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High-Order Local Rate of Convergence

By Mesh-Refinement in the Finite Element Method

By Kenneth Eriksson

Abstract. We seek approximations of the solution u of the Neumann problem for the equation

Lu = f in Q with special emphasis on high-order accuracy at a given point x0 e Q. Here ß is a

bounded domain in R (N > 2) with smooth boundary, and L is a second-order, uniformly

elliptic, differential operator with smooth coefficients. An approximate solution uh is de-

termined by the standard Galerkin method in a space of continuous piecewise polynomials of

degree at most r - 1 on a partition Ah(x0, a) of Í2. Here h is a global mesh-size parameter,

and a is the degree of a certain systematic refinement of the mesh around the given point x0,

where larger a's mean finer mesh, and a = 0 corresponds to the quasi-uniform case with no

refinement. It is proved that, for suitable (sufficiently large) a's the high-order error estimate

(u - uh)(x0) = 0(h2r~2) holds. A corresponding estimate with the same order of conver-

gence is obtained for the first-order derivatives of u - uh. These estimates are sharp in the

sense that the required degree of refinement in each case is essentially the same as is needed

for the local approximation to this order near x0. For the estimates to hold, it is sufficient that

the exact solution u have derivatives to the rth order which are bounded close to x0 and

square integrable in the rest of Q. The proof of this uses high-order negative-norm estimates of

u - uh. The number of elements in the considered partitions is of the same order as in the

corresponding quasi-uniform ones. Applications of the results to other types of boundary

value problems are indicated.

0. Introduction. Let Q be a bounded domain in RN, N > 2, with smooth boundary

9Í2 and consider the Neumann problem to find u such that

N       a    /        a     \ N        o
d   /       du \      v-^      o«

(0.1) Lu=      E ö +Iû       +f,ttÄ/   infl,
i,i=i     j \ ' '     i = i        '

(0.2) ir-- E «JrS = 0 on9ß-

Here L is assumed to be uniformly elliptic with smooth coefficients, n = (n,) and nc

denote the exterior normal and conormal to 3Í2, respectively. Assume also that the

bilinear form

A(v,w) = )a | J>|y_-_ + £ a—w + avwj dx
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110 KENNETH ERIKSSON

associated with L is coercive over H1^); that is, for some constant c > 0,

A(v,v) > c\\vfHi(Q)   Vcer/'fSi).

In order to approximate u, let {Sh}, h small and positive, be a one-parameter

family of finite-dimensional subspaces of //'(ß) and define the Galerkin approxima-

tion uh e Sh of w by

(0.3) A(uh,vh) = (f,vh)   VvheS„,

where (•, • ) is the standard inner product in L2(ü). Multiplication of (0.1) by vh and

integration by parts, using (0.2), shows that (0.3) holds for the exact solution u.

Hence,

(0.4) A(u-uh,vh) = 0   Vv„eSh.

Therefore, we shall also refer to uh as the "A-projection" of u.

In this paper, Sh will consist of the restrictions to ß of all continuous piecewise

polynomials of degree at most r — 1 on a simplicial mesh, with h the maximal

diameter of the simplices. From the approximation properties of Sh, the a priori

estimate

II"- «ftl(ff'(0)< Chr-l\\u\\Hr,Q)

is easily obtained. Using the Aubin-Nitsche lemma (see [7, p. 137]), one can derive a

sharper estimate in the L2(ß)-norm: namely,

II"- "JI/.2(Q)< Chr\\u\\„rW.

Optimal, or nearly optimal, a priori error estimates can be attained also in the

maximum norm, but require a more sophisticated analysis. With an additional

nondegeneracy condition on the elements, one can prove that

(0.5) ||u - ujj^ù, < C(\n(l/h))rh'\\u\\w^ü),

where f = 1 if r = 2, f = 0 for r > 2. In the case of N = 2 and for a special form A,

a proof of this was given by Scott in [19]. For a survey on related results where other

boundary value problems are also considered, see Nitsche [11].

In this paper we shall consider a simplicial mesh which has been refined in a

certain way close to a given fixed point x0 e ß. We shall then be able to show

higher-order convergence at x0. Our main result will be

(0.6) K«-«*)(*o)l<C»2,"2MiKi(0)-

This holds provided the degree of the prescribed refinement is such that the elements

closest to x0 have diameters of order h2~2/r+e for some e > 0. In the case e = 0,

(0.6) holds with a logarithmic modification. It is clear that only the case r > 2 is of

interest in this context, even though, when r = 2 and e > 0, (0.6) is slightly better

than (0.5) as an estimate for (u — uh)(x0). We shall also demonstrate that if the

refinement is such that the elements closest to x0 have diameters of order h2 + e, then

the same bound as in (0.6) can be obtained for the gradient of u - uh:

(0.7) |v(«-«J(*o)l<^2,~2Nk<o>-
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This result is of interest also for r = 2. Next, by localizing the arguments to a

neighborhood ß° c ß of x0, we derive the estimate

(0.8) |(u - t/„)(*o)N C*2r~2|l"lk<s2°)+ C\\u - uhf_ma0,

where || • ||*m<ßo denotes a weak negative norm to be defined in Section 9. Using

known high-order error estimates for u — uh in such negative norms, this will show

(0.9) \(u - uh)(x0)\^ Ch^WuW^^ + Wul^},

so that the regularity requirement on u away from x0 can be relaxed, with a high rate

of convergence retained at x0. The corresponding results are shown for the gradient

of u - uh. Since (0.8) and its counterpart for the gradient require only local

information on u - uh, our results can also be applied in other situations where

negative-norm estimates are known: for example, in connection with various proce-

dures for treating the Dirichlet problem. The above results suggest that the Galerkin

solution is a fairly local approximator of u and that pollution effects are moderate,

at least for regular problems.

The assumptions on the refinement are that the mesh size decays toward x0

approximately as h times some power a of the distance, and that local inverse

estimates hold. As is seen from the above discussion, the degree a of refinement

needed for our results is essentially the same as is required for local approximation

to this high order near xQ. Hence, our results are sharp in this sense. Furthermore, it

has been shown in Eriksson [5] that the refinement does not seriously increase the

total number of elements in the partition, so that the amount of work needed to

solve for uh is essentially the same as for a quasi-uniform mesh.

One may argue that a weak point about the mesh-refinement procedure is that

different grids are needed for points x0 at different locations. In practice, however, it

is often the case that one is primarily interested in the solution only in the

neighborhood of one specific point. For instance, in fracture mechanics one often

knows a priori the point which is the most critical one for the structure and wants

detailed information about the solution near this point. On the other hand, if more

than one point is of interest, one may, of course, use a mesh which has been locally

refined around each one of the points under consideration. Our analysis does not

quite cover this case, but it is reasonable to believe that, under the appropriate

assumptions, one then obtains 0(h2r2) convergence at all the centers of refinement

simultaneously, using the same one mesh. Let us also mention that there exist

commercial codes for automatic generation of meshes with local refinements like the

ones we consider here.

Mesh-refinements have previously been used in connection with elliptic problems

in order to enable functions in Sh to fit known singularities in the exact solution

properly. See, for example, Schatz and Wahlbin [15], where the singularities of u are

caused by the corners of the domain. For a singular two-point boundary value

problem, see Schreiber [18]. In Eriksson [5], [6] mesh-refinements were used in order

to approximate Green's function to a high-order of accuracy. The idea in these

papers is very much related to the present work.
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As mentioned above, 0(h2r2) estimates are known in many cases for u — uh as

measured in a suitable negative norm; see Bramble and Osborn [3]. Pointwise

superconvergence at mesh points is common for one-dimensional problems. In

higher dimensions, 0(h2r~2) error estimates have been obtained by various averag-

ing procedures applied to an already existing approximation uh of u; see Bramble

and Schatz [4], Louis and Natterer [10], Thomée [20], and references therein. Here

the post-processing procedure proposed by Bramble and Schatz is easy to perform,

but requires a uniform mesh and can, therefore, in general, only give interior results.

On the other hand, the method suggested by Louis and Natterer requires that a

fundamental solution be a priori known, which, in practice, limits the possibility of

application to the case of constant coefficients and no lower-order terms.

The methods of proof employed here are reminiscent of those used by Schatz and

Wahlbin in a series of papers: [13], [14], [15], [16]. Let ^be the Green function for

(0.1) and (0.2), and let <&h e Sh be its v4*-projection. Then the starting point for the

proof of our estimate (0.6) will be

(u-uh)(x0) = A(u-Xh,&-9h).

Here \h can De anY function in Sh, and therefore, by the approximation properties

of Sh due to the refinement, the essential step in the proof will be to estimate ^ - &h

in a weighted W^-norm. An important tool for this will be the use of local

//'-estimates similar to those obtained by Nitsche and Schatz in [12]. In fact, to

avoid difficulties at the point x0, we shall not use the exact Green function but a

smooth approximation of it.

An outline of the paper is as follows. Notation and some results on elliptic

regularity are given in Sections 1 and 2. The exact hypotheses on the mesh-refine-

ments are presented in Section 3, and some desired properties of the corresponding

piecewise-polynomial spaces are presented in Section 4.

In Section 5, the main result (0.6) is stated in precise terms and then proved.

Section 6 is devoted to the proof of the weighted Wx-nonn estimate mentioned

above. The improved convergence (0.7) for the gradient is proved in Section 7. For

completeness, a negative-norm estimate referred to in the later sections is derived in

Section 8. The local estimate (0.8) is obtained in Section 9 and its counterpart for the

gradient, in Section 10.

1. Notation and Preliminaries. For a domain ß' c RN and m a nonnegatve integer,

Wqm(Q') will denote the usual Sobolev space with norm

I )1/q

E   IWIV) ifl«?<oo,
MPI« m '

max \\Dßv\\,  .„,, if q = oo,

where ß = (/?,,. ..,ßN) with ß, nonnegative integers, \ß\ = T.f=xßi. Dß = Dß =

(9/3x,)^' • • • (d/dxN)ß», and || • \\L (Sr) is the norm in the Banach space Lq(Q,'). We

shall also use the seminorm | • \w*>,a>x, defined as the corresponding norm, but with ß

ranging over \ß\ = m only. For q = 2 we write W2m(W) = Hm(9,'), and for the

corresponding norm and seminorm, || • IUf.(S20 = || • \\H-(a-) = II ' IL.n- and

I" \w?w) = I • L,fl'. respectively.

I HrTta-)
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The space of restrictions to ß' of infinitely differentiable functions on RN will be

denoted C°°(ß'), and C0°°(ß') will consist of all functions in C°°(ß') with compact

support in ß'.

