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On the Uniform Convergence of Gaussian

Quadrature Rules for Cauchy Principal

Value Integrals and Their Derivatives

By N. I. Ioakimidis

Abstract. The convergence of the aforementioned quadrature rules for integrands possessing

Holder-continuous derivatives of an appropriate order is proved to be uniform and not only

pointwise. The rate of convergence is also established and an application to the numerical

solution of singular integral equations is made.

1. Introduction. In a recent short communication [8] we considered the conver-

gence of Gaussian quadrature rules for the numerical evaluation of derivatives of

Cauchy principal value integrals of the form

w    ^*>-££*>£*dx? ■ *

/(')= p\lw(t)—A '      dt,       a<x<b,p = l,2,....
Ja (t-x)P + 1

(Forp = 0,1(0)(x) denotes simply an ordinary Cauchy principal value integral.) The

last integral in (1) should be interpreted as a finite-part integral [15]. Yet, instead of

using the complicated definition of such an integral proposed by Hadamard, we

prefer to define it here, equivalently, by (1) as a derivative of a Cauchy principal

value integral. This is a common practice.

For the construction of the aforementioned rules, we rewrite (1) as

Jt> (t - x)p

f(t)-í^¡^-(t-x)k
k = o      K-

dt

p
/<*>(*)   fb w(t). v-- J    \x) cb       wm

+P   E       , .      T -       ,   ,dt,       a < x < b,r     t— ¡çl        J     i . -.p-k + l
k=o a (t - xy

assuming that/e Cp+l[a, b] and that w(t) is a nonnegative generalized Holder-

continuous function on [a, b] (that is, a function which is Holder-continuous on

every closed subinterval of [a, b] not containing the endpoints a and b and near

these endpoints may have integrable algebraic or algebraicologarithmic singularities
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[17]). Then the first integral in (2) can be evaluated by the classical Gaussian

quadrature rule [1]

(3) (b»(t)h(t) dt=t Hnh(ti,n) dt + E„(f)
J" , = i

for the weight function w(t) on [a, b] (where tin are the nodes, ju, „ the weights,

Hi „ > 0, and En the error term) and the resulting quadrature rule for Iip\x) is

called the Gaussian quadrature rule for I(p)(x). By defining the polynomial

(4a) Pn(x) = f\(x - /,,„)
; = 1

and the corresponding function of the second kind

(4b) qn(x)=lbw(t)PMdt!       a<x<b,
Ja IX

(where, for the sake of generality, we have used the symbol f instead of / ), we have

for the integrals in the sum in the right side of (2)

(5) lh-^——dt = —L—9(f-*>0),       a < x < b.
V ' Ta (t-xy-k+1       (p-k)\q°     K h

We can also consider the cases where x = a or x = b. In these cases, we define

Iip\x) directly from (2), defining the last integrals in it (which are not regular

integrals) in some appropriate sense (e.g., the finite-part sense [15]) or, more

generally, as

(6a)       ff^-dt = Am,       ffi^-mdt = Bm,       m = 1,2,..,
Ja   (t - a) Ja   (t - b)

where Am and Bm are appropriately or arbitrarily selected constants. Then (taking

into account (5)), we rewrite (6a) equivalently by defining the quantities q^p~k\a)

nndq0p-k\b)by

(6b)       q(Qp-k\a) = (p- k)\Ap_k + x,        q0p~k\b) = (p - k)\Bp_k+v

(These quantities should not be understood as (p - k)th derivatives of q0(x) at

x = a, b; q0(x) is generally not differentiable at these points.) In this way, (5) holds

true also for x = a, b. The same happens for (2), which we take as the definition of

I(p\x) in (1) for these special values of x. As will become clear below, the values of

Am and Bm have no influence on the quadrature error and the convergence results,

simply because just the first integral in the right side of (2) is approximated by using

the quadrature rule (3); but this integral is simply a regular integral. Finally, again

for x = a, b, q(„p)(x) are defined by (2) with f(t) = pn(t) and (6a) taken into

consideration. (Of course, (4b) also holds true for x = a, b.)

