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Improved Accuracy By Adapted Mesh-Refinements

in the Finite Element Method

By Kenneth Eriksson

Abstract. For appropriately adapted mesh-refinements, optimal order error estimates are

proved for the finite element approximate solution of the Neumann problem for the

second-order elliptic equation Lu = 8, where S is the Dirac distribution.

1. Introduction and Statement of Results. Let Í2 be a bounded domain in RN,

N > 2, with smooth (C°° regular) boundary T. Given x0 e fi we shall consider the

Neumann problem

(1.1a)    Lu(x)=-   £   ¿-K(*)|jr   + ¿Za,(x)^ + a(x)u

= 8(x — x0)   in ß,

(1.1b) lu(x)m   £ «,7(x)|%,.-0   onr,
i,j-l •

where a¡ ¡, a¡, and a are smooth functions on Q, where 5 is the Dirac delta

distribution (unit impulse), and where n = (ny) is the exterior normal to T.

For instance, Eq. (1.1a) models diffusion-type processes where the "source"

(source of pollution, say) is located at a given point x0. The particular choice of

boundary conditions has been made merely for convenience. From a mathematical

point of view, the solution of (1.1) is also the Green's function for the larger class of

problems: Lu = /in fi, lu = 0 on T.

We shall assume that the bilinear form

,/       \       f    r      3m   3t;      v-,     3m \   ,
A{U' V)S*L\ ta'J^ ^ + ^'9^ + am)

associated with L satisfies the ellipticity-coercivity condition

(1.2) A(v,v)>cA\\vfx   Vv^H\cA>0,

where || • \\x is the norm in the Sobolev space Hl = Hl(£i). It is known (cf.,e.g., [10,

Theorem 3.3]) that problem (1.1) admits a unique solution u with a singularity at x0
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of order \x — x0\~N+2 if N > 2, and log(|x - x0\~l) if N = 2. Away from x0 the

solution is smooth.

Noting that for sufficiently regular test functions \p the solution u of (1.1) satisfies

(1.3) A(u,i) = Hx0),

we define for any finite-dimensional subspace Sh of H1 n C(ß) the Galerkin

approximate solution uh e Sh by

(1.4) A(uh,x) = x(x0)    VX£S,

By the fact that A( ■, • ) is positive there exists a unique such uh.

Assuming standard finite element approximation properties of Sh, Babuska [2]

was able to show, for N = 2 and L = -A + / (minus Laplacian plus identity), that

\\uh - «||0 < CJi1-',

where || • ||0 is the L2-norm and e > 0 is arbitrary. Later, Scott [14] improved and

generalized this result by showing that for general dimension N > 2, elliptic opera-

tors L of order 2m, and normal covering boundary conditions,

IK - i4 < C(x0)h2m~s'N/2   for2m- k^s <2m- N/2,

where k > 2m is the order of approximation of Sh, where C(x0) tends to infinity as

x0 approaches I\ and where the Sobolev norm index í may also be negative. Results

on discrete Green's functions and problems with nonsmooth right-hand sides can

also be found in, e.g., [3], [5], [7], and [13].

In this paper we use finite element spaces Sh on refined (graded) meshes, adapted

to the known singularity of u, to derive optimal order global error estimates in the

L,-norm, and to show improved pointwise convergence near the singularity. As a

corollary we find that when applied to a regular problem our method yields a

superconvergent approximation of the true solution at x0. We shall now describe our

prerequisites and results in more detail.

For simplicity, we shall only consider finite element spaces consisting of piecewise

polynomials on "simplicial" partitions of ñ. More precisely, let S2 be divided into

elements t in such a way that each t is the restriction to ß of the interior of a simplex

f, and such that the intersection of any two such simplices is either a common face

of both, or of lower dimension (cf., e.g., [6]). To enable a piecewise polynomial on

such a partition to fit better the singularity of u at x0, we shall assume that the

mesh-size is related to the distance to x0 by

(1.5) Q1diam(T)<«(dist(x0,T))a + AM1_a,< CÄdiam(r)    Vt,

where CR (R for refinement) is a given constant, h e(0, ¿] is the global mesh-size

parameter, and a e [0,1) determines the degree of refinement. Thus, elements on

distance d from x0 have diameters of order hda, and those closest to x0 have

diameters of order n1^1-"1. In order to have (local) inverse estimates we shall assume

that

(1.6) (dmm(t))N ^ Csm(r)    Vt,

where m(r) denotes the measure /T dx of t, and Cs > 0 is a given constant. Hence

the simplices f do not degenerate, and the elements t are locally quasi-uniform. We

shall denote by A„ = àh(x0, a) a partition of ñ obtained as above and satisfying
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(1.5) and (1.6), and by Ûh the corresponding union of simplices f. For Sh =

Sh(x0, a, r) we take the restrictions to fi of all continuous functions on Ûh which

reduce to polynomials of degree at most r- Ion each simplex f of Ûh.

Throughout the paper, c and C, not necessarily the same at different places, and

Cx, C2, C3, and C* will denote constants which may depend on cA, CR, Cs, a, r, N,

the diameter of ß, the smoothness of T, and the smoothness of the coefficients of L,

but not on n and x0.

We are now ready to state our first results, with v denoting the gradient.

Theorem 1. Let u be the solution of (1.1) and uh e Sh(x0, a, r) that o/(1.4). Then,

fora > (r- 2)/(r - 1),

(1.7) ||v(«A - «)||Ll < œ~\

and for a > (r — 2)/r

(1.8) \\uh-u\\Li^Chr.

Remark. In the duality argument used in the proof of (1.8), we gain more than one

power of h near the singularity since the mesh is refined. As a consequence of this,

we can derive (1.8) for a somewhat weaker refinement than (1.7).

Remark. We mention without proof that for a = (r — 2)/(r - 1) and a =

(r — 2)/r there are logarithmic modifications of (1.7) and (1.8), respectively. For

example, for r = 2 and a = 0 (the quasi-uniform case) we have the well-known

result (cf. [15] for a special case)

|v(aA-«)||Ll<c(lni)/i.

Our next result concerns the pointwise convergence and should be compared with

Theorem 6.1 of [13] for quasi-uniform meshes.

