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Odd Triperfect Numbers Are Divisible
By Eleven Distinct Prime Factors

By Masao Kishore

Abstract. We prove that an odd triperfect number has at least eleven distinct prime factors.

1. Introduction. A positive number N is called a triperfect number if o(N) = 3N
where o(N) is the sum of the positive divisors of N. Six even triperfect numbers are
known:

214.5.7-19-31-151,
21%.3.11-43-127,

29.3-.11- 31,
28.5.7-19-37-73,
2%5.3.17,

23.3.5.

However, the existence of an odd triperfect (OT) number is an open question.
McDaniel [4] and Cohen [2] proved that an OT number has at least nine distinct
prime factors; the author proved that it has at least ten prime factors [3], and Beck
and Najar [1] showed that it exceeds 10,

In this paper we prove

THEOREM. If N is OT, N has at least eleven distinct prime factors.

2. Proof of Theorem. Throughout this paper we let

10
N = l_[ P,
i=1
where p;’s are odd primes, p, < --- < p,;, and a,’s are positive integers. We call p

a component of N and write p/i || N.
The following lemmas are easy to prove:

LEMMA 1. If N is OT, a;’s are even for 1 < i < 10.

LeEMMA 2. If N is OT and q is a prime factor of o( p}') for some i, then q = 3 or
q = p, for some j,1 < j < 10.

The following lemmas are stated in [5].
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LeMMA 3. Suppose q is a prime, q > 2 and a > 1. Then o(q*) has a prime factor p
such that a + 1 is the order of q modulo p except for g =2 and a = 5 and for q = a
Mersenne prime and a = 1. In particulara + 1| p — 1.

LEMMA 4. Suppose p is a Fermat prime (3,5,17, etc.), q is an odd prime and a is
even. If p®| 6(q®), then ¢ = 1 (p), p®|a + 1, and 0(q*) has b distinct prime factors
congruent to 1 modulo p.

LEMMA 5. If N is OT, 17 t N.

Proof. Suppose N is OT. Since the three smallest primes = 1 (17) are 103, 137,
and 239 and

3571 131719103137239
24610 12 16 18 102 136 238

N has at most two primes = 1 (17). Suppose p® and g’ are components of N and
p=q=1(17).1f17°| N and ¢ > 4, then 172 | o( p®) or 17?| 6(¢"), and, by Lemma
4, N would have two more primes = 1 (17), a contradiction. Hence 174 + N. Suppose
17%|| N. Then N has a component 307¢ because o(17%) = 307. Then 17 + ¢(307%)
because 16661 - 36857 | 6(307'¢), 6(307%¢) | 0(307¢) and

357111317 19 307 16661 36857

2461012 16 18 306 16660 36856 ~ -

Hence N has another component p? such that 172 | o( p®). Then we get a contradic-
tion again. Hence 17 + N. Q.E.D.
The proof of the following lemma is easy.

LEMMA 6. If N is OT, py < 283.
LEMMA 7. If N is OT and 5° || N, then a = 2, 5% | 6( P{}°) and p,, > 311.

Proof. Suppose N is OT, p® is a component of N and 5| o( p®). By Lemma 4, p =
1(5),5|b + 1and o(p*)|a(p?).1f 61 < p < 281, then
o( p*) has a prime factor g such that
3571113192329 »p q

2461012182228 p—1g—1

o( p*) has prime factors ¢ and r such that
35711131923 p q r

236012182 p-T1g-1r-1°%

Hencep = 11,31 or4l orp > 311.

Suppose p =11, 31 or 41. If 52|o(p®), 52|b+1 by Lemma 4. Then
o(p*)|o(p®) and o(p?*) has two distinct prime factors > 283, contradicting
Lemma 6. Hence 52 + a( p®). Since 3221 | 6(11%), 17351 | 0(31*) and 579281 0(41%),
52+ o(T1?_, p#) and p,, = 3221, 17351 or 579281 and 5 | o( p%y). However, o( p3;)
has a prime factor > 283, contradicting Lemma 6. Hence p > 311 and 5¢| o( p?).

If a > 4, then by Lemma 4, N would have four more primes = 1 (5), which is a
contradiction because

357111319314161311

24610 12 18 30 40 60 310

<3, or

Hence a = 2. Q.E.D.
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Lemma 8. If N is OT, py < 71.
Proof. By Lemma 6, 31 = ¢(52) | N. Since

3o()71 131933 B _,

Py < 71. Q.E.D.

Proof of Theorem. If N is OT, then by Lemmas 4 and 7, 52| o( %), 5%|a;o + 1
and o( p3) |(pép). By Lemma 3, o( p25) has a prime factor g such that 25|g — 1.
Hence ¢ = 25b + 1 for some b. Since g is a prime, b # 1 or 2. Then g > 71 and
q # Py, contradicting Lemma 8. Q.E.D.
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