Now, by using (3) and (5), we obtain from (2) the following explicit form for the

Gaussian quadrature rule for I(p\x):

(7)        /">(*)=/>!!
r*1 i,n

p+i
1 I'M _ x)

P

< = 1 ('/,„ - *)

/(*,..)" Í t-^-ih,»-*)k
k = 0

+ L(Pk)q(op-k)(x)fik)(x) + En(f;x)
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(En denoting again the error term). Of course, for x = t,n (j = 1(1)«) they'th term

of the quadrature sum in (7) is equal to rlj,„f(p+1)(tj,n)/(P + 1)- The quadrature

rule (7) was also derived in [8] by a different approach. For x ¥= tjn an equivalent

form of (7) is [8]

(8)    /<'>(*) = p\ t ,      "''"    +1/(-,,„) + Í f{)*,('-*)(*)/(fc)(*)
k = 0¡-1 (',,« - x)

+ £„(/; x),       Kn(x) = qn{x)/p„(x), x * tM,j = 1(1)«.

It can also be mentioned that the corresponding forms of (7) for x = tjH are

complicated, but easy to derive from (7) (or even (8)) by a limiting procedure. We

confine ourselves to presenting them only for p = 0 [11] (see also [16]) and p = 1

[10]*

(9)
r'i.n

q'n(tj,n) - \pj,nP'Ätj,n)   f({j,n)

i-1 -i,n       -j.n

i*j

P'n(tj,n)

+ rijJ'(tJ<n) + En{f;tj,„),

(10)      /«(r   ) = £
r'i.n

Z1  (*',« - {j,n)

;f(t,„) +
i+j

X ?«(',>)
Pn2{tj,n)

2p'2n(tj,n)

\p:"(tj,n)\
2Pn(tj,n)     3

-q'ÁtJ,n)p';(tJ,n) + q';(tj,n)p'n{tj,n) /(h.*)

+l-qn('j,n)p'n'Uj,n) + 2q'n(tj,n)P'n(tjj] f'{tJ<n)\

+ ^J,J"{tJJ+En{f;tJ,n).

The quadrature rule (7) (or, almost equivalently, (8)) is a generalization of the

corresponding rule for ordinary Cauchy principal value integrals (p = 0). The

Gauss-Legendre quadrature rule for this class of integrals was suggested in [6]. The

general Gaussian quadrature rule for the same class of integrals was obtained in [7],

[11]. Convergence results in the same case (p = 0) were proved in [2], [5], [9]. The

most important of these results is that by Elliott and Paget [5], who proved that in

this case if/ g Cl[a, b], then the Gaussian quadrature rule for Im(x) (a special case

of (7)) converges (see also [16]). A stronger result in [22] for the special case of the

Gauss-Jacobi quadrature rule appears to be incorrect. For p = 1, the corresponding

special case of (8) (derived originally in [8]) was obtained in [18] (but its convergence

was considered only for analytic integrands /(/)) and, by different approaches, in

[10]. A special case of this rule (for/7 = 1) was originally derived in [12].

"There is an error in the formula in [10]. The corrected formula was supplied by the referee.
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It seems that, up to now, nowhere was the uniform (as opposed to pointwise)

convergence of Gaussian quadrature rules for the numerical evaluation of (1)

considered, even in the special cases p = 0 and p = 1. This will be done here on the

basis of a classical theorem of convergence theory and the results of this section and

[8]. Such a convergence is useful (particularly, for/? = 0 and/? = 1) in the numerical

solution of singular integral equations appearing in several branches of physics and

engineering.

It should be mentioned that the above Gaussian quadrature rules ((7) to (10))

should not be confused with the interpolatory quadrature rules based on Gaussian

nodes (and sometimes called Gaussian rules too) suggested in [14], [19] for p = 0.