Theorem 2. Let u and uh be as in Theorem 1 with a > (r — 2)/r. Let \x — x0\ = d

and dist(x, T) > d, where d > ch1Al~a)for a suitable c > 0. Then

(1.9) \uh(x) -u(x)\^ Cd-"l\n J-) hr,

where r = 1 if r = 2, f = 0 if r > 2.

Remark. Here the restriction on dist(x, T) is put on only for the ease of reference

in the proof. The necessary arguments for a proof in the general case can be found in

[8].
Our estimate (1.7) has the following notable implication.

Corollary. Let v be the solution of

L*v s -, £ ir\aij¡7j) - ,5 ic-y<v) + av=f in ß'

N 3 N

l*v =   £ auj- n¡ + £ a,on, = 0   onT,
i,j=i     oxj        , = i

or in weak form, with (■, ■) denoting the L2(Q,)-inner product,
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and let vh G Sn(x0, a, r ) be the Galerkin approximate solution defined by

A(x,vh) = U,f)   VxeS„.

Then, for a > (r - 2)/(r - 1),

(1.10) \vh(x0)-v(x0)\^Ch2r-2\\v\\wrs,

where the latter norm is defined below.

Remark. Actually, (1.10) holds also for smaller a's, that is, with less degree of

refinement than stated here. This, and further results in this direction, will be shown

in a forthcoming paper.

The proof of the above theorems and corollary can be found in Section 5 below.

Sections 2,3, and 4 are devoted to preliminary work. In Section 6 we show that the

number of elements in our considered refined partitions are of the same order,

0(h'N), as in the corresponding quasi-uniform ones. Hence the amount of work in

solving for the Galerkin approximate solution is not essentially increased when using

our adapted finite element spaces Sh(x0, a, r) instead of standard ones. We also

show that mesh-refinements of the considered type, satisfying (1.5) and (1.6), can

indeed be constructed. For completeness, a result on continuous extension used in

Section 2 is proved in an appendix. This briefly describes the organization of the

paper. We now close this section by introducing some notation.

Besides the usual L^-spaces and norms, we shall use the Sobolev spaces W^(ß')

with norms

/ \i/p

W^q.,-   E II^IIV)    >
X\ß\<k I

and seminorms

M»*(«n-( I ll^lkV>) ',

where \ß\ = ßx+ ■ ■ ■ + ßN is the length of the multi-index ß = (ßx,.. .,ßN), ß, > 0

for 1 < t < /V, and where

\dxx) \üxN)

For p = 2 we shall write || ■ \\kSl. and | • \kü. for these norms and seminorms,

respectively, and Hk(Q,') for the corresponding space. Hence || • ||0<r is the L2-norm

over ß'. If no domain is specified, it is understood to be all of ß.

In the proofs we shall divide ß into subdomains characterized by the distance to

the point x0, or domains defined by

Qj= {x(=Q:\x-x0\<2-j},   and   Dj = [x <= ß: 2'u+l) < \x - jc„| < 2~J).

Since ß is bounded, there is an integer^ such that the .D.'s are empty for y < jx. We

also define dj = 2~j and hj = hdj. Thus dj is proportional to the diameter of ß. and

Dj, and, as long as j is not too large so that hj is smaller than the minimal mesh-size

n1/U-a), hj is proportional to the maximal mesh-size on ß and Dj. We shall

frequently use the obvious facts that dj < Cdj+X and hj < ChJ+x. In the technical
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work below we shall also need to know that the local mesh-size on Dj is "small" in

relation to the dimensions of Dj in the sense that hjd'1 < c for a suitable (small)

constant c. This will be the case for ally < Jx if we define J, by 2'3x = Cxh1Al~a) for

a sufficiently large constant C,, since then, for suchy,

hjd-1 = hdj~l < A«/«"1 = 1/C\~a.

Further, in the proofs we shall set Dj = Çij_x \ ß-+2, and fix an element t0 such that

x0 e f0. Finally, Bd(y) will denote the ball of radius d centered aty, and Pk(E) the

space of polynomials of degree at most k restricted to E.

2. Properties of Sh(x0, a, r). Let AA = AA(x0, a) and Sh = S„(x0, a, r) be as in

Section 1, and recall, with an obvious method of notation, that each x e S„ is the

restriction to ß of a piecewise polynomial x g Sh, defined on Ùh D ß.

We begin by showing the following inverse property, which is well known for the

interior elements.

Lemma 1. For 0<i<s<r — 1, 1 < p, q < oo, t g AA, and x e Sh (or, x e

Pr-i(r)),

I    I -   /"/"J-        /    \\-{s-t)-N(l/q-l/ph    i
lxl»5(T)<C(diam(T)) lxL,'(r)-

Proo/. Let T be the unit ./V-simplex defined by

T = Ix g RN: x, > 0 for 1 < / < N, ¿ x¡ < il.

In view of our assumption (1.6) there are constants c and C and for each element t

an affine transformation of variables y = Ar(x) = BTx + bT, where B7 - (b¡¡) is

invertible with inverse BL = (b\f), such that

(2.1) cT c AT(r) c AT(r) = T,       |6j< C(diam(r)y\

and l&j^l < Cdiam(T).

Define the operator aT by

aTx(y) = x(A;l(y)) = x(x).

Using the chain rule and the estimates on b¡j and by, we have

\Dßx(x)\P<NM»{c(dmm(r)YTP   I   |AXx(j)f
|y| = l/3|

and

and hence

Similarly,

|det(BT')|< N\CN(diam(r))N,

\x\wur) < C(diam(T))A'/''">TxU;(r).

\*rX\»nm < c(diam(T))""A//'?+'|xL,'(T)-

Finally, since Pr_ ,(T) is finite dimensional we have the seminorm inequality

laTxU;(7-)< C\arx\w'(cT),

which completes the proof.
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We shall use the following consequence of Lemma 1. Let Dh c Dj,j < Jx, where

Dh is a mesh-domain, that is, the interior of the closure of a union of elements. Then,

forXGS„

(2-2) Ixlli.D, < Ch-'WxWo.D,,

where hj = hdj is the local mesh-size on Dj d Dh.

We now turn to the question of approximation properties of Sh(x0, a, r) and shall

first prove the following basic result.

