onto VA has the desired properties that were listed in (2.3) and

(2.4).
This section represents joint work of Douglas N. Arnold and the authors.

8. The Three Space Variable Problem. Let ß be a bounded domain in R3 with

smooth boundary 9ß. Let^"A be either a simplicial decomposition of ß into simplices

with maximum diameter A and minimal solid angle at a vertex greater than some

positive constant or a decomposition into rectangular elements having maximum

diameter A. In the simplicial case boundary simplices can have one nonflat face.

The procedure (1.8) remains defined when VA X Wh are specified following

Nedelec, as remarked earlier. Moreover, all of the error estimates in L2(ß) and

HS(Q,)' remain valid.
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