The convergence of the latter class of quadrature rules for p = 0 was studied in

detail both for pointwise [3]-[5], [9], [16], [21] and for uniform [14], [20], [21]

convergence. From these results it follows that in certain interpolatory quadrature

rules based on Gaussian nodes for the numerical evaluation of 7(0)(x) for particular

weight functions w(t) uniform convergence does not hold (see, e.g., [21]).

Finally, for x = a and x = b, I(p)(x) was defined by (2) (together with (6)) and,

clearly, the corresponding Gaussian quadrature rule (7) remains valid. The present

results for uniform convergence hold true along the whole interval [a, b]. Obviously,

this does not mean that \imx_cI(-p'>(x) exists or is equal to I^p)(c), c = a, b, in

general (but the integrals in the sum on the right side of (2) have evidently no

influence on the error term En).

2. Proof of Convergence. By taking into account the previous results, we see

directly that the error En made when approximating (1) by the corresponding

Gaussian quadrature rule (7) is equal to the error made when approximating the

regular integral

(11) J(p\x)= \hw(t)g(xp\t,x)dt,       w(r)>0fora</<*,

by the analogous quadrature rule for regular integrals, where [8]

(12)    gxp\t,x)
_     U-x) p+i

f<p+1\x)
p + l

k\
/(O- íí^éfL(t-x)k

k = 0

t = X.

t ¥= x,

We assume that f(q)(x) is a Holder-continuous function with index X, 0 < X < 1,

(/(<?) e Hx) with q > p + 1. Then, on the basis of a well-known theorem in

approximation theory due to Gel'fond (see, e.g., [13]), there exists a sequence of

polynomials sn(x) of degree not higher than n such that

(13)

where

(14)

\r¿k)(x)\ < Cxnk~"-X,       k = 0(\)q, a^x^b,

'„(*) = f(x) - s„(x)

and Cx denotes a positive constant.
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We wish to evaluate the error En when approximating (1), or equivalently (11), by

using the appropriate Gaussian quadrature rule. Clearly, this error remains un-

changed if we apply the same rule to the evaluation of the integral

(15) *<»(*) - jbw(t)[gx»\t, x) - h<„pl(t, x)} dt,

with h(p^x(t, x) defined by a formula analogous to (12) with/(x) replaced by sn(x),

the polynomial of best uniform approximation to f(x) and its first q derivatives,

(13). This is so because, obviously, h(np)x(t, x) is a polynomial of degree n - p - 1 (if

« > p + 1) or 0 (if n < p + 1) and for such a polynomial the Gaussian quadrature

rule with n nodes is exact.

Now we take into account that

(16)       gxp\t,x)-hiPHt,x)

P}-

(t-x)p+1

rj¡p+1)(x)

p + l    '

p   ,(*)
r.(0-E

k = 0

t = X,

r^ix),,        u

k\
-(/-*)' t * x,

as is quite clear. Furthermore, since r„(<?) g Hx because the same was assumed for

f(x) and s„(x) is a polynomial, we conclude that

(17) gx"\t,x)-h[pl(t,x) =
p + l    :

r^(x)

¿G (t,x),t±X,

p + l

Next, we use (13) with k= p + 1 and we find

t = x.

(18) \gx»\t,x)-hipl(t,x)\*i
Ci

p + l
.p+l-q-\ q>p + l.

Finally, by applying the Gaussian quadrature rule to K(p)(x), (15), and taking into

account the previous developments, as well as the fact that

(19) f w(t) dt=Z /*,,„
; = 1

for the sum of the weights of this rule, we conclude directly that

(20) \En\ « C2«*+1-«-\       q>p + l,

where C2 is a positive constant defined by

(21) Cl
C2 = P-+Lïh^dt-

These results prove the uniform convergence of the Gaussian quadrature rule

considered in [8] (and rederived by an alternative procedure here) and establish the
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corresponding rate of convergence. They can be stated in the form of the following

theorem:

Theorem. The n-point Gaussian quadrature rule for the numerical evaluation of

Cauchy principal value integrals and their pth derivatives with a nonnegative gener-

alized Holder-continuous weight function along a finite integation interval converges

uniformly in the closed integration interval for n -> oo for integrands f such that

f(q) G Hx(q^ p + 1), and the rate of convergence is 0(np + l~q~x).