For m > 0, m an integer, we define the negative norms || • \\_m_Q- and ||[ • |||-m,o/ by

II ii (v>w)a'
NI-».B' =    sup   Tl—

rveq°(£¡o IM|mír

and

(o,w)0<
\\\n\-m,v =   sup

we¿C»(Q')   \\w\\mM.

where (í;, w)a. = ja. vwdx.

Throughout this paper we shall let ß be a fixed bounded domain in RN, N > 2,

with C°° boundary 3ß. When ß' = ß we shall shorten the notation and write

Hm(Q) = Hm, || • ||miB = || -\\m, (.,.)a = (■,•), etc.

For ß' c ß we shall consider the bilinear form Aa, = A(-, • )a-, defined by

i-, i\ ai       \ (   I   v        3t;  3iv      ^     3íj I   ,
(1.1) ^(,,w)ß,=jfi  I^E^,,—^+Ia—w + ^^x,

where we require that the coefficients a{j, a¡, and a be functions in C°°(ß) satisfying

a¡j = a ,. Although we shall mainly be interested in the form A = Aa, we make the

following assumption: There is a constant cA > 0 such that

(1.2) A(v,v)a>>cA\\u\\l,v   *° e Hl(Q'), Vfl' c Q.

The reason for our interest in the bilinear form A is its connection with the

Neumann problem for the second-order partial differential equation

i,j=i jv   ' ' *=i   *

Moreover, our main result will have applications to other boundary value problems

for this equation, such as the Dirichlet problem.

We shall later need the fact that the coefficients at¡ satisfy the following condi-

tion: There is a constant cA > 0 such that

N 2

(1.3) L au(x)X,XJ > cA\X\     VX e R", \/x e ß;
ij-t

i.e., the associated differential equation is uniformly elliptic. This is, in fact, not an

extra assumption on the coefficients a, , but follows easily from (1.2) with the same

constant cA. Indeed, take ß' = [x e ß: \x - x\< e) and v = m~1/2X ■ (x - x),

where me = ja,dx. Then, since au are smooth by assumption, a simple computation

shows that then for small e,

N

A(v,v)a.=   E  ai(x)X,XJ+0(e),
'•7 = 1

and

\\v\\2ua,=\X\2+0(e2).

Inserting this into (1.2) and letting e tend to zero yields the desired inequality (1.3).
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Remark 1.1. Assumption (1.2) is unnecessarily restrictive for the purposes of this

paper. In fact, the following global coercivity condition suffices: There is a constant

c'A > 0 such that

(1.4) A(v,v)Q>c'A\\v\\2XM   VveH\Sl).

In Sections 9 and 10, where (1.2) is used for ß' # ß, it is possible to employ instead

the modified bilinear form AkQ.(v, w) = A(v, w)a. + k(v, w)ä,, which satisfies (1.2)

if k is sufficiently large (cf. Appendix 1 of [13]).

We end this section with a list of some further notation and definitions. We shall

write

m(K)=l  dx,       diam(K) =   sup   |jc — _y|,
JK X,y^K

dist(K,K')=      inf     |jc-.v|,   and   BÂ y) = f x e RN: be - y\ < d).
xeK.ysK'

Moreover, Pr(K) will be the set of all polynomials of degree < r restricted to K.

Throughout the paper we shall use the letters c and C to denote various positive

constants. For / and g two positive functions, we shall write / ~ g if there are

constants c and C such that f > eg and / < Cg. We also define the unit TV-simplex T

by

T= | x e RN: x¡ > 0, i = 1,...,N, and ¿i,<1  .

An arbitrary TV-simplex is obtained by a nonsingular affine transformation of T. A

face of a simplex is any one of the N + 1 (TV - l)-simplices constituting its

boundary.

2. Elliptic Regularity. In this section we shall be concerned with the variational

problem

(2.1) A(G,u)Q. = (g,v)a.,   VveHl(W),

and with the regularity of the solution G in terms of g.

By the boundedness of the coefficients, the form Aa, is continuous on rVp(Çl') x

rVjiiï') for 1 < p, q < oo and p'1 + q~l = 1. In fact, by Holder's inequality, there

is a constant CA, independent of ß', such that

(2.2) A(v,w)ü, < CjHLj(n>IL.(ß,   V(v,w) g ^(ß') X Wq\ü').

In particular, the form is continuous on //'(ß'). We shall need (2.2) for/7 = 2 and

p = oo only.

The results of the following lemma are special cases of the Lax-Milgram lemma

(cf., e.g., Ciarlet [7]).

Lemma 2.1. Let the coefficients of the bilinear form A be such that (1.2) and (2.2)

(withp = 2) hold. Then, for given ß' c ß and g G L2(ß'), there is a unique G G //'(ß')

satisfying (2.1). Furthermore, given any G G //'(ß') and a closed subspace S of

//'(ß'), the Aa-projection of G on S is well-defined; i.e.. there exists a unique Gs G S

for which

A(G-Gs,vs)a, = 0   Vt;sG5.
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For ß' with a sufficiently smooth boundary 3ß' we have the following well-known,

elliptic, regularity result (cf., e.g., Schechter [17]).

Lemma 2.2. Let the coefficients of the form A be as in Section 1 and assume that

(1.2) holds. Furthermore, let ß' c ß have a C°° boundary 3ß', and let s > 0 be an

integer. Then there is a constant C such that, if g G Hs(ü') and G is defined by (2.1),

then

(2-3) ||G|U2,a- < C\\g\U.

We shall make extensive use of local estimates on G away from the support of g.

We have the following lemma:

Lemma 2.3. Let the assumptions be as in Lemma 2.2, let s > 0, and let ß be any

multi-index of length \ß\ < 5. Then there is a constant C such that the following holds:

Let g G L2(ß'), let x G 9,',andset R = dist(x, supp(g)). Then, for G defined by (2.1),

(2-4) \DßG(x)\<CR-N+2-°\\g\\Ll{ar

Proof. The solution G of (2.1) is given by

(2.5) G{x) = [  $(x,y)g(y)dy,

where ^(x, y) is the Green function. It is known (cf., e.g., Krasovskiï [9]) that

(2.6) \D?9(x, y)\^C\x-y\~N+2~s.

Differentiation of (2.5) under the integral sign, application of Holder's inequality,

and (2.6) give

\DßG(x)\ = (  Dß<S(x, y)g(y) dy

<|J>Î*(*. Olk.suppuJgllMa., « c/r"+2-%||MO/),

which was to be proved.    □

We finally note that in all of this section we could have considered the adjoint

problem as well. That is, for g g L2(ß'), there is a G g Hl(ü') (in general, different

from our previous G) such that

A(v,G)a, = (v,g)a.   Vve&iÛ'),

and the regularity results above hold for this G as well. Moreover, the ,4^,-projection

Gs g S of G is well-defined by

A(vs,G - Gs)a. = 0   VuseS.

3. Mesh-Refinement Around a Point. In this section we define certain partitions of

ß which are refined around a given fixed point 7C0 g ß. To these partitions there will

correspond finite-dimensional function spaces, to be introduced in Section 4.

We shall divide ß into simplices, which will be modified at the boundary ß, since

the simplices cannot fit exactly the curved parts of 3ß. For a small positive

parameter h, we shall consider a family of such partitions defined as follows: Let ß

be covered by the union Ùh of the simplices t,\ / = 1,.. .,I(h), where we require that
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the t/1 have disjoint interiors and satisfy the standard assumption that, for i =

1,... ,I(h), any face of t/1 is either a part of 3ßA or corresponds exactly to a face of

an adjacent simplex. As our partition we take the sets, with int( • ) = the interior of

(•),

T/, = int(T,/,nß),       / = 1,...,/(/,).

The desired features of the partition are determined by the following two require-

- ments: For some fixed positive constants cs, cR, and CR, for x0 g ß, for a with

0 < a < 1, and for h small and positive, we have

(SA) m(rth) > csdiamN(r,h),       / = 1,...,/(//),

(RA)      cRdiam(Tlh) ^ h sup \x - x0\   < C^diam(t/1 ),       i = l,...,I(h).

We use the notation AA(x0, a) for partitions obtained as above and satisfying (SA)

and (RA).

The "shape" assumption (SA) implies, on the one hand, that the simplices do not

degenerate, and, on the other hand, near the boundary, that a fixed minimum

portion of each simplex is inside ß. This can be restated in the following equivalent

but more useful way: There are fixed positive constants c's and Q' and, for each

t = t/1, a nonsingular affine mapping AT with AT(x) = BTx + bT, Br = (btj), B'1 =

(b'ij), such that

(SA)'    c'sT c AT(r) c Arr = T,    \bu\ < Q'dianT1^),    \b'u\ < Cs'diam(T).

The refinement assumption (RA) = (RA)X) a roughly says that an element at

distance r from x0 has diameter approximately equal to hr". Since ß is bounded, the

global mesh size is bounded by Ch. Elements close to x0 are forced to have diameter

of order h1/,(1 ~a\ Hence, the parameter a is a measure of the refinement.

For a discussion of the possibility of constructing a mesh satisfying (SA) and

(RA), we refer to Eriksson [5]. There, it is also shown that, for a fixed a < 1, the

total number of elements in such a partition is proportional to /i " ̂  as in the quasi-

uniform case. Hence, the size of the finite element matrix and, thereby, the amount

of work required to solve for the Galerkin approximation are not seriously increased.

For our proofs we shall need various subsets of ß. For integers y we define

ßj. = ß n Bj where BJ = Bd(x0), d} = 2~J,

Dj = tiC\ Aj where A] = B]\Bj+x,

and

D/ = Z)7_,U ■■■UDJ+k,       k = 0,l,2,....

In the technical work below we shall need to know that the local mesh size on /). is

small in relation to dj, in a sense to be made precise later. This will turn out to be

the case for ally < Jx if we define the function Jx = Jx(h) = Jx(h, a) by

2-J< = Cxh1A1-a),

where the constant C, is chosen sufficiently large. The significance of the quantity Jx

will be clear in Section 4, where we shall also fix C,. Defining hJ = hdj, it follows
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easily from (RA) that, for j < Jx, hj is proportional to the local mesh size on Z>, and

that

hjdj1 = hd?~l < h(cxh1/(1-a))a~l = i/c\-\

which also expresses, if C, is large, the relative smallness of the mesh on D¡. We

finally note that, since ß is bounded, the sets Dj will be empty for j less than some

integer;,.