Lemma 2. For each element t g Ay, there is a neighborhood Or of t and for each

v G Lxan interpolant v, G Sh of v, such that diam(0T) < Cdiam(T), and such that for

0 < / < m < r, 1 < /> < oo, and v g Wpm(0T), the estimate

(2.3) \\v, - v\\w>p(r) < C(diam(T))m"/||ii||H/;„(0i)

holds.

Proof. The definition of v, is comphcated both by the fact that the boundary is

curved and by the fact that a function in L, does not have well-defined point values.

Hence, we shall first extend v outside ß with retained local regularity properties. We

then choose a set Q of interpolation points where given values determine a function

in S„ uniquely. To each zeßwe assign a certain mean value of the now extended v

over a locally defined small neighborhood of z. Finally, we take as v, the restriction

to ß of the function in Sh determined by these values. For this v, we then prove the

asserted estimate.

(i) Extension of v. By Lemma A of the appendix there exists a linear extension

operator E: LX(Q) -* LX(RN) and constants CE and C such that for x g ß, d > 0,

0 ^ k ^ r, 1 < /> < oo, and v g Wpk(BCi;d(x) n ß),

(2-4) l|£w||»?(*,<,))< C\\4w!(BCel(x)nay

(ii) Interpolation points. Let AT be as in the proof of Lemma l and set QT =

A-\Qr), where

ß,= Ue T:x,e {j/(r-l):j = 0,...,r-l},i = l,...,N, £jc,<l}.

Since a polynomial in Pr_x is determined by its values in Qr (cf. [6, Theorem 2.2.1])

and since Pr_x is preserved under nonsingular affine transformations of the variables,

it follows that given values in QT determine a unique polynomial in Pr x. Hence,

given values in the set Q = UTßT determine a unique piecewise polynomial in Sh.

(iii) Mean value functional Mz. Set 0T' = A~1(B2(0)). This set is a forerunner to the

neighborhood 0T of t mentioned in the lemma. In fact, for interior elements we shall

take Or = 0'T. For z g Q let Oz be the intersection of all 0'7 for which z g f. We

shall define Mz: Lx(Oz) -* R as a linear mean value functional such that Mzp — p(z)

for/? g i)r_1. For this purpose, let M be a (fixed) bounded function with support in

Bx(0), and with the property

(2.5) f      M(y)p(y)dy=p(0)    V/> G Pr_x.
•/S,(0)
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Consult [9] for the construction of a smooth such M. Let Bt(z) be the ball of

maximal radius contained in Oz. As a consequence of (1.6), e = e(z) is of order

diam(T) for each t with z g f. Set

Mt(x) = e~NM((x - z)/e)

and define for z g Q

MJmj      Mt(x)f(x)dx.

By (2.5) there follows

(2.6) MzP=p(z)   \fp e Pr_x, Vz g Q,

and since sup|Me| = e'^suplA/] we obtain

(2-7) \Mzf\^C(diam(r)YN\\f\\LlW,

with C independent of z, t, and/.

We are now ready to define v,. Given »eL, and its extension Ev, let v, be the

restriction to ß of û, g Sh determined by

Vj(z) = Mz(Ev)   VzeQ.

With v, thus defined we shall now proceed to prove (2.3), using a technique similar

to that in [4].

(iv) Functionals FT. Let irT: Lx(01) -» Pr_x be defined by

irrf(z) = MJ   Vzgöt,

and note that by property (2.6) of Mz

irrp=p   Vp<EPr_x.

Let aT be as in the proof of Lemma 1 and a'1 its inverse. Associate with each t the

sublinear functional FT on Wpm(B2(0)) defined by

^t(w) =\\aTirTa:lw - w\w,AT).

We assert that

FT(p) = 0   VfeP,.,,

and that

FT(w) < CIIwII^-íb^o),.

The first claim is obvious since forp g Pr_x,

a7ir7a-Tlp = ara:lp = p.

For the boundedness of FT, it is sufficient to show that

Since aTirTa~lw g P^,, and since || • ||L (Q ) and || • 11^/(7-) are equivalent norms on

Pr_x(T), we have for some z g f,
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To reach the desired estimate from here we use (2.7) and change variables,

\Mza;lw\^ C(diam(r))~N\\a;1w\\Ll,0¡)G C||w||ii(Ä2(0)) < C||HIh/;'(b2(0)).

Since FT is sublinear and vanishes on polynomials, we have

FT(w) < FT(w-p) + FT(p) = FT(w-p)    Xfp g Pr_x,

so that by the boundedness

FT(w)< C   inf   \\w - p\\K(B m.

By the equivalence of the seminorms inf G/, || ■ - p\\w~, and | • \w* (cf. Theorem 1

of [4]), we obtain

FT(w)< C\w\K(Bm).

(v) Proof of (23). Let v, Ev, v,, and v, be as above and note that aTv, = aTirTEv =

aTirra~1aTEv on T. Hence

\\aTv, - aTEv\\wip{T) = FT(aTEv).

Changing variables, we thus obtain

11«/- HU;<t)<||£, - Ev\\W'p(t)

< C(diam(T))N/p '\\a7v, - aTEv\\w'p{T) = C(d'ia.m(r))N/p~ FT(aTEv)

< C(diam(r))N/ ~'\aTEv\K'{B2m < C(diam(T))m"/||£'t;||^;,(o;).

In the case Ot' c ß this shows (2.3) with 0T = 01 since Ev = v on ß. For elements

near the boundary with some part of 01 outside ß we take 0T = Bc d>(x) n ß,

where Bd,(x) is the ball of smallest radius containing Ot' and with x G ß, and use

(2.4). In both cases we have shown the desired estimate (2.3). The estimate of

diam(0T) is obvious by our definitions. This completes the proof.

We shall use the following consequences of Lemma 2. Let 2)'cí)"cñj_1 be

such that Ot c D" for each t which intersects £>'. Then

(2.8) |K - p||/>B, < Chf-'WvU^.