Concluding, we make three remarks: (i) As already mentioned in the introduction,

a Cauchy principal value integral should be interpreted as a finite-part integral at the

endpoints a and b of the integration interval, (ii) Since Gaussian quadrature rules for

Cauchy principal value integrals are exact for polynomials of degree up to 2« [5]-[7],

[11], we could have used the sequence of polynomials s2n(x) instead of the sequence

of polynomials sn(x) in the previous developments; yet, the rate of convergence,

(20), would not change although the values of the positive constants Cx and C2 in

(13) and (21), respectively, would change, (iii) The previous results hold also for the

Radau- and Lobatto-type Gaussian quadrature rules and, more generally, for

convergent interpolatory quadrature rules for regular integrals when these rules are

modified to apply to Cauchy principal value integrals and their derivatives [7], [8],

[11]. Of course, in such a case we cannot use the sequence of polynomials s2n(x) in

place of the sequence of polynomials sn(x), although we may be able to use another

appropriate sequence of polynomials sm(x) with n < m < 2n, the value of m

depending on the accuracy of the quadrature rule (e.g., m = 2« — 1 for Radau-type

rules and m = 2n - 2 for Lobatto-type rules).

3. An Application. As an application, we consider the classical collocation method

for the numerical solution of the dominant Cauchy-type singular integral equation of

the first kind of the form

(22) \f\l - t2y1/2{^dt = g(x),        -1 < x < 1.

By applying the Gauss-Chebyshev method to the numerical solution of this equa-

tion, we obtain the following equations:

(23) \ t , /(!';}    + \En(f; xkJ = g(xkJ,       k = l(l)(„ - 1),
"  , = 1  li,n        Xkn IT

where the nodes tin and the collocation points xk are the roots of the Chebyshev

polynomials of the first kind Tn(x) and of the second kind Un_x(x), respectively. We

are interested in the error term En (depending both on the integrand / and on the

node xkn used). This application was also considered by Elliott [2].

By taking into account the theorem proved in the previous section, we conclude

that if / possesses a Holder-continuous first derivative (/' G Hx), the quadrature

rule used in (22) converges uniformly (for all xk „) as « -» oo, that is,

(24) \En(f;xkJ\^C3n-\       k = l(l)(n-l),

(C3 being a positive constant). It seems that this result cannot be improved.

Nevertheless, Elliott proved in [2] a stronger convergence result, where the condition
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/' g Hx was replaced by the weaker condition / g Hx. The proof given in [2] has not

been quite clear to the author, but the fact that Elliott dealt only with pointwise

convergence and not with uniform convergence (as is the case here) may be the

reason for the discrepancy between the results of Elliott and the present ones.

Here, we will establish a bound analogous to (24) by a second method, indepen-

dent of the present results and based on the results of Sheshko [21], who proved that

the error En(f; xkn) for the interpolatory quadrature rule based on the nodes tin

(coinciding with the corresponding Gaussian quadrature rule for the collocation

points xk   and only for these points) is bounded by

(25) \En(f;xkJ\^C4{l-xl„Y1/2n-Hogn,       k = l(l)(n-l),

for/ G Hx, whence

(26) \En(f; xkJ\ < C4(l - <„)"1/2«-^+1»log«,       k = 1(1)(« - 1),

for/' g Hx (C4 denoting again a positive constant). Now we take into account the

explicit formulae for the collocation points xk „ (roots of U„-X(x))

(27) xki„ = cos(kir/n),       k = l(l)(n - 1).

Then

(28) (1 - x\Xn = l/sin(W«),       k = 1(1)(« - 1).

Therefore, for n -» oo, we obtain from (26)

(29) \En(f;xkJ\^Csn-Hogn<C6n<x~'\       k = l(l)(n - 1),

(C56 being appropriate positive constants and e an arbitrarily small positive quan-

tity). This result almost coincides with (24) (although obtained by quite a different

method).
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