4. Spaces. Inverse Estimates. Approximation Properties. Let Ah = àh(x0, a) be a

partition as described in Section 3, and let r, with r ^ 2, be an integer. We shall

denote by Sh = Sh(r, x0, a) the finite-dimensional space of functions in C(ß) which

reduce to polynomials in Pr_x in each of the elements t = rh g Aa. Moreover, if

ß' c ß, the space of all restrictions to ß' of functions in Sh will be written Sh(tl'),

and S°(ü') will consist of all functions in Sh vanishing outside ß'. We shall use the

notation xh for the obvious piecewise-polynomial extension to Ûh of a function

Xh g Sh; we use Sh for the corresponding space.

The following inverse estimate is standard for interior elements.

Proposition 4.1. Let the partition AA and the corresponding piecewise-polynomial

space Sh be as above. Then there is a constant C2, depending only on N, r, c's, and C¿,

such that, for 1 < p, q < oo, integers 0 < t < s < r, vh g Sh, and any element

t G AA, the following holds:

(4.1) \vh\wp(r)< C2[diam(T)]'^J 'N{" l~p l)\oh\w¡{Ty

Furthermore, if m > 0 is an integer, there is a constant C3 = C3(7V, m, c's, Cs') such

that, for vh G Sh and any element r,

(4-2) |K||0iT<C3diam-'"(T)|K||.1BiT.

Proof. Let the affine transformation ^1T be as in Section 3. Set y = AT(x) = Brx +

bT and define the operator ar by aTv(y) = v(A~\y)) = v(x). Repeated use of the

chain rule and (SA)' yields the estimates

\D^h(x)\UN^[Csdiam-1(r)yip   E   \DfaMy)(
\ß\ = H

and

|det B^\ < /VlC^diam^r).

A change of variables then gives

(4.3) \vh\K(r) < Cdiam^-J(T)|aAUi(r).

Similarly, we obtain

l%k<cir) < Cdiam'-^r)!^!^,).

The desired estimate (4.1) now follows from the fact that, on the finite-dimensional

space Pr_x(T) and for s and t as considered, the seminorm | • \W^T) is dominated by

C\ ■ \W'(c-T) for some constant C = C(N, r, c's).

-^ Considering the equivalence of norms on Pr_x(T), we obtain from (4.3), with

s = 0 and p = 2,

Ihllo.r < CdiamiV/2(T)||a7i;J_ffIif;7..
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From the seminorm inequality (4.3), we easily obtain, for any function w,

IML^Cdiam^-^OIkHL.r.
Hence,

il   ii     ^ i-A-     N/it   \                    (aTt;A,aTtv)
IKIIo,t< Cdiam^(T)       sup       —-

arw^Crf[csT)     \\arw\\m .T

< Cdiam-"'(T)       sup       (°i>'w>

arw(EC<j°(c'sT)   ||w||m,T

< Cdiam-HMU T,

with a constant C depending only on N, m, c's and Cs'. This shows (4.2) and

completes the proof.   D

We shall say that Dh is a mesh domain if Dh = int(U,e Mf:h), for some index set M,

and we denote by Dh the corresponding union of simplices f,\ We shall need the

following local consequence of (4.1): Let D' and D" be domains such that D' c Dh

c D" c Dj, where Dh is a mesh domain. Then there is a constant C = C(C2, CR)

such that

(4-4) Kill.* < Chf\\vh\\0,D-

In fact, since diam(T/l) > chj for ih c Dj, we have, by (4.2),

Iklli.ß» = T. hhh.r" < c2/;;2 E lk*llo.T*

-cVHiU,
from which (4.4) easily follows.

Together, (4.1) and (4.2) yield the following: Let Z>' c Dh c ¿)" and assume that,

for each t'1 c Z)ä, one has diam(r'') > c'/z. Then there is a constant C = C(c', C2, C3),

such that

(4 S) IId II       < f~,A_m_'1lli, II
V*'D) \\vh\\l,D' ^ *-" \\vh\\-m.D"-

To see this, we recall from Lemma 1.1 of [13] that

2 2

E lkll-„,T<lk"Jh\\-m.T ** llt/All-/n,D4-

''eft

Hence, by (4.1) and (4.2),

II« II2     =   V   IId II2 , < r2h-2<m + li  Y   IId II2Ir/illi.o*        ¿j   FaIIi.t* ̂  <- « ¿^   II^II-ot,t»
T*CD, r'cO,

< r2/i-2<",+1>lli> II2^  <-   " lll'All-m.D^

which gives (4.5).

We now turn to approximation properties. The following result was proved in

Eriksson [5]:

Proposition 4.2. Let AA = {r/1} be a partition and Sh an associated piecewise-poly-

nomial space as above. Then there are constants Q and C'A depending only on N, ß, r,
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c's, and C¿, and, for each t = t/!gAa, a neighborhood 0T of t with diam(0T) <

C4' diam(T), such that the following holds: For each v g Lx there is a Xh G Sh such that

i/0 < / < m < r and 1 < p < oo, and ifv g Wpm(0T), then

(4.6) ||c7 - XftHni(r) < Qdiam^'CT)^!!^^.

We have the following consequence of estimate (4.6):

Corollary 4.2. There is a constant C depending only on N, cs, cR, CR, C4, and C4'

such that the following holds: Let v G Lx(£l) and let Xh be given by Proposition 4.2.

Furthermore, let D' c D" c ß,   , and assume that

(4.7) t n D' * 0    only if 0T C D".

Then, for 0 ^l^l^m^randve Hm(D"),

(4.8) il» - xj,,* < câ;-'|1«L,.o-

Moreover, if v e W™(D"), then

(4-9) \\v - xâwl'D') < Ch7~XMiKHm-

Proof. Let /)A be the smallest mesh domain for which D' c Dh, and note that

then, for t* c Dh, diam(TA) < Ch] with C = C(cR). Since it is clear that there exists

an upper bound, depending only on TV, cs, cR, CR, and C4' for the number of t for

which 0T intersects any given point, we have, by (4.6) and (4.7),

H"-xJ/,D-<    £    Il«-Xj/.T*
'K

„. i/™_ /\n    ii2

which proves (4.8). Estimate (4.9) is proved in the same manner.   D

Recall from Section 3 the definition of Jx, 2~Jl = Cxh1/(1~~"\ which was intro-

duced to separate the treatment of the elements closest to x0 from that of the

remaining elements of the refined mesh. We shall now fix the constant C, in a

manner which will make (4.7) (and, hence, (4.8) and (4.9)) valid when needed in the

sequel. More precisely, the proof of our crucial Lemma 6.2 below uses (4.8) and (4.9)

for y < Jx when dist(/)', ß \ D") > cxd . In order to justify this, we may choose

c, = (4 • c;1 ■ c; ■ c,1)
.^l/fl-a)

.

It is an easy computation to show that (4.7) is then satisfied forj < Jx. If (4.7) holds,

we also know that there exists a mesh domain Dh with D' c Dh c D", and, hence, if

D' c D" c Dj, the inverse estimate (4.4) can be used.

Note also that Proposition 4.2 implies that Xh vanishes outside a small neighbor-

hood of supp(u). More precisely, if D = supp(f ), we have

supp(xj c \J        T.
(r:Otni)* 0}

We end this section with a    "superapproximation" result. Again, we refer to

Eriksson [5] for the proof.
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Proposition 4.3. Let Sh be as above, and let the constant Cv be given. Then there is

a constant C = C(N, r, a, c's, C$, cR, CR, Cv) such that the following holds: Let Dh be a

mesh domain with Dh c D1, and let -q G CCX'(RN) be constant outside Dh (on each

component o/int(ßA )\Dh) and satisfy

h\\wà<Cnd;k,       k = 0,...,r.

Then, given vh G Sh, there is a Xh G S h sucn that supp(Tj/;A - Xh) c ^h and

(4.10) Ht,^ - x Ji,d, < CÄ^Iklli.^ + Chjdj2\\vht.Dh-

5. Main Result. High-Order Local Rate of Convergence. After the preparatory first

sections, having defined the special finite-dimensional spaces Sh = Sh(r, x0, a) and

listed some of their properties, we are now ready to state and prove our main result,

Theorem 5.1. The theorem states that if u is a smooth function and uh g Sh(r, x0, a)

is its ^4-projection or, equivalently, its Galerkin approximation, then

(u - uh)(x0) = 0(h2r~2),

provided a is sufficiently large—i.e., provided the underlying mesh is sufficiently

refined close to x0.

For a quasi-uniform mesh it is known that the pointwise convergence is of order

0(hr) if r > 2 (with a logarithmic modification if r = 2). This was proved by Scott

[19] for TV = 2 and A(u, v) = ( V«, Vv) + (u, v). Our result thus shows that refining

the mesh around a point x0 considerably improves the rate of convergence of u - uh

at this point, at least for r > 2.

Theorem 5.1. Let ß and the bilinear form A be as in Section 1. Furthermore, let x0

be an arbitrary point in ß, and for h small and positive let there be given a family of

partitions Ah(x0, a) of ß as in Section 3. Finally, for an integer r > 2 let Sh =

Sh(r, x0, a) be the corresponding finite-dimensional spaces as defined in Section 4.

Then, for given a with (r — 2)/(2r — 2) < a < 1, there is a constant C such that, for

u G W^ anduh G Sh, defined by

(5.1) A(u-uh,Xh) = 0   VX„ G5„

the estimate

(5-2) \(u-uh)(x0)\^Ch2r-2\\u\\^

holds. Moreover, C is independent of x0. For a = (r — 2)/(2r — 2), estimate (5.2)

holds with C replaced by Cln(/._1).

Remark. Obviously, for u g W¿(Sl), by continuous extension u(x0) is defined

also for x0 g 3ß.

Note that Lemma 2.1 insures that uh is well-defined by (5.1). Note also that the

very existence of a function uh g Sh(r, x0, a) satisfying inequality (5.2), for a >

(r — 2)/(2r — 2), is an immediate consequence of the approximation property (4.6)

and the fact that diam(r) < C/j1/(1"' < Ch(2r~2)/r for t close to x0 and such a's.

The point of our theorem is that this high order of convergence holds for the

/1-projection uh; i.e., that the high rate of convergence of x0 is not destroyed by

"pollution" from the coarser mesh away from x0.
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A brief outline of the proof of Theorem 5.1 is as follows. We first write

(" - «*)(*<>) = A» - «*.*) = A» -Xk**- 9h),

where 9 = 'Sx is the Green function, (Sh G Sh the ^4*-projection of 'S, and Xh an

arbitrary function in Sh. By the continuity of A, we then have to estimate ||w - XhWw1

and \\@ — Sh\\w\, where, by the approximation properties of Sh, the first of these

norms is bounded by Ch'~ l. We thus wish to prove the same estimate for ||^ - £^A|| .yi.