For by assumption there is a mesh-domain Dh such that D' c Dh c D" and with

Ot c D" for t c Dh, and hence

W, - v \ , n. < k- "II/.d»= £ 11«/- «ll/,T
TCD,

< f7)2<m_/) V   lloll2      < r"/?2,2(m-/)||„||2
Il m.

rCD,

f||„,  £>">

where for the last step we have also used that at each point there is only a finite

number of overlapping neighborhoods 0T. Further, we have of course the global

estimate

(2.9) br-4w!.<Chr-lMivi-

We end this section with a super-approximation result.
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Lemma 3. Let Dh c Dj be a mesh-domain and Dh the corresponding union of

simplices. Further, let i\be a smooth function which is constant outside Dh (on each

component ofint(Ûh)\Dh) and satisfying

bWw*{ùk)<PdJk-       0<£<r.

Then there is a constant C > 0 and for each given vh G Sh an interpolant f G Sh oft\vh

such that supp(r)i;/l - X, ) c Dh, and

hvh - ï\\i,D„ < cAhjdjlMi.D„ + M/2Mo.dJ.

Proof. In contrast to the situation in Lemma 2, the function i\vn which is to be

approximated is now continuous. Hence, we take as f the restriction to ß of l g Sh

defined by

t(z) = (,î,)(i)     VzGO.

Obviously, supp(r¡vh - f ) c Dh, and the desired estimate over Dh follows easily if

we prove the corresponding estimate on each individual t c Dh.

For this, let F be the functional on W¿(T) defined by

F(w) = \\w - IIt-wH^,

where YlTw g Pr_x is determined by

UTw(z) = w(z)    Vz g Qr.

Clearly, F is bounded on W¿(T) and vanishes on Pr_x. Hence, as in the proof of

Lemma 2,

F(w) < C|H,or)   Vwg W¿(T).

With aT as before, note that by our definitions,

P(a7(vî>h)) = |k(i?ßA) - o»!Hi.r.

and hence, changing variables,

hvh - ?||1>T < C(diam(T))N/2~1\\aT(r¡vh) - aJ\\XT

= C(diam(T))N/2-lF(ar(Tlvh)) < C(diam(T))*/2-V^)k(T)-

We next use seminorm inequalities on Pr_x(T) together with the fact that any rth

derivative of aTvh\T G Pr_x(T) vanishes to obtain (with c as in (2.1))

\a Af\vh)\w^T) = \aTT]aTvh\wí¡(T)^  £ \aAw^(T)\arVh\w^k(T)
k = l

r-l

k = l

so that returning to the original variables,

r-l

k(^*)|»S(7-)< Clklli.r L ||Tj||»s5(ût)(diam(T))*H
fV-l

+ C(diam(r)Y       d-r\v AIO.t
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or altogether,

r-l

k»h ~ fli.T < Clklli.r £ iTíl^íB.jídiamÍT))* + C(diam(T))r~1dJ-r\\vh\\0T.
k = l

The desired estimate now follows by the assumptions on tj and the obvious estimates

diam(T) < Chj   and   hjdj1 < C,

which hold since r c Dh c Dj. This completes the proof of Lemma 3.

3. Elliptic Regularity. In this section we shall first recall some well-known elliptic

theory. We then introduce an approximate Dirac delta distribution and the corre-

sponding approximate solution ü of (1.1), and derive estimates by which the proof of

Theorem 1 may be reduced to estimating uh — it.

Lemma 4. Let the bilinear form A(-, ■) and the operators L and I be as in Section 1.

Then, given f g L2 there is a unique v G H1 such that

(3.1) A(v, *)-(/,+)    V^G//1.

Actually, v g H2 and

(3-2) |H|2 < Cil/Ho,

and v is the unique solution of Lv = f in ß, Iv = 0 on T. Moreover, there is a function

g(x, y), the Green's function, which is smooth off the diagonal x = y, and such that

¡C\x-y\-N+2-m-M     if-N + 2-\ß\-\y\<0,
(3.3) DßDJg(x, y)< { /'

\c(ln(|*->r|   ) + l)    ifN = 2,\ß\ = \y\ = 0,

and

(3.4) v(x)= f g(x,y)f(y)dy    (a.e.)inÜ.

Similarly, there are functions v and g ( in general different from the above v and g) such

that

(3.5) ¿OM)-( + ,/)    V^g//1

and for which (3.2) through (3.4) hold.

These facts are all well known. The existence of unique ¿^-solutions of (3.1) and

(3.5) is guaranteed by the Lax-Milgram lemma, which can be found in e.g. [6]. The

H2-regularity is a special case of more general regularity estimates presented in [11].

For the existence of Green's functions we refer to [10].

We shall use the following consequences of Lemma 4: Let v be the solution of

(3.1) or (3.5) with supp(/) c f0, and set dx = dist(x, t0). It follows from (3.4) and

(3.3) that

\Dßv(x)\ j Dßg(x,y)f(y)dy < o/;"+2-W||/||

and hence, for j < Jx,

(3-6) |M|,Dj < Cd^2\\v\\w,,Dj) < Cd¡N^2-%f\\Li.
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Similarly, for / </ and/with support in ß;. we obtain (using (3.2) for i —j — 1 and

i-j)

(3-7) \H2,Di <Cd^2d^\\f\\QMj,

and for /with support in D¡

(3.8) IMkn, < «;"/2^/2ll/IU,.

Following our program, we shall now define an approximate delta distribution 8

and the corresponding approximate solution ü of (1.1) in such a way that the discrete

solution uh of (1.1) is also the Galerkin approximation of m. For this purpose, recall

that x0 g f0 and let 8 be the L2-projection of <5 onto Pr_x(f0), and extend 8 by zero

outside f0 so that

(3.9) (*,X)-X(*e>)   VXGS,.

Further, let ü be the solution of

(3.10a) Im = 8    inß,

(3.10b) /« = 0     on T.

Since x = S on To f°r some x G Sh (note that 8 í 5J, we obtain by (3.9)

||8||o = S(x0), so that by Lemma 1,

p||2<C(diam(T0))-"/2||S||0,

or

(3.11) ¡SHo^CÍdiamÍTo))-^2,

and hence

(3.12) \\8\\Li < C.

Setting e = diam(T0), so that t0 c Be(x0), we shall now estimate « - u in terms

of £.

Lemma 5. Let u be the solution o/(l.l) and ü that o/(3.10). For e g(0, \\ we then

have

||v(« - u)\\L  < Ce,    and    \\ü - u\\L  < Ce2ln—.