In view of the singular character of <&, this might seem too optimistic, but the idea

now is that the finer mesh close to x0 will compensate for the singularity of ^to keep

S — <§h small in all of ß. To follow the above sketch of a proof, however, would

require a larger lower bound for a than the one given in Theorem 5.1 (cf. the

Corollary in [5]). In order to obtain (5.2) also for the smaller a's, we shall take

advantage of the fact that the u — xA Part can rje made smaller than hr~x close to

the point x0, since the mesh is refined there. Also, to deal with the singular behavior

of ^near x0, we shall use an inverse estimate and L2 duality to arrive at a situation

where only smooth approximations of S have to be considered. More precisely, we

have the following lemma, with the aid of which we shall then prove Theorem 5.1.

For notation, see Section 3.

Lemma 5.2. Let the basic assumptions be as in Theorem 5.1. Then for given a, with

(r - 2)/(2r - 2) < a < 1 and with Jx = Jx(h, a) as in Section 4, there is a constant C

and an integer J = J(h,a) < Jx such that the following holds: Let x0 G f0, and let

geC0°°(T0) be such that \\g\\0 = h~NA2-2a\ Define G g H1 and GheSh =

Sh(r, x0, a) by

(5.3) A(v,G) = (v,g)   Vug//1,       A(Xh,G-Gh) = 0   VXteS,

Then there is a constant C independent of h such that

(5.4) E hj-'WG - Gh\\wHDj) + hrl\\G - G„iwhùj+l) < O.2-2.
j<J

For a = (r - 2)/(2r - 2), estimate (5.4) holds with C replaced by C\n(h~l). More-

over, C is independent ofx0.

In order to understand the normalization of g, one may think of g and G as

smooth approximations of the Dirac measure at x0 and the corresponding Green

function, respectively. We devote all of Section 6 to the proof of Lemma 5.2, and we

proceed now to prove (5.2).

Proof of Theorem 5.1. By a sequence of standard arguments, using the triangle

inequality, the inverse property (4.1) with s = t = 0, p = oo, and q = 2, Holder's

inequality, and the assumption diam(T0) ~ h1/(1~a\ we have, for any Xh e Sh,

\(u - m*)(x0)I<I(k - X*)(*o)I + |(Xa - «a)(*o)|

< l(" - X*)(*o)l + Cdiam-"/2(T0)||x„ - "Jz.2<To>

(5.5) <|(« - Xa)(*o)I + Cdiam-^To)!!» - XJz.2<To)

+ Cdiam-"/2(T0)||M-uJMTo)

<c||«-xAlk(To)+CA-^2-2«>|«-Hjlj(Tû).
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By Proposition 4.2 there is a xA g Sh such that

II" - xJkfxo) < CdianfÍTo)!!«!!^,

which, by the refinement assumption diam(T0) < Ch1/(1~a) and the choice of a >

(r - 2)/(2r - 2), can be continued to

(5.6) ||w - xJoto) < cdiamr(To)ll"ILi < Ch2r-2\\u\\wi.

It now remains to estimate ||« — wA|| L (T ,. By L2 duality we have

(5.7) ||u - «Jtl(re) = sup(M - u„. g)hN^-2a),

where the sup is taken over all g as in Lemma 5.2. With G, Gh, and uh defined by

(5.3) and (5.1), we can write, for any xA g Sh,

(5.8) (u - uh, g) = A(u - uh,G) = A(u - uh,G - Gh) = A(u - xh,G - Gh).

Let the integer J be as in Lemma 5.2. Using Corollary 4.2, we see that there is a

XA g Sh such that, by the continuity of A,

A(u-Xh,G-Gh)

< c{ T II" - xJr*¿(D,)||G - Gh\\w¡(D])
Kj<J

(5.9)
+ 11" - xJ<(S2J+1)llG - Gjl»f(0.,+1>}

< C\\u\\wA Thyl\\G - Gh\\whDj) + hrx\\G - Gh\\w¡{aS.
yj<J '

The theorem now follows from (5.5) through (5.9) and by Lemma 5.2.   D

6. Proof of Lemma 5.2. Let us first recall from Section 3 the notation dj = 2~J,

hj = hdf, Qj = Bdj(x0) n 0, Dj = Qj\Qj+v and Dk = D}_k U • • • U DJ+k. For

given a with 0 < a < 1, we have also defined the function Jx = Jx(h) by 2~Jl =

Cxh1/(1~a), where the constant C, was chosen large enough to imply, for ally < Jx,

the relative smallness of the mesh on Z). necessary in order to derive, under the

assumption dist(Z)', ß\D") > cxdjt the local inverse estimate (4.4) and the ap-

proximation properties (4.8) and (4.9). It was also pointed out that, for j < Jx, the

mesh size on Z). is proportional to A. and hjdj1 < C. It follows immediately from

our definitions that

(6.1) dj = 2dJ+x    and   h/ = 2ahJ+x.

This will be used frequently throughout the proofs, sometimes without explicit

mention.

For the proof of Lemma 5.2, we shall need the following two preliminary lemmas.

Lemma 6.1 improves the standard H1-cttot estimate

||G - Gh\\x < C%||o

for the special G considered. Lemma 6.2 shows local //^estimates for G - Gh

without any specific assumptions on G. Proofs of these lemmas can be found in

Eriksson [5]. Just take as the form in [5] the adjoint of A. (Cf. also the proof of

Lemma 9.2 below.)
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Lemma 6.1. For given a, with 0 < a < 1, there is a constant C such that the

following holds for any integer J < Jx: Let g G L2be supported in t0, where f0 contains

x0. Define G by

(6.2) A(v,G) = (v,g)   Vug//1,

and let Gh G Sh(r, x0, a) be the A*-projection of G. Then, for E = G - Gh,

(6-3) ||£||i < CAjg||0.

Lemma 6.2. For given a with 0 < a < 1 and r > 2, there is a constant C such that

the following holds for any integer j < Jx: Let G G Hr(Dj), and let Ghe Sh =

Sh(r,x0, a) satisfy

(6-4) .4(xA,G-GA) = 0   VXagSa0(z>;).

Then, for E = G — Gh,

(6-5) \\E\\UDj < Chj-'WGl^ + Cdjl\\E\\0^.

Proof of Lemma 5.2. For fixed a with (r — 2)/(2r — 2) < a < 1, we shall prove

the existence of a constant C and an integer J < Jx such that

(6.6) E hj-^EWr},^ + hrl\\E\\wUüj+i) < CA2-2,

where E = G - Gh is defined as in Lemma 6.1 with the additional normalization

llgllo = h~NA2~2a). By the refinement assumption diam(r0) ~ A1/(1~a) and the nor-

malization of g, we have, by Schwarz' inequality,

(6-7) ||g||z.i(To)<diamA'/2(T0)||g||0<C.

The choice of the integer J < Jx will be made later on in the proof by fixing a

constant C* (sufficiently large) and defining J by the inequalities

(6.8) 2-J = dj< C*h1A1~a) < 2dj = 2<J-l\

By the definition of hj we then also have

(6.9) Ay< C%h1A1~a) < 2ahj.

We now set out to prove (6.6) by first estimating the term associated with ßy+1.

By using, in turn, Schwarz' inequality, Lemma 6.1, the normalization of g, (6.8), and

(6.9), we have, for (r - 2)/(2r - 2) < a < 1,

hj-'WEW^^^hy'd^WEi < CA;</2||g||0

(6.10) < Chrjd^2h-NA2-2a) < CCy2hrj

< CC¡P2+«7.r*1-«> < C(Cm)h2r-2,

which is the desired estimate.

In order to get a similar estimate for the sum in (6.6), we first apply Schwarz'

inequality to each term to obtain

(6.11) E hj-l\\E\\^IDj) <C£ h'f1djN/3mi.Dj.
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We shall proceed to show, with

S = E h)'xd»/2\\E\\x,Dj,
j<j

that, provided C * is chosen sufficiently large, we have

(6.12) S ^ \S + Ch2r~2.

This would imply S < Ch2r~2 and, thus, together with (6.11) and (6.10), show the

desired estimate (6.6). To complete the proof of Lemma 5.2, we shall also prove that

(6.12) holds for a = (r - 2)/(2r — 2) if C is replaced by Cln(A_1). Moreover, as is

easily seen by tracking constants, we shall prove (6.6) with C depending only on

TV, ß, A, a, r, and given constants. That is, the final claim of Lemma 5.2 will be

fulfilled.

In order to show (6.12) we first split the sum 5 and then make use of Lemma 6.2.

We have

s=E  +  E=Si+E hr-^2\\E\\XMi
j=J-2       y«7-3 7<7-3

<SX + C   E   Af-2</2||G||r,ü;
y «7-3

+c e Ar^-^iUj
7«/-3

<s, + s2+c5 E hrj-\i^-lM0tDj,
y «7-2

where we have also used (6.1) in the last step.

The sum Sx, only consisting of three terms, has essentially already been estimated.

In fact, by (6.1) and part of (6.10), we have

(6.13)

2r-2
(6.14) Sx < 3hrJ-_2d?/22\\E\\l < Chy^^2^ < C(C*)A

For the estimation of 52 we first note that, since Dj and supp(g) are separated by

a distance of order d-, we have, from Lemma 2.3,

MK(Dj)<Cd;»+2-'MLl(r0y

By Holder's inequality and (6.7), this shows

(6.15) ||G||r,0j < a/;/2||G|| W) < CdJ^2-.

Let/, be the smallest integer for which D,¥= 0. Using (6.15) we obtain

52<C   E   ^-2</2||G||r.D^ C E h2r2d2-'

(6.16)

< CA2-2 E dfr-2)+2-r < CA2r"2,

7~7'i

where we have used that a > (r - 2)/(2r - 2) in the last step. In the case a =

(r — 2)/(2r — 2), all terms in the sum equal 1, and so, since by (6.8) the number of
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terms is proportional to ln(A x), we have

S2< Cln(A-1)A2'-2.

It now remains to show that

(6.17) C5   E   h'^d^WEW^As+Ch2-2.
j<J-2

For this we first write, by duality,

(6.18) ||£||0>C; = sup(/,£),

where the supremum is taken over all functions / supported in Z). and of unit

L2-norm. For such/ we define Fj by

(6.19) A(Fj,v) = (fj,v)   Vdg//1

and note that new applications of Holder's inequality and Lemma 2.3, together with

the normalization of/, give, for i #/ — l,j,j + 1,

iiFjr,Dj < cdrwFjW^ < cdrd;N+2-%\\Ll(Dj)

(6.20)
< cd^d]»'2*2-'.

By (6.19), the definition of E, and the //^continuity of A, we have, for arbitrary

Xh e sh,

(fJ,E) = A(FJ,E) = A(FJ-Xh,E)

< r\\F — v II     JlFll     , + C Y Wf — v II      llFll*s Hlry      XaIIi.o^II^IIi.o? ̂ *- ¿-i \\rj     XaIIi.d.IRIIi.d,

(6.21) i*j-2,...,j+2

+ cll£lli,o,Jrf,-xJi.0,+1
= IX + I2 + Z3.

We next intend to estimate /,, I2, and /3 separately, with xA approximating Fj as in

Proposition 4.2.

By the approximation property (4.8), elliptic Z/2-regularity, and the normalization

of/, we first have, for /,,

/, < C||£||lii(/Aj^||2 < C||£||1D;Aj/||0 < Chj\\E\\VD}.

We next use (4.8) and (6.20) to estimate Z2. We have

h < c       E        \\E\\i,D,K~l\\FjlM
.«7

t*J-i.y + 2

< C        T        \\E\\UDhrld^2d-N^2-r
)<7

i+j-2.y + 2

< Cd-^^-Thr'dfñlEiuD, = CdjN/2+2-rS.
i^J

It remains to estimate /3. Since we shall only consider Fj withy < / - 2, i.e., with

supp(/) separated from ßy, we use Lemma 2.3 to derive

P5U < cdTdf^-'-
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From this, the approximation property (4.8), and again using part of (6.10), we have

h « cWew^j^WFjIU

< CllEUr.^Ar1^/^2-'

< cdj-w+t-Wj-hiy^Eh < c{cm)h2'-2dJ-'"2+2-r.

Collecting (6.18), (6.21), and the above estimates for Z,, Z2, and Z3, we have shown

(6.22)     \\E\\0Dj < Chj\\E\\XD2 + Cd;N/2+2-rS + C(C*)h2r-2d-N/2 + 2-.

Estimate (6.22) inserted into the sum in (6.17) gives

c5 e »rv^-m^
j*iJ-2

y<7

(6'23) + CS £ hj-'d1-' + C(C*)h2r-2 E hrj-ldj-r

y «7 y<7

< C6(max(A/;1) + E Äy'-yHs + C(C,)A2-2 £ A;-1*;-',

where the constant C6 is independent of the choice of C*. As is easily seen from

(6.23), all that remains in order to obtain (6.17) is to show that, for a suitable choice

of C*, we have

(6.24) cJmaxihjd;1) + £ h'f'd1-) < \.
\ J<J y<J >        Z

By the definition of hj, the assumption a < 1, (6.8), and for C* sufficiently large,

we have

(i) maxiA//1) = max^a-/-1) = Aa/*"1 < ¿21 ^ X.
7<7 y«J (_ * ^*-6

Since a < 1 and r ^ 2, we have, again for C* sufficiently large,

E A;"1*/1"' = A'-1 £ a-j""1^-1» = A'-1a'ja-1)(r-1>(l - 2<Q-1«'-1»)"1

7<7 y<7

v11) 2a-«X»—«A  _ 2la-lXr-l)\-l j

< C(i-«xr-i) ^ 4Q'

where we have again used the right inequality of (6.8). Now fixing the constant C*

so that both (i) and (ii) hold, we have obtained the desired inequality (6.24) and,

thereby, finally proved Lemma 5.2.   D

7. High-Order Local Convergence for Derivatives. In this section we shall prove

that, for « sufficiently large, we have 0(h2r~2) convergence at x0 also for the

first-order derivatives. More precisely, we have the following result:

Theorem 7.1. Let ß and the bilinear form A be as in Section 1. Furthermore, let x0

be an arbitrary point in ß, let r ^ 2 be an integer, and for h small and positive let there

be given a family of partitions AA(x0, a) o/ß and the corresponding finite-dimensional
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spaces Sh = Sh(r, x0, a) as in Sections 3 and 4. Then, for given a with 1/2 < a < 1,

there is a constant C such that, for u G W¿ and uh G Sh, the A-projection of u, the

estimate

(7.1) \v(u-uh)(x0)\^Ch2'~2\\u\\wi

holds. If a = 1/2, estimate (7.1) holds with C replaced by Cinih'1). Moreover, the

constant C is independent ofx0.

For the proof we shall need the following technical result:

Lemma 7.2. Let the element t, the simplex f, and the affine transformation AT satisfy

assumption (SA)' of Section 3, and let r ^ 2 be an integer. Then there is a constant

C = C(N, r, c's, Cs') such that, for any p G Pr(f ), we have

lbll¿„,(T)< csup(p,g),

where the supremum is taken over all g G C"(t) with

(7.2) diam"/2(T)||g||0 + diam<™2(T>l|g|li < 1.

Proof. Define, as before, the operator aT by aTv(y) = v(A~\y)). Then

IHk(r) < IHlk(t) = Ik/jlkm-

With c's given in assumption (SA)', let B2c,(y') be the largest ball contained in c'sT,

and set B = Bc,(y'). By the equivalence of norms on Pr(T), there is a constant

C = C(N, r, c's) such that

\\p'\\Lxm<C\\p'\\Lx(B)   VP'^Pr.

Let M be a fixed function in C™(Bx(0)) satisfying

(p',M)=p'(0)   Vp'eP,

(cf. Hilbert [8]) and set Mz(y) = c'~NM((y - z)/c'). Then

(p',M:)=p'(z)    Vp'ePr,

and, hence,

ll/>'lk(fl,= sup(/7',Mj    Vp'eP,.

Noting that aTp e Pr, we now obtain

ll/>lk(T)< Csup(aTp,M.) = Csup(/j,|det/3T|a;1A/_.),

where we have changed variables in the last step. To prove (7.2) it is then sufficient

to show that, for some (small) constant 5, the functions g = <5|det B^a^M., for

z e B, satisfy g g C0°°(t) and (7.2). However, since M g Cxf(Bx(0)), it follows from

the definitions of B, M,, and a'1 and from (SA)' that

g = ô|det BT\a;1M: G C0°°(t).

Moreover, since M is bounded, so is a~lMz, and hence by Holder's inequality and

for suitable S's,

diam"/2(T)||g||0.T ^ diam"(T)||g|k < ôdiam"(T)|det Br\ ¡a^M^ < 1/2.
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Similarly,

diam<^2»/2(T)||g||1.T < .5Cdiam"+1(T)|detZ?T| K'^lk

< CSdiamÍT)!^;^!^ < 1/2,

which completes the proof.   D

Proof of Theorem 7.1. We shall prove (7.1) with V replaced by any 3y = 3/3x,. Let

x0 g f0. We shall use Lemma 7.2 with r = t0 and p = 3y(xA - "A) g Pr_x(T0).

Using the triangle inequality, Lemma 7.2, and Holder's inequality, we then have, for

anyx,,G S„,

1(3,11 - djuk){x0)\<\{9ju - 3,x*)(*o)| + |(3,X* - 3/"*)(^o)|

<|(9y"- 3/X*)(*o)| + Csup(3yxA- 3,"A,g)

< II3/" - 9yX Jz.œ(To) + Csup(3/M - djXh, g)

+ Csup(3;u- djUh,g)

<|3y" - 9,XaII2.„(To) + Csup||37.M - 9yXA|Loo(To)l|g|li.1(T0,

+ Csup(3,w - djUh,g),

where the supremum is taken over all g g C0°°(t0) with

diam»/2(T0)||g||0 + diam^2^2(r0)\\g\\x < 1.

Since, for a > 1/2, the refinement assumption (RA) implies

diam(x0)< CA1/(1-a) < CA2,

Proposition 4.2 yields a xA e Sh such that

(7.4) ¡3,.« - 3,xA||too(To) < Cdianr-HibîNifs < Ch2r-2\\u\\wí.

Moreover, by Schwarz' inequality and the normalization of g, we have

(7-5) y|MTo) < diam^(T0)||gio < 1,

and, hence, the first two terms on the last line of (7.3) can be estimated in the desired

way. In the last term we first integrate by parts. We then put g' = -djg and define

G' g H1 and G'h g Sh by

(7.6)    A(v,G') = (v,g')    Vug//1,       A(Xh,G'-G'h) = 0   VXa g Sh.

Following the proof of Theorem 5.1 with g, G, and Gh replaced by g', G', and G'h, we

then obtain

(9y" - 9y"A>g) = (" - uh,-djg) = (u - uh,g') = A(u - uh,G')

= A(u-uh,G'-G'h) = A(u-Xh,G'-G'h)

< C    E II" - xJn4(D;)||G' - G'h\\m¡(Dj)

(7.7) f \
+ 11" - X/,lki(S2J + 1)llG' ~  Gh\w\(üj^){

< C\HwA Thj-l\\G' - G'h\wHD/) + hrl\\G' - GA|k(<w   .
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The desired estimate now follows from (7.3)-(7.7) and by Lemma 7.3 below. The

independence of x0 of the constant C is easily checked. This completes the proof of

Theorem 7.1.    D

Lemma 7.3. Let the basic assumptions be as in Theorem 7.1. Then for given a, with

1/2 < a < 1 andJx as before, there is a constant C and an integer J < Jx such that the

following holds: Let x0 G f0 and let g G C™(tq) satisfy

diam»/2(T0)||g||0 + diam^2^2(r0)\\g\\x < 1.

Set g' = -djg and define G' g Z/1 and G'h g Sh as in (7.6). Then for E' = G' - G'h,

(7.8) £ hj-l\\E'\\wl(Dj) + hyl\\E'\\wh0j+i) < CA2-2.
y<7

If a = 1/2, estimate (7.8) holds with C replaced by Cln(A_1).

Proof. We first estimate the term associated with ß/+1. As in the proof of Lemma

5.2, we shall choose/ < Jx such that

dj < CA1/«1-"1 < 2a/   and   Ay < CÎA1/(1-o) < 2"Ay,

where the constant C* will be determined later in the proof. Then, by the refinement

assumption, A/? dj, A1/(1_a), and diam(T0) are all of the same order. Hence, using

Schwarz' inequality, Lemma 6.1, and the bound for g, we have, for a > 1/2,

hy^E'\\w}IQj+¡) < hrld»/2\\E'h < ehry^Ms'llo
(7.9)

< C{C^W-^-'>à^^^2(r0)Mi < C(C+)A2-2,

which shows the desired estimate for this term.