Proof. Set ë = ü - u and note that

IIV'ë\\Lt < || V'«||il(Í2,(Xo)) + Il V'"llMfl2[,*0» + Il V'ë\\Ll(Q\B2AXB))   for / = 0,1,

Since u(-) = g(-, x0), where g is the Green's function, we have by (3.3), with

R = \x - x0\,

l|v'M||Li(fi2r(Xo))< c/o2e/?1-'(ln^+ l)°dR ^ Ce2-'(lni)°    for/ = 0,1,

where a = 1 if N = 2 and j = 0, and a = 0 otherwise. Similarly,

«(*) = / ■?(*, y)'s(y)dy,
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so that employing also Lemma 1 and (3.12) we find

|v'M(x)|<||v;g(x,.)||Li(To)||ô||i.oo(To)<C£2-'(lnl/£)V^

and hence,

llv'«||Li(ß2iUo))< Ce2-'(lnl/£)°   for/ = 0,1.

It remains to estimate ë = ü - uonti\ B2e(x0).

By a Taylor expansion

g(x,y) = g(x, x0) +(y - x0) • Vvg(x,x0)'

+ l(y-x0)-V2g(x,O-(y-x0)',

where £ = £(y) = 8x0 + (1 - 6)y, 0 < Ö < 1, and where t denotes transpose. Since

ê(x) = ( (g(x, y) - g(x, x0))8(y) dy,
\

(note that /   8(y) dy = 1) and since

f 8pdy = 0   Vp g px(cz Pr_x) such that/>(x0) = 0,

we obtain

ê(x) = ( (y - x0) • V2g(x, £(y)) -(y - x0)'~8(y) dy.
\

Therefore, using (3.3) and (3.12),

I I —/V

|ê(x)|< Ce2 sup |v2g(x, _y)|< Ce2|x - x0|       forx g ß\52t(x0).
reTo

Similarly, by a Taylor expansion for vxg(x, y), we obtain

|vè(x)|< Ce2 sup \v2Vxg(x,y)\<, Ce2\x - x0\~ forx G ß\52E(x0).

Hence

l|e|L,(0\A2e<*„)) < Ce2lnl/e

and

l|vè||z.l(i!xfl2r(Xo)) < Ce.

Together, our estimates now yield the proof.

4. Local Estimates. Below we shall derive local H terror estimates similar to the

interior estimates of Nitsche and Schatz [12]. But first we shall prove the following

global estimate.

Lemma 6. Letf g L2 have support in Qj,j < Jx, and let v be the solution of (3.1) (or

(3.5)) and vh g Sh = Sh(x0, a, r) that of

Avh,x)=(f,x)    (orA(x,vh) = (x,f))    VX G Sh.

Then,\\vh -o\\x< Cn l|/||0.
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Proof. Using the coercivity and continuity of A(-, ■) together with the orthogonal-

ity with respect to A( ■, ■ ) of vh - v and Sh, we have by standard arguments

2 2

II»* - «Hi < C\\v - xlli   VXG5A.
Since

11.112 = II. 112 ,    y II. 112
Il Ni    II lli.ß, + L, II IIi,d,'

i<j

we have, thus, in view of (2.8),

,2
Ik - «IIÍ < clhjWvWi^ + MMI3.*} < c[hj\\v\\l + lAflHlI.D| .

V i<j I V !</ '

Using the elliptic regularity estimates (3.2) and (3.7), we obtain

\\vh-v\\Uclh2 + dJ»Zth2d-»)\\f\\l
i <j

and since a < 1 and N > 2,

£ hjd-N = A2 £ d2a-N = A2 E 2-'(2"-A,)

i<j '</ '</'

= h22-«2a~N)/(l - 22a~N) < Ch2dJN.

This completes the proof of Lemma 6.

We now turn to the local estimates.

Lemma 7. Letj < Jx and let v g Hr(Dj) and vh g Sh satisfy

A(vh- v,x) = 0   Vxg5a w/'/A support in Dj.

Then,

Ik - «Hi,/), < c(A;-1||t;||r D, + j/1!!^ - ü||o,d;).

Proof. Let DjC: Dhc D'hc D a Dj, where Z)Ä and D¿ are mesh-domains, and let

r;, T)', and w be smooth cut-off functions such that

T/= 1    onZ»,,     r/= 0   onÙh\Dh,     IML*^) < Ctf/*     forO ̂  k ^ r,

r/' = l    on/),,    t»' = 0   onß,\Z)^,    ||tj'||^(B(i) < Crf/*     for0<A:<r,

w = l    onD^,    <o = 0   onß\£>, ||w||„,*(ß) < CdJk     foxk = 0,1,

and such that if t n £> ¥= 0 then 0T c Dj, where Ot is the neighborhood of t

defined in Lemma 2. Note that this construction requires that the local mesh-size on

Dj \ Dj is sufficiently "small" which is the case for/ < Jx, since Jx was chosen not

too large.

In order to prove the desired estimate, it is sufficient to show that

(4.1) II«* - 4i.Dj < c(\Hi.d + d;l\\v\\o.D + ¿/Ik - v\\0tD),

since then, by replacing v by v, - v and vh by v, - vh and using hjd'1 < C, it

follows from (2.8) that

II«* - «lli.o, < C(\\v, - v\\XD + djx\\v, - v\\0D + djl\\vh - t;||0iD)

<c(a;-1|HU1 + í//1|K-1,||o,/JJ).
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In order to prove (4.1), we have first

II»* - v\\i.Dj <|k -("»)*||l,/>, +||("«)a - "«||l,Dy,

where

A((uv)h - uv,x) = 0   Vx G Sh

defines (uv)h g Sh. By the /instability of the projection (-)h and the properties of

to, we have

\\(ccv)h - uv\\x < C||«ir||i < c(||ü||i.d + d¡1\\o\\o.D).

It thus remains to estimate the term \\vh - (<¿v)h\\x¡D.

We shall show below that if wh g Sh and

(4.2) A( wh, x ) = 0   VX g Sh with support in Dh ,

then

(4.3) K||,.D, < CdJl\\wh\\^D..