We now proceed to estimate the sum in (7.8). Setting

5= £ hj-^Et.op

we have, by Schwarz' inequality,

(7.10) Thj-'WE'WwUD^CS.
i<íJ

We shall first show that

(7.11) S<CA2'"2+C   £   Af-2a//2||G'||r,D/
y<7-2

We shall again use the obvious equalities (6.1), dj = 2dj+x, and Ay = 2"A/ + 1. In

order to estimate the three last terms of S, we shall use part of (7.9), and to the rest

of the terms we apply Lemma 6.2. We then have

s=   £   +   £   < ihr_\d^\lE'h +   £ hW2lE>li,Di
j=J-2       /</-3 y<7-3

< CArk"/2||£'lli + C   £   A2-2a//2||G'||„0.
y«7-3

(7.12) +C   £   h^d^-^E'Wo^
i<7-3

<C(C,)A2-2 + C   £   Af-2</2||G'||r,D(
y «7-2

+ c; £ h^df^WE'W^.
y«7-2
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In order to estimate the last sum, we proceed, as in Section 6, by first estimating

||£'||o,d • Following (6.18)-(6.21), we obtain three terms, I{, Z2, and Z3, which have to

be estimated. The terms I{ and Z2 are bounded exactly as in Section 6 but for the

additional "primes". In order to bound Z3 we use part of (7.9) instead of (6.10). As

in Section 6, if C* is sufficiently large, we finally arrive at the estimate

(7.13) Ci   T   A-1a;/2-1||£'||0.D;<C(C,)A2-2 + y5.

y*¡7-2

By a simple kickback argument, (7.11) follows from (7.12) and (7.13). It now

remains to show

(7.14) £   h2/-2d^2\\G'\\r,D] < CA2-2.
y<7-2

Using the representation (2.5) we have, for G',

G'(x) = f <S(x, y)g'(y) dy=-f 9(x, y) d¡g(y) dy.

Differentiation under the integral sign and integration by parts give

DßG'(x)=( dJDß$(x,y)g(y)dy.

For j < Jx and any x G Z) we have that dist(x, supp(g)) > cdf. Thus, Holder's

inequality and estimate (2.6) yield

\D"G'{x)\< Cd-^-^M^, ^

and, hence,

\\r"\\ *- r-A-N+ !-rlli»ll
l|G   WrVZ(Dj)<   Cdj llfllLl(T0)-

By Schwarz' inequality and the previously obtained estimate ||g||¿ (T > < C, we have

Il/"'Il ^   rA-M/2+l-r
\\G \\r,D) < Cdj

Inserted in (7.14), with^, as before, for fixed a > 1/2, this gives

£   A2-2</2||G'||r.D/<c£A2-2a)-

j<J-2 i=h

= CA2-2 £ df2r-2)+1~r < CA2-2.

y-yi

This shows (7.14). In order to complete the proof of Lemma 7.3, we note that in the

case a = 1/2 all terms in the last sum equal 1. Estimating the number of terms, we

obtain the final bound ClníA-^A2—2.   D

8. A Negative-Norm Estimate. In this section we shall prove a negative-norm

estimate referred to in Sections 9 and 10. The result is well-known from, e.g.,

Bramble and Osborn [3], but will be proved here for completeness. However, we

shall first show the following result on approximation properties of the spaces

SA(ß').
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Proposition 8.1. Let the domain ß, the bilinear form A, and the family of

finite-dimensional spaces Sh = Sh(r, x0, a) be as before. Moreover, let ß' be a subdo-

main on ß with C°° boundary 3ß'. Then there is a constant C, and for each given

v G L,(ß') a Xh G Sh(Q') such that the following holds: If j < Jx, D' c D" c (ß' n

Bj_x(x0)), dist(Z)', ß' \ D") > cxdj, 1 < /> < oo, 0</<l<w<r, and if v g

Wpm(D"), then

(8.1) lk-xJk;(D')<CA--/|Hk;„(D„).

In particular, ifve Hr(Q,'), then

(8-2) Ik - xJi.o'< GA-^HU.

ZVoo/. There exist (cf. Eriksson [5]) an extension operator E: L,(ß') -* LX(RN)

and constants C and c£ such that, for x g ß',

ïïEvnw?(Bd(x.) < ^llyll w™(Ä,.Jiy(jr)rin')-

Let xA approximate £ii as in Proposition 4.2. Let t' be an element of the partition of

ß' induced by AA. Following the proof of Proposition 4.2 given in [5], we obtain the

estimate

(8-3) \\v - xJ^iv) < Cdiam'"-/(T)||l;|U;,(OT,),

where t' c t g Aa, and where Or. is a neighborhood of t' in ß' having diameter of

order Ay. Note also that, by the choice of Jx, we can assume that condition (4.7)

holds for 0T,. But then estimates (8.1) and (8.2) are easily derived from (8.3) by the

same means as we earlier obtained (4.8) and (4.9).   □

Proposition 8.1 will be used in Sections 9 and 10. In particular, (8.2) implies the

desired negative-norm estimate:

Theorem 8.2. Let the domain ß, the bilinear form A, and the family of finite-dimen-

sional spaces Sh be as before. Moreover, let ß' be a subdomain o/ß with Cx boundary

3ß'. Then there is a constant C such that, for u g Z/r(ß') and uh g SA(ß') its

Aü-projection

(8-4) III" - "J-r+2,rr < CA2-2||M|U,

Proof. Our task is to show that, for some constant C and any w G C°°(ß'), we

have

(8.5) (u - uh,w)a, < CA'2'-2||«|U||Hk2 Q,

Define IK by

(8.6) A(o,W)a, = (v,w)Q,   VijG/Z^ß'),

and recall from Lemma 2.2 that

(8.7) \\m\r,a,<c\\w\\r_2Q,.

By the definition of uh and the continuity of Aa., we have, for any xA g 5A(ß'),

(8.8)    A(u- uh, W)a. = A(u -uh,W- xJD- < C||ii - uh\\ua\\W - Xh\\i.ü-
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By (8.6), (8.8), and the standard //2(ß') estimate

II"- «*lli.o-< c     ink  II" ~ XaIIi.q'.

easily obtained from the coercivity and continuity of Aa,, and the definition of uh,

we have

(u - uh,w)a, = A(u- uh,W)a.

<C     inf     ||m-xJi,o-     inf     W-XhWi.ü-
XagS„(í!') X*eS*(ß')

The desired estimate (8.5) then follows by (8.2) of Proposition 8.1 and by the

regularity result (8.7).   D

9. High-Order Convergence for u Only Locally in W^. Here we shall relax the

regularity assumptions on u away from the point x0 and show that 0(h2r~2)

convergence of (u — uh)(x0) can still hold. This will be done by localizing the

arguments used in Sections 5 and 6 to a neighborhood 0° c 52 of x0. A pollution

term in a so-obtained local estimate will be estimated using Theorem 8.2.

Since we consider also the case when x0 is close to, or even on the boundary 3ß,

we shall have to introduce for m a nonnegative integer and for ß' c ß, the following

special negative norm:

,, n* (v,w)
Hl-m.a- = sup ——-—.

w<BC™(a)        IIHU
supp(w)n ß\ß' = 0

Obviously, for ß' c ß" and m' > m", we have

IMI-m'.ß' < ||f||-m".ñ",

and our new norm is related to those defined in Section 1 by

IMI-m.o
Besides, if ß' c ß or m = 0, then

IMk.ß' <|k||-m,ß' <|H||-m,í

||^||-m,ß' = \\v ||-m,ß'-

We are now ready to state the announced result in precise terms.

Theorem 9.1. Let the domain fi, the bilinear form A, and the family of finite-dimen-

sional spaces Sh = Sh(r, x0, a) be as before. Let ß° be a subdomain of ß with

dist(x0, ß\ ß°) = c0 > 0, and let m^O be an integer. Then, for given a with

(r - 2)/(2r - 2) < a < 1, there is a constant C such that, if w g I^(ß0) and

uheSh(Sl°) satisfy

A(u-uh,Xh) = 0   VXAG5A°(ß°),

then

(9.1) |(ti - uh)(x0)\ < Ck2'-2Mwu#. + CH" - *kC*-

In particular, if u g Hr anduh g Sh is its A-projection, then

(9.2) \(u - uh)(x0)\< Ch^WuW^^ + Wul).

If a = (r - 2)/(2r - 2), then (9.1) and (9.2) hold with C replaced by Cl^A"1).
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Remark. The constant C in (9.1) and (9.2) depends on c0, but is, in fact,

independent of x0.

Below we present two lemmas which will be used in the proof of Theorem 9.1.

These lemmas are proved at the end of this section. For Aao we shall use the shorter

notation A0. In the proof of Theorem 9.1 we shall estimate the two terms

(U - Uh)(x0) and (Uh - uh)(x0), where Uh g SA(ß°) is the /l0-projection of U

= u\ao. The term (U - Uh)(x0) will be estimated following essentially the proof of

Theorem 5.1. However, for this we shall need the following analog of Lemma 6.2:

Lemma 9.2. Let ß° be as in Theorem 9.1 and have a C00 boundary 3ß°, and let j0

be the smallest integer for which ß c ß°, where ßy = Z/ D ß as before. Set D" =

ß° \ Qyo+2 and D' = ß° \ ß/o+1. Then there is a constant C such that, if G G Hr(D")

and GA°G 5A(ß°) satisfies A0(xh, G - Gh) = 0 VxA G SA(ß°), such that xA = 0 on

Q°\D",then

(9.3) \\G - Gh\\UD. < Ch'-lMrjr + CHG " G*|o,o-

In order to estimate the term (Uh - uh)(x0), we shall use the following result:

Lemma 9.3. Let ß° be as in Theorem 9.1, and let m' > 0 be an integer. Then there is

a constant C such that, ifvh G 5A(ß°) satisfies A(vh, xA) = 0 VxA G SA°(ß°), then

(9-4) k(*o)l<C|k||*m,0o.

Proof of Theorem 9.1. We may assume, without loss of generality, that 3ß° is

smooth. Set U = u\üo and let Uh g SA(ß°) be its ^-projection. Then on ß°,

(9.5) u-uh = (u-U)+(U- Uh)+(Uh -uh) = 0 + ex + e2.

We first claim that

(9.6) \ex(x0)\ = \(U- I/J(*o)|< Ch2r-2\\U\\wr(a0),

where C is to be replaced by Cln(A_1) in the case a = (r - 2)/(2r - 2). This is

proved in the same way as Theorem 5.1, but, instead of the subdomains ÜJ+X, D},

Dj_x,... of ß, we now consider ß° subdivided into the domains ß/+1, Dj,... ,D} +1,

and D'. The approximation properties needed for the spaces S^ß0) are given by

Proposition 8.1, and the required counterpart of Lemma 6.2 for the domain D' is

given by Lemma 9.2.