Since (4.2) holds for wh = vh - (uv)h g Sh, we obtain from (4.3)

II»* -(w«)*||i.o, < Cdj-l\\vh -(wü)*||o,d;

< Cd~l\\vh - i>||o,z); + Cd¡l\\uv -(uv)h\\0tDi,

where the last term still has to be estimated. For this purpose, we shall use a duality

argument and show

(4.4) ¡c90-(«o)*||o.Di<Cfcy|Hli.

from which the desired estimate follows easily. It thus remains to prove (4.3) and

(4.4).
For the proof of (4.4), let $ G Hl and $h g Sh be defined by

¿(tf-,*) = (*.*)    V^Gtt1,    and   >l(x,**)=(x.*)    Vx g Sh,

where <j> g L2 and supp(<í>) c £)¿. By our definitions and by Lemma 6 we then have

(uv -(uv)h,<p) = A(uv(uv)h,<5>) = A(cov -(uv)h,<¡> - $A)

=^,$-$j< ciiiouiiiii* - $*lli < cy.MihMWo.Di-

Since <i> g L2(D'h) was arbitrary, (4.4) follows by duality.

In order to show that (4.2) implies (4.3) we shall use the super-approximation

property. With tj as above we have by the coercivity

2 2 1
IKIIi.d, < llT?w*lli < —A(vwh, r\wh).

Further,

3tj     3(tjwJ
^(T,WA,r,wJ=^(wA,T)2wJ  + J        Lfl/yg^-l > fe, '*
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where the last four integrals can be estimated by

(2       \ 2 2
^Kllo./JirwJi + ¿/2IKIIo,dJ < kJwJi + cdj2\\wh\\0,Dh.

Altogether, this shows that

lk||i,D/ < CA(wh,i]2wh) + Cdj2\\wh\\0,Dh.

In view of (4.2) and Lemma 3 we may subtract a suitable Ç ̂  Sh from t,2wa and

hence obtain

Aiwh'1l2wh) = A(wh,i12wh-^)

< clklli,/J V/KIIi.d* + M/2IMIo,dJ

< Cf-V/Kllî,/,, + í//2||wJ|o,Dft),

where again we have used the fact that hjd'1 < C. We have thus shown that

KHÎ.D, < c(Ayrf/1||wÄ||i,i,/l + í//2||w*||o,/)A).

Repeating the above arguments on ||wA||2iDii, we obtain

2 / 2 2 \ 2

IKIIi.d, < ChjdJ-1[hjd¡l\\wh\\UD¡i + <//2||wJ|o,dí) + Cd-2\\wh\\^Dh

from which an application of the inverse estimate (2.2) completes the proof of (4.3)

and hence, of the lemma.

5. Proofs of the Theorems and the Corollary.

Proof of Theorem 1. Let m be the approximate solution of (1.1) introduced in

Section 3, and let uh G Sh be the discrete solutions defined by (1.4). In view of

Lemma 5, since e = diam(T0) is of order A17'1"*, it is sufficient for the proof of

Theorem 1 to show that for the appropriate a's

(5.1) HvK-iOIL, <chr-\

and

(5.2) K - «Ik < Chr,

respectively.

For the proof, let J < Jx be an integer such that 2~J = C*A1/(1~a) for a suitably

chosen sufficiently large constant C*, to be determined later. Thus dj, hj, and

wMi-a) are aji 0f trie same order, but hjdj1 = 1/C\~a can be made small by

choosing C* large. Noting that by our definitions

(5.3) A(uh-ä,x) = 0   VXGS„

we shall now prove first (5.1) and then (5.2).

Set e = uh — u. We have at once, using Schwarz's inequality,

IIVe||Ll =||ve||Li(0y+i)+ I ||Ve||£i(Dy)< Crf^||e||lt0/+I + C £ d^2\\e\\ltDj.
j<íJ j<J
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The term associated with ß/+1 can be appropriately estimated, for by Lemma 6 and

(3.11) we have for a > (r - 2)/(r - 1),

d^2\\e\\x < C^AjJHo < Cdfihjh-l»*-»

= CCl/2hj = CCl/2+ah1A1-a) < C(C.)A'-1.

Setting

s=\Zd]
jaj

N/2h\\,   n

we shall show next that

(5.4) S < ÇA'-1 + _|S.

Hence it follows that 5 < Chrl, so that showing (5.4) completes the proof of (5.1).

As a matter of fact, we already have that

S<C(C,)A'-1+   £ dj^ekoy
J<J

We now make use of Lemma 7 to obtain

s « cíe.)*'-1 + c £ ^(a;-1!!«!!^ + ¿/l«.^)
j<j

< c(c,)ä'-' + c £ ^a;-!«!,^ + c £ ¿//^IklU,.

By (3.6) and (3.12),

(5.5) ||ö|Uy < cd;»"**-^ < ca/^+2-',

so that for a > (r - 2)/(r - 1),

£ ^a;-1!!^!,,^ < c £  «//-»a;-1 < ca'-1 £ ^-^«c-d < ca'-1.
y<y j¡*íj<íJ j>j\

We have thus shown

(5.6) 5 < Cíe.)*'"1 + C2 £ ^^IkHo,^,

where the last sum remains to be estimated.

For this purpose, let <?7 be of unit L2-norm and such that ||e||0 D = (e, e}), with

supp(ey) c Dj, and let v be the solution of

A(4,,v)-(4>,ej)   V^//1.

Hence \\e\\QD = A(e, v), and owing to (5.3) (with x = v¡), the continuity of A(-, ■),

and property (2.8) of the interpolant v¡,

IHIo.n, =A(e,v- v,)

< clklli.a,Jk - vi\\i.aJ+1 + c £ Iklko.lk - «/lli./j,

< cA/|k||li0y+1ll«ll2.o, + c£ a,|H|1>Di|M|2id}.
/<7



ADAPTED MESH-REFINEMENTS IN THE FINITE ELEMENT METHOD 337

Employing the regularity estimates (3.2), (3.6), and (3.7), we obtain

(5.7)      ||eio./>, < CM^/^lklli.a,.,

+ Cdj^2   £   hid^2\\e\\liDl +Cdf^Zhid^H^,
j<i<J i<j

and end up with

\\e\\o,Dj^ChJd^2djN/2\\e\\l + CdJ^hj  £   </nMli,Di

+ C</2max(A,¿r")£¿»/2H

< C{C*)hjhr-ldJN/2 + CdjN/2hjS.