We shall next show that

(9.7) \e2(x0)\ < CA2-2||i/|Uo + C\\u - uh\\*m^.

Since U = u on ß°, and since || • ||riao < C|| • H^ßo,, (9.7) together with (9.5) and

(9.6) will show (9.1). In order to obtain (9.7), set m' = max(w, r — 2) and note that,

for any xA g SA°(ß°), we have

Ae2, Xh) = A(u - uh, xh) - A(U - U„, x„) = 0 - 0 = 0.

Hence, by Lemma 9.3,

k(*o)l< ^Nl-m'.n»-
Using first the triangle inequality and the fact that U = u on ß°, and then that

II • Il-m',s2°is dominated by both || • ||!m,no and ||| • IH_r+2,o°, we have

Ik2ll-m',ß<> < II" - "Jl-m,ß° + 111^ -   ̂ lll_r + 2.S20-
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From here the negative-norm estimate (8.4) settles (9.7) and, thereby, (9.1). In

particular, if u g Hr and uh G Sh is its ,4-projection, then (9.1) with m = r - 2, the

norm inequality || • ||*m ao < ||| • |||_m, and the negative-norm estimate (8.4) together

show (9.2). This completes the proof.   D

Remark 9.1. Since (9.1) is entirely a local estimate, it can be used to obtain

estimates similar to (9.2) also in other situations where high-order negative-norm

estimates for u — uh are known, such as, in connection with various procedures for

treating the Dirichlet problem.

Proof of Lemma 9.2. We introduce for the proof domains D(J),j = 0,..., 4, such

that D' = D(0) c D(1) c • ■ ■ c Z)<4) = D" and with dist(D{J\ Q°\DU+1)) > c> 0.

Following the proof of Lemma 6.2 given in [5], we shall first show that the desired

estimate (9.3) is implied by the statement: There is a constant C such that, if

v e H\D0)) and vh G 5A(ß°) satisfy A0(Xh, v- vh) = 0 VXa g SA(ß°), such that

XA = 0onß°\Z)(3), then

(9.8) \\v - í7a||10, < C|H|1-0,3, + C||u - dJ0,ö»>.

For, set v = G - Xh and vh = GA — xA, where xA g «^(ß0) approximates G. Then

by (9.8) and Proposition 8.1,

l|G - Gh\\XD. =\\G - Xh ~(Gh - xJIIi.d- < CWG - xJi,d<3>+ C\\G - GA||0iD<3,

< Chr-l\\G\\r,D" + C||G- GJof|,-,

which shows (9.3).

For the proof of (9.8) we let t] be a smooth cutoff function, vanishing in ß° \ D(3),

equal to 1 on Z>(2), and with ||tj||^i < C . We use the notation (j]v)h for the

^-projection of i)v. By the triangle inequality, we have

II« - VhWi.D' <\\w -(vv)hWi.D' +\\(vi})h - Vh\\i.D- = I' + r'■

Using the boundedness in ZT^ß0) of the /l0-projection and the properties of tj, we

have

/' < C||t/i;||1iÍ2o < C||i;||i,di3>.

In order to estimate /", we need the following result: There is a constant C such

that, if wh g SA(ß°) satisfies ^0(xA, wA) = 0 VxA g ,SA(ß0), such that xA = 0 on

ß°\Z)(2>, then

(9-9) KIU< < C\\wX,Da,

Using (9.9) with vvA = (t]v)h - vh, we have

Z" < C\\(i\v)h - üA||o,Du, < C\\v - üa||0iD(3, + C\\r\v -(f]v)h\\aM«,

where we have also used the triangle inequality and taken larger domains in the last

step. Again using the boundedness of the vl0-projection and the properties of 17, we

have

hV - (W) h\\o,Q° < Ik -(yv)h\\l.Q° <  CHiJüIIlbO <  C|M|l.fl¡0>,

which completes the proof of (9.8).

We shall now show (9.9). Let D'h and D'h' be mesh domains on ß° such that

D' c D'h, ß°\ Z)(1) c D'h', and dist(D'h, D'h') > c> 0. Let tj be a new smooth cutoff



HIGH-ORDER LOCAL RATE OF CONVERGENCE 135

function equal to 1 on D'h, vanishing on D'h', and satisfying \\i\\\wr < Cr As in the

proof of Lemma 6.2 given in [5], we have

<^KHi,D< < cJ|tjhJ1i0o < AQ(t]Wh, T)H>A) = A0(t]2wh,wh) + I,

where I can be estimated by

2 2

KllfowJli0o+ c|KHo ,d<«.

Hence,

Klli.o' < CA0(t\2wh,wh) + C||wA||0£)(2,.

Using the discrete /l^-harmonicity of vvA and Proposition 4.3, we have, for some

X* 6 SA(0°),

1

A0(f]2wh, wh) = A0(t]2wh - Xh>wh)< Ch\\wh\\x D„,.

Now let D'h and D'h' be new mesh domains with Z)(1) c D'h, ß°\Z)<2> c D'h', and

dist(Z)A, D'h') > c > 0, and let tj be a new smooth cutoff function equal to 1 on D'h,

vanishing on D'h', and satisfying \\j]\\wi < Cr Set Dh = ß°\(Z)A U D'h'). Repeating

the above arguments then shows that, for any xA e ^(ß0) such that x* = 0 on

ß°\Z)(2), we have

IKIIi.d'1' < CA0(ri2wh - Xh>wh) + C\\wh\\^Da>.

By Proposition 4.3 we have, for a suitable choice of xA,

A0(ri2wh -Xh>wh)< Ch\\wh\\UDli.

Collecting the above estimates and using an inverse estimate on Dh, we have

2 2 2 2
IKIIi.d' « <^2IKIIi.d„ + C||wA||0iD,2) < C||wA||0 D«,,

which shows (9.9) and completes the proof of Lemma 9.2.    D

Proof of Lemma 9.3. Given an integer m' > 0, we shall prove the existence of a

constant C such that, for vh G SA(ß°) satisfying A(vh, xA) = 0 VxA G S%(Q°), we

have

k(*o)k c|k||!m,iQo.

Recall the definition Df = D}_k U • • • U Dj+k. Set m = max(m\[N/2] + 1), where

[N/2\ denotes the integral part of N/2, and let / be the smallest integer for which

Z>/"+3 c ß°. With D = Dj we shall show the desired estimate in two steps: namely,

(9.10) k(*o)l«c|klli,ô.
and

(9.11) Mil,*   <   Cll^Hlr^O.

Set D = D/""1"3. We shall use the fact that D is well separated from the point x0, so

that the mesh size on all of D is of order A, and dj1 < C for each DJ c D. For the

proof of (9.10) and (9.11), we shall use the following proposition:

Proposition 9.4. Under the assumptions of Theorem 9.1 and with I and m as above,

there is a constant C such that, if vh e SA(ß°) satisfies A(vh, xA) = 0,xA e S¡?(D", + 2),
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then, for k = 1,...,m + 1,

(9.12) Iklli.D,» < cA|k||1-D*+i + clkll-m.or'-

Estimate (9.12) also holds for vh satisfying A(xh, vh) = 0 VxA G 5A°(Z)/m + 2).

Before proving Proposition 9.4, we use it to first prove (9.11) and then (9.10).

Repeated use of (9.12) with k = l,...,m + 1 shows that

(9.13) Iklli.Dj < CA^IkH,,^ + C|k||!m,Dr2.

Let Dh be a mesh domain such that Z)/"+2 c Dh c D. By (4.5) we have

Iklli.D,— < ch-m-l\\vhtm,b < cr^Klll.i»
and, hence, since m > m' and D c ß°,

(9.14) Kill.* = Iklli,/» < cKlll.fi < c||OA||!m,,ao,
which is inequality (9.11).

In order to show (9.10), let zh G S^ß,.,) be equal to vh on ß, and satisfy

IIzaIIi,d < Clklli 0. To see that such a zh exists, let D'h and D'h' be mesh domains

such that ß, c D'h, ß°\ ß^, c D'h', and with dist(Z)A, D'h') > c > 0, and let tj be a

smooth cutoff function equal to 1 on D'h, vanishing on D'h', and satisfying \\i)\\wr < C .

Take zh as the function xA which approximates t]vh, as in Proposition 4.3. The

triangle inequality and df1 < C then give

Iklli.D < \\r>vh - zh\\i,b + IkJi.o

< CV^'Klli b + Ch,d¡2\\vh\\0,b + Ctf/'Nklli.fi < C|k||1<0.

As before, let t0 be an element for which x0 G f0. Using the inverse estimate (4.1)

and the assumption that diam(j0) is of order A1/(1_a), we have

(9.15) k(x0)| = k(*o)l < Cdiam-^2(T0)|k||o,To < CA-^2-2«»|k||0,To.

Duality gives

(9.16) |k||o,To = sup(zA,g)A^2-2«',

where the supremum is taken over all g g C0°°(t0) normalized so that ||g||0 =

h-NA2-2a) Let g g ZZ1 be defined by

A(v,G) = (v,g)    Vv^H1,

and let GA g Sh be the ^-projection of G. Let xA g S°(Ci¡) equal GA on ß/+1 and

satisfy

\\Gh-Xh\\i,b<C\\Gh\\ub.

The existence of such a xA is an easy consequence of Proposition 4.3. Since vh is

^-harmonic on ß°, and hence zA on ß,, we have, by the definition of xA and GA,

A(zh,G) = A(zh,G-Xh) = Azh>G- G„) + A(zh,Gh- xA)

= A(zk,Gh - Xh)-

Hence, by the definition of G and the estimates on GA - xA and zh,

(9.17) (zh,g) = A(zh,G) = A(zh,Gh-Xh)< C|k||liB||GA - xji.fi

<  CKIIl.fil|Gjl,fi,
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where we also used that either zh or Gh — Xh vanish outside Z). Now note that GA

satisfies

AXh, Gh) = A(Xh, G) = (xa, g) = 0   VXa g 5°(ß\T0).

Hence, Proposition 9.4 applies, and we obtain, as in (9.14),

(9.18) \\G„\\ub < C||GA||1,D.

We shall now use the fact that the last negative norm is dominated by the L,-norm

over D. Namely, since m > [N/2] + 1, the Sobolev inequality (cf., e.g., [1])

IMk < C||w||[Af/2] + l < c||w||m

yields

ii^ u*                       (G*'w) ,          H6»lk(fi)IMk
\\Gh\\-m.b=     s"p       ., „   <  sup  —¡n-

(Q in) H'eCtu) ||w||m weC=°(ß) |M|m

supp(M)n fl\D = 0

< C||GA||Ll(fi, < C||G||i.,(fi) + C||G - Gh\\wi(b),

where we have also used the triangle inequality and changed to a sharper norm in

the last step. Using Lemma 2.3 and recalling that g, as defined above, has bounded

Lrnorm, we at once have

||G|k(l>)< C||g||i.l(T0)< C.