So, for C* sufficiently large, that is, for hjd]1 sufficiently small, we conclude

c2 £ df^WeW^ < C(C%)h'-% £ a;1 + CS £ d/V.,

< C(C*)Ar~1Aji//1 + CShjd]1 < CAr_1 + JS,

which together with (5.6) shows (5.4) and completes the proof of (5.1).

We now turn to the proof of (5.2) and have at once

(5.8) lkllL,=lklLl(a,+1)+ £ Iklk^)

< CdN/2\\e\\ + CY dN/2\\e\\^ ^"j    llello,aJ+1 r u L, "j     IIhIo.d,.

j<J

As before, we first estimate the term associated with Qy+1. Let eJ+x have support in

ß/+1, be of unit L2-norm, and such that ||e||0,ay+1 = (e> e/+i)> and let v solve

A(4,,v) = (t,eJ+1)   V^Gtf1.

Using famihar arguments, we have

lkllo.o/+1 = A(e> v-or)4, CAjeiiriyJH|2ißy + C £ Aje||liDJ|i;||2i0y

« CAylklli,oy+I + c £ Mklli./V
jaJ

where we have confined ourselves to use the standard regularity estimate (3.2) in the

last step. In fact, we shall only need the weaker estimate

(5.9) </2|kl|0.a,+1 < CJhjd^Mxstn + C £ jhjd^2\\e\\ltDj,
j<J

where we assume, for notational simplicity, thaty, > 0, that is, that Dj is empty for

j < 0. (Otherwise, the factorsy must be replaced by, say, |/| + 1.) In order to see that

the sum in (5.8) can be estimated in the same way, we apply the estimate (5.7) and

change order of summation with respect to/ and /'. We thus obtain

E </2|Mlo,0,< CAA"/2lklli,a,+1   £   1

+ c£a,</2|H|1,d, £ i + c £ Mr^Wi.^ E d?
i<J h<j<i '<J i<j<J

< CJh dN/2\\p\\ + CY ih dN/2\\e\\^ ^jnj"j    llelli,ay+1 ̂  *- L, miai    llelli,o,'
iaJ
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and by this we have shown

(5.10) IHk < C/AX/2lklli,a,+1 + C £ jhjdf/2\\e\\UDj.

At this point, in the case of a > (r - 2)/(r - 1), we obtain (5.2) by just applying

our above estimates on d/^HeH! and S. In order to prove (5.2) also for the smaller

a's we proceed from (5.10) as follows.

Once again we first estimate the term associated with ßy+1. By Lemma 6, our

assumption a > (r — 2)/r, and the fact that / is of order In 1/A, we have

/AX/2lklli < cjhjdjWh-^A1-"^ c(c*)jh¿'J

< C(C*)lrij-h2Á1-a)^ C(C,)Ar.

Setting

S'= £A</2lklli,zy
j<J

we shall now prove that

(5.11) S'^Chr+2-S'.

Since this yields 5' < CAr, showing (5.11) completes the proof of (5.2).

Obviously,

S'<C(C.)h' + EJVHMwy

and in view of Lemma 7,

S' < C(Cm)hr +   £ jh'jdjWMr.D, + c £ jhjd^-lMo.Dy

Using (5.5) and our assumption a > (r - 2)/r, we obtain

£ /A;i///2||«||r,B. < C £ jhjd2~r = Chr £ jdJa+2-r < CA',

j<J J>j\ i>j\

since the last sum is dominated by the convergent integral

/     (x + 1)2"" dx,       c = ra + 2 - r > 0.

We have thus shown,

(5.12) S' < C(C,)A' + C3 £ jhjdfV^WeWo^,
jaJ

and we proceed to find an estimate also for the last sum.

Using (5.7) for a starting-point, we deduce that

lkllo.Dj < CA^/^lklli,^, + Cj-'df^S' + Cd»'2 max (rV)*'

< Chjd^2dJ^2\\e\\x + Q-1djN/2S',

where we stick to the convenient assumption/, > 0. For a suitable choice of C* we

thus obtain

c3 £ yV/^lklU, < CM^IMIi £ jhjd;* + CS' £ a//1

< C(C*)J2hj + CS'hjdf1 < CAr + \S'.
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Joint with (5.12), this estimate shows (5.11) and hence completes the proof of (5.2)

and of Theorem 1.

Proof of Theorem 2. In view of Corollary 5.1 of [13] and our assumptions, there are

constants c and C such that for d > ch1A1~a)

\uh(x) - u(x)\^ C(hda)r(ln(hd^1)Y\\u\\WUBd/2(x)) + Cd~N\\uh - u\\Ll(Bj/2(x)),

where we have used that the local mesh-size on Bd/2(x) is of order hd". Together

with (3.3) and our error estimate (1.8), since a > (r - 2)/r, this shows

\uh(x) - u(x)\ < Chr(\n(hda-1))rdar-N+2-r + Cd~N\\uh - u\\Ll

< Cd-Nhr(\n^r\ ,

which proves Theorem 2.

It remains to demonstrate the

Proof of the Corollary. By the definitions of v and vh, we have

A(x,vh-v) = 0   VXGS„

so that using also (1.3) and (1.4),

vh(xo) - u(xo) = A(u< vh - v) = A(u - "*- vh - v) = A(u - uh> vi - «)>

where we take v, g Sh to be the interpolant of v defined in Lemma 2. By the

continuity of A(-, •), the error estimates of Theorem 1, and the approximation

property (2.9) of v„ we thus have for a > (r — 2)/(r — 1),

k(-*o) - ^(*o)l< C\\uh - uWwiWv, - v\\wi < CA2r_2|H|„,,..

This proves the corollary.

6. Number of Elements. Construction of Refined Meshes. In this section, we shall

first show that for a in [0,1), the number of elements in the partitions AA(x0, a) is

of the same order, 0(h~N), as in the corresponding quasi-uniform ones. Hence, the

amount of work in solving the discrete variational problem (1.4) is not seriously

increased by using our special spaces Sh(x0, a, r) instead of standard finite element

spaces. We shall then comment on the possibility of constructing meshes satisfying

the crucial assumptions (1.5) and (1.6).

In order to estimate Nh, the total number of elements in AA, we first note that as a

consequence of (1.5) there is a constant c > 0, and for each t g Ah, an associated/

such that

(6.1) w(t Pi Dj) > cm(r).

For each 7, we shall estimate the number A//. of elements t for which (6.1) holds and

then sum over/. This will yield the desired estimate for Nh. It follows from (1.5) that

if t intersects Dj, then

diam(T) > ChdJ,

and hence, by (1.6),

m(r) > ChNdjNa.

Since m(Dj) < (2dj)N, we obtain

Nj < Ch-Ndf(1-a\
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With/, as before and a in [0,1), we thus find

K < £ Nj < Or" £ rf/O"«) < CA",
j>}\ J>Ji

which proves our assertion.

"We shall now see that a partition satisfying (1.5) and (1.6) can indeed be

constructed. For notational simplicity, we consider the case N = 2 and x0 = 0. We

first construct a (nontriangular) mesh of the correct mesh-size. Introduce polar

coordinates (r, 6) and draw for the construction the circles S, of radii r¡ = (¿A)1/tl_o),

i = 1,2,_ It follows that the distance between the two neighboring circles on

distance rt and ri+x from 0 is approximately

h 9    Mi-«)|        =     l_A(/Ä)Mi-«) =     l_A/f,
3x ,x-'h     1 - a   v    ' 1 - a    '

which is the mesh-size required in (1.5). In order to obtain the given mesh-size also

in the ^-direction we start with the rays r > 0, 6 = 2iri/4 for / = 0,..., 3. We

Figure 1
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then draw, for m = 1,2,... and for i = 0,...,2m + 1 - 1, the rays r > r2m, 6 =

(2/ + l)27T/2m+2 as in Figure 1. In this way, for 2m < i < 2m+1 the annulus

between S,_1 and S¡ is divided into 2m+2 equal pieces. Since the circumference of S,

is 2irri this implies that each such sector of an annulus is of width approximately

2irry2m + 2 - r,/i = hr,a

in the 0-direction. Hence the partition so obtained satisfies (1.5). In order to modify

this mesh into one consisting of triangles also satisfying (1.6) and the "face-to-face

condition", we replace each sector of an annulus by a corresponding union of two or

three triangles as shown in Figure 1, and the four sectors closest to 0 by the

corresponding triangles. It is immediate that the triangles so obtained satisfy a

minimum angle condition, which for interior elements is equivalent to (1.6). Once

this is done it is easy, if needed, to modify the mesh so that (1.6) holds also for the

boundary elements.

In higher dimensions a similar but somewhat more involved procedure is possible.

7. Appendix: an Extension Lemma. It is well known that functions in Wp(ti) can

be continuously extended into Wp(RN). In the proof of Lemma 2 of this paper, we

use local estimates for such extensions. Therefore, we shall show below that by the

method of extension using reflexions in the boundary (cf., e.g., Adams [1]), such

estimates are easily obtained.

Lemma A. Let übe a bounded domain in RN with smooth boundary T, and let r be a

nonnegative integer. Then there exist a linear operator E: L,(ß) -» LX(RN) and

constants C and CE such that Ev is an extension of v, that is, Ev = v on ß, and such

that for xGß, d > 0, 1</?<oo,0</c</\ and v g Wp(Bc d(x)\ the estimate

V7-1) \\E4w^B,(x))<  C\\V\\w^BCp¡(x)níl)

holds.

Proof. Given a set D c RN, let us denote by D+ (D~) the subset where yN > 0

(yN < 0). In view of the assumed regularity of T there exist a finite number of

diffeomorphisms tj, and a finite open cover {Oi}fix of ß such that r/, maps 0, onto B

and 0¡ n ß onto B+, where B is the unit ball Bx(0). We shall first construct an

extension operator Ë: LX(B+) -» LX(B) such that for y g B+, Bd,(y) c B, and

« S rVpk(Bd.(y)+),

(7-2) \\Ev\\^(BAy))^ C\\v\\wk(BAy)^,

and then, using this case for reference, we define E and prove (7.1).

With/ = (ylf...,yN-i),set

«(/, yN) ioryN>0,

r

YjmJv(y',-yN/j)     foxyN < 0,

J-i

where the coefficients n?^ are determined by the linearly independent equations

r

£ mj(-l/j)k = 1    fork = 0,1,...,r-l.
7 = 1

Èv(y\yN) =
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It is sufficient to prove (7.2) for smooth ¿5's. But in that case, in view of the regularity

of the extension across yN = 0, we have for k < r,

ll£«llrf*(B,,.0>)) = WE4rV^BAy)*) + W^Ww^BjK.v)-)'

and hence (7.2) follows at once. Now, let {fi¡}fíx be a partition of unity on ß subject

to supp(/?,) c O i for 1 < / < M, and set

M

(7-3) Ev=lißi(E(v°r,-1)°r)l).

j-i

Obviously, this defines fas a linear extension operator. In order to prove (7.1) we

first restrict ourselves to the case of suitably small d's and estimate each term in

(7.3). With i fixed, we may then assume that Bd(x) intersects supp(/3() (otherwise

there is nothing to prove) and that Bd(x) c 0¡, since supp(ß,) is a compact subset of

Oj. Let y = T),(x) and let Bd.(y) be the ball of smallest radius containing i}¡(Bd(x)).

By the smoothness of r/, and r;"1 we may further assume that for small d's,

Bd,(y) c B and that there is a constant C, such that ^(Bj^y)) c Bc d(x). But then

\\ß(E(v ° v'1)* yjl^^» *i C\\Ë(v ° j,-1)^^,^

< C\\vor1ïl\\tv^BAyy)^ C\\v\\^{BcAx)nQ).

Hence, (7.1) follows with CE — max,C,. For the smaller d's, this completes the

proof. Since we may as well assume that Ev vanishes outside any given neighbor-

hood of ß, the estimates (7.1) for the larger d 's follow from what we have proved for

the smaller d 's by an obvious covering argument. This completes the proof.
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