For the other term we use Lemma 5.2 to obtain

/    l+m + 3 \

\\g - Gh\\wl{b) = ||g - GA|k,(Dr,+3) < A,-;:1,,     £   a;-íg - ga|U,1(Dj)
[j-l-m-3 I

< CA-r+1ln(A-1)A2'-2< C.

Collecting the above inequalities, we have shown that ||GA||, -D < C, and, hence, by

(9.15)-(9.17), obtained the desired estimate (9.10) and thereby proved Lemma 9.2.

D

Proof of Proposition 9.4. We shall prove that if vh is discrete ^4-harmonic in D[" + 2,

then, for k = 1,... ,m + 1,

KIIi.d,* < CA||i;A||i,D*+i + C||(7A||_„,,D*+i.

Fix k and introduce domains DJ such that

Dk = D1 c Z>° c D1 c ••• c Dm x c Dm = D¡< + 1

and with dist(D/ ß \ DJ + 1) > c> 0 for; = -1,... ,m - 1. By Lemma 7 in [5] (with

v = 0) the Z/^norm of vh over Z). is dominated by Cd'1 times the L2-norm of vh over

a slightly larger domain. Using the same arguments step by step, we here obtain

Iklli.D,* < c|k||0iDo.

We shall next show that, for; = 0,..., m - 1, we have

(9.20) |k||*,DJ < CkMi.DJ+i + C\\vhfHJ+1),Dr+>.
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Repeated use of (9.20) for thesey"s yields

Kllo.D» < CAlklll.ß" +  CWVh\\*m.D™-

Since || • ||0 Do = || • ||o,d0' we W1^ tnen have obtained the desired estimate (9.12).

In order to show (9.20), fix j and consider a domain D with D>' c D c Z)7+1,

dist(ZV, ß \ D) > c> 0, and dist(Z), ß \ ZV+1) > c> 0. Let t, g Cx(Rn) equal 1

on ZV, equal 0 on ß\Z), and satisfy \\i,\\w« «S Cr Moreover, let tj satisfy the

boundary condition

c      '.y = l 7

where w = («,.) is the exterior normal to 3ß. That such a function tj exists follows

from the ellipticity condition (1.3). For let tj' satisfy all requirements on tj except for

the boundary condition, and let u be a smooth function vanishing on 3ß, with

nonvanishing gradient on supp(T/') and gradient parallel to n on 3ß n supp(ij').

Then, with 3y = 3/3xy, the function

# Ej[/.1flV8|«8yll'
T| = TJ-0)

Y\     ,a   3 w 3 w^i,j=i ¡j  i    j

satisfies all requirements, including the boundary condition.

Now, let w g C°°(ß) with supp(w) nti\DJ = 0, as in the definition of the

negative norm || • ||*, By. For such w define Why

A(v,W) = (v,w)   ViiGZ/1.

We shall integrate by parts and use the boundary condition on tj. We have

(vh,w) = (r,vh,w) = A(i\vh,W)

dx
"   i,y=l ' 7

= ^(DA,7Jír)-r/,

where

/<c|k||!(7+1),D7+.||»1|y+2.

Since /7A is discretea-harmonic, we have, for any xA g S^(Dj+1),

A(vh, i)W) = A(vh, i\W - Xh) < C||i;A||liDy+l||i|^ - xJi.d^'-

By the approximation properties obtained in Section 4, there is such a xA with

\\W- xJIi.d'- < Ch\\W\\2 < Ch\\W\\J + 2.

Since Lemma 2.2 shows that || W||7-+2 < C||w||y., we have thus obtained

(vh,w) < c{A|k||liDJ+. +lkA||-o+i),D^'}lklly,
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with C independent of A, vh, and w as above. Since this is the same as (9.20), and

since the same estimate could be obtained for vh being discrete /l*-harmonic in

D¡" + 2, we have thereby proved Proposition 9.4.   D

10. High-Order Convergence for Derivatives for u Only Locally in W¿. In this

section we shall prove a counterpart of the localized estimate for (u - uh)(x0) of

Section 9 for the gradient and show that 0(h2r~2) convergence of v(« - uh)(x0)

can also hold when u is only locally in W¿.

Theorem 10.1. Let the domain ß, the bilinear form A, and the family of finite-

dimensional spaces Sh = Sh(r, x0, a) be as before. Let ß° c ß and assume that

dist(x0, ß \ ß°) = c0 > 0. Moreover, let m > 0 be an integer. Then, given a with

1/2 < a < 1, there is a constant C such that, if u e rV¿(Q°) and if uh G SA(ß°)

satisfies A(u - uh, Xa) VXa g SA°(ß0), then

(10.1) |v(ii - «A)(*o)l < Ch2r-2\\u\\WL,^ + C\\u - uhCm#.

In particular, if u e Hr and uh G Sh is the A-projection ofu, then

(10.2) |v(M-MA)(x0)kCA2r-2{||M|k,(ao) + |H|r}.

Ifa = 1/2 then (10.1) and (10.2) hold with C replaced by Cl^A"1).

Remark. The constant C in (10.1) and (10.2) depends on c0, but is independent of

x0.

For the proof of the theorem we shall need the following lemma.

Lemma 10.2. Under the assumptions of Theorem 10.1 and given a nonnegative

integer m', there is a constant C such that, ifvh G 5A(ß°) satisfies

(10.3) A(vh,xh) = 0   VXAGSA°(ß°),

then, for any 3y = d/dxj,

(10.4) rW*o)| < CKII-Vo«-
We give the necessary details of the proof of Lemma 10.2 after having shown

(10.1) and (10.2).

Proof of Theorem 10.1. We may assume, without loss of generality, that 3ß° is

smooth. We shall prove (10.1) and (10.2) with v replaced by any 3y. Set U = u\Qo

and let Uh g 5A(ß°) be the ^„-projection of U. Then on ß°,

(10.5) dj(u - u„) = a/« -U) + 3,(t/ - Uh) + 3,(I/A - u„) = 0 + 8,«, + 9ye2.

We first claim that

(10.6) ^M^^ch^-'wuw^^,

with C replaced by Cln(A_1) in the case a = 1/2. This is proved in the same way as

Theorem 7.1, but with the modifications described after (9.6). We shall next show

that

(10.7) |3/2(*o)| < CA2'~2||.J|ko + C||« - «J1.QO.



140 KENNETH ERIKSSON

Since U = u on ß°, and since || ■ \\r no < C|| ■ Hh/^qo,, (10.7) together with (10.5) and

(10.6) will show (10.1). By taking m = r - 2 in (10.1), using || • \\*m-S2o < ||| • \\\_mM

and the negative-norm estimate (8.4), we obtain (10.2).

In order to show (10.7) we first note that e2 satisfies (10.3). Therefore, with

m' = max(w, r — 2), we have

|3,.e2(x0)|< C|k||!M.,0o.

Using first the triangle inequality and the fact that U - u on ß°, and then using the

fact that || ■ || *m.no is dominated by both HI • |||_r+2,s2°and || • ||*m Oo, we have

Ikîll-m'.O" <\\\U-  1^*111-r+2,0" +11" ~ "J-m,B<>-

From here another application of the negative-norm estimate (8.4) shows (10.7) and

completes the proof of Theorem 10.1    D

Remark 10.1. The same comment as in Remark 9.1 applies to estimates (10.1) and

(10.2).
Proof of Lemma 10.2. In view of the previously obtained estimate (9.11) for a

function vh satisfying (10.3), it is sufficient to show that

l9/^^)! <  Clklll.Z»

where D = Dj as in the proof of Lemma 9.3. Thus, let zA g S°(Q¡_x) equal vh on ß,

and satisfy

lklli.fi < CKIIi.fi-
By Lemma 7.2 we have

|3y»*(*o)| = |9,**(*o)| < Csup(3yzA, g) = Csup(zA, g'),

where the supremum is taken over all g g C™(t0) (f0 3 x0) with

diam»/2(T0)||g||0 + diam^+^ÍToíllgH, < 1,

and where we have also integrated by parts and put g' = -3;g in the last step.

Define G' by

A(v,G') = (v,g')   Vug//1,

and let GA g Sh be its ^""-projection. Let xA g ^(ß,) equal GA on ß/+1 and satisfy

\\G'h - Xhkb < C\\Gh\\ub.

Since either zh or G'h — Xh vanish outside Z), we have

(zA, g') - A(z„, G') = A(zh, G'„) = A{zh, G'h - Xh) < C\\zh\\xrD\\Gh\\ub.

It now remains to show that the last factor can be bounded by a constant. By (9.18)

and (9.19) we have

llGí||l.fi <   CllG'llz.1(D) + ||G'  -   G'h\\ W\{hy

Using the representation

G'(x) = f 9(x, y)g'(y) dy = f d^(x, y)g(y) dy
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and estimates (2.6) and (7.5) for ^and g, respectively, we easily obtain

IIG'IL.id) < c.

Finally, by Lemma 7.3, we have

||G' ~  GÁIU'íD) =||G" -  G'h\\wl(Df'^)

/    l+m + 3 \

< *7+i + 3\ T        hj~l\\G' ~ G'h\\rV}(D,)(
\j-l-m-3 I

< CA'r+1ln(A-1)A2'-2< C,

which completes the proof of Lemma 10.2.   D

Remark 10.3. Improved convergence holds also for higher-order derivatives of

u — uh at x0, provided the mesh is correspondingly further refined.

Remark 10.4. If u is in W™, 0 < m < r, the estimate

\(u-uh)(x,)\^Chm + r-2\\u\\w,

can be obtained for suitable mesh-refinements.

Remark 10.5. In view of (5.2) and (9.2) and the corresponding more precise

estimates (7.1) and (10.2), it is natural to ask if one can further relax the requirement

on u and retain the 0(h2r~2) convergence at x0. It is clear from approximation

theory that we cannot essentially weaken the norm on u near x0 if these estimates are

supposed to hold for any a > (r - 2)/(2r - 2) and a > 1/2, respectively. On the

other hand, it seems reasonable to believe that by a more sophisticated analysis, one

could replace the norm on u by one which changes continuously from a H^-norm

near x0 to an Z/r-norm away from x0 in some appropriate way. However, we have no

proof of this. Neither have we investigated if 0(h2r~2) convergence can be obtained

at x0 for some degree of refinement if u is globally in Hr and locally in W™ with

m < r.
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