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Optimal Integration for Functions of

Bounded Variation*

By J. F. Traub and D. Lee

Abstract. The unique optimal information and the unique optimal linear algorithm are

obtained for the integration of functions of bounded variation.

1. Introduction. For a class of real-valued functions, we seek an approximation to

the integral of any function in the class, provided that the function values are given

at n points. A summary of what is currently known about this problem may be

found in [1, Section 6.4].

In this paper, we study the class F of real-valued functions of uniformly bounded

variation on the unit interval. Concepts used in this paper are defined for very

general settings in [1] and [2]. To aid the reader, they are defined in this paper for

the special case of integration. We summarize the results of this paper.

(i) If n function evaluations are used, then the intrinsic uncertainty in the integral

is at least 1/2«, and [l/2el function evaluations guarantee an e-approximation.

(ii) The optimal function evaluation points are (2i - l)/2n, i = 1,2,...,«, and

this optimal information is unique.

(iii) The optimal algorithm using the optimal information is the averaging algo-

rithm: (l/«)E"=1/((2/ - l)/2n), and this is the unique optimal linear algorithm.

(iv) The averaging algorithm is within at most one unit of being an optimal

complexity algorithm.

(v) The averaging algorithm is only a constant factor better than the composite

trapezoidal and Simpson algorithms.

2. Basic Concepts. A function / defined on the unit interval is of bounded variation

if there exists M > 0 such that for any partition it, 0 < x0 < xx < ■ ■ ■ < xn < xn+x

< 1, ¿Z"-0\f(xj+x) — f(x¡)\ < M. The total variation of/is defined as

n

Vf=suV El/(*i+1)-/(x,)|.
T       / = 0

We say a class F of functions is of uniformly bounded variation if F = {/ : / : [0,1] -» R

and Vf < B}, where B > 0. Without loss of generality, we take the bound B to be

unity.

Received August 1, 1983; revised October 15, 1984.

1980 Mathematics Subject Classification. Primary 68C25, 65D30, 65D32.
* This research was supported in part by the National Science Foundation under Grant MCS-7823676

and the Advanced Research Projects Agency under Contract N00039-82-C-0427.

©1985 American Mathematical Society

0025-5718/85 $1.00 + $.25 per page

505



506 J. F. TRAUB AND D. LEE

We seek an approximation to Jq f(x) dx, V/g F, given function values at an

n-partition, that is, at points 0 < xx < x2 < ■ ■ ■ < x„ < 1. That is, the information

N is defined as N: F -» R", and

(2.1) N(f)=[f(xx),f(x2),...,f(xn)\    V/£F.

We   denote   x0 = 0,   x„+1 = 1,   A,. = xi+1 - x¡   for   ¿ = 0,1,...,«,   and   A =

max{2A0,2A„, Aj, A2,...,A„_1}. We have

Lemma 2.1. (i) A > 1/n; (ii) A = 1/« iff A0 = A„ = 1/2« a«rf A, = 1/« /or
i = 1,2,...,« - 1.   D

The proof is trivial, and is omitted.

Given information N and / G F, the set of indistinguishable elements from fin F

is

(2.2) V(N,f)={f&F:f(x,)=f(x,),i= 1,2,...,«}.

The following lemma measures the uncertainty in the integral caused by indis-

tinguishable elements.

Lemma 2.2. Let N be information corresponding to an n-partition and let f G F.

Then,

(2.3)

where

¿< f1 ¡(x)dx^ U   for all/g V(N,f),

(2.4)

U = f(xx)*0+f(x„)\„
n-l

+ £ max{/(*,),/(x, + 1)} A, + A(l - Vf)/2,    and
i = i

L=f(xx)A0 + f(xn)à„

+ £ min{/U),/(x/ + 1)}A,-A(l- p^/2,
i = i

vWztTÉ? Kr= Z"Zl\f(xi+x)-f(xi)\. Furthermore, there exist fL, fv G V(N,f), such

that ¡d fL(x) dx = L and ß fu(x) dx = U.   □

Proof. We first show that for/ g F,

(2.5)

sup    f(x)-f(xx)   +        sup     f(x)-f(xn)

+ 2 L sup     f(x)-m&x{f(xl),f(xl + x))
; = 1    l'x,<Ar<xi+1

< 1 - vf.
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For an arbitrary 5 > 0, there exists £, G [x¡, xj+x] such that supx <x<x    f(x) <

/(£,.) + 8, i = 0,1,...,«. Therefore,

sup    f(x)-f(xx)   +        sup     f(x)-f(x„)
Xq < X < A"i *,, < a: < X,, + i

+ 2l{     sup    /(x)-max{/(*,),/(xI+1)}}+ £ |/(*,+1)-/(*,)

<[/(Eo)-/U)]+[/(0-/(*J]
n-l

+ I  {2[/(i,-) - max{/(*,),/(x, + 1)}] + [/(xi+1) -/(*,)|} + 2«5
i-i

<l/(€o)-/(*i)l + l/r(0-/(*JI

+ "i [!/(«,) -/(*,)| + l/(*,+i) -/(€,)!] + 2«s
i-i

< P^-+ 2«fi< 1 + 2«5.

Since 8 is arbitrary,

sap    f(x)-f(xx)

n-l

+ sup     f(x)-f(x„)
x„ < j: < A„ + j

and (2.5) follows.

Let/g V(N,f), then

(Xf(x)dx< £
•'n

+ 2 £  {     sup     /(x)-max{/(x1.),/(jc/+1)}
1 = 1 X,<Jt<JC/+1

1-1

sup     f(x¡)
/-i L^i^^^'z+i

n-l

= /(x1)A0+/(^)A„+ E max{/(*,),/(x,+1)}A,

sup    f(x)-f(xx) A0 + sup     f(x)-f(x„)

n-l

+ £ sup     /(*)-max{/(*,),/(x,+1)}  A,

n-l

^f(xx)ä0+f(xn)bn+ E max{/(x,.),/(x, + 1)}A,
; = 1

sup    f(x)-f(xx)
I j0!>^5.*i

+ sup     f(x)-f(x„)
x„ S x ^ jr„ +1

n-l

+ 2 E{     SUP     /(*)-max{/(jc|.),/(x1.+1)}

n-l

</(Jc1)A0 + /(jcJA,,+ E max{/(x,.),/(x,+1)}A, + A(l- V¡)/2.
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The last step follows from (2.5). Therefore,

n-l

f1f(x)dx<f(x1)^0+f(xH)A„+  £ max{/(*,),/(*/+1)}A, + A(l- vj)/l
( = i

n-l

= f(xx)^+f(xn)Ln+ £ max{f(x),f(xl + x)}Ll + L(l-Vs)/2,
i=i

i.e., Jo f(x) dx < U. The result for L follows from that for i/by replacing/by -/.

Let

l[0,xx) if2A0 = A,

/ = I(x¡, xj+x)     if 2A0 < A and i = min{y: Ay = A and l<y'<«-l},

\(x„,l] if 2A0 < A,Ay< Aforl </< « - 1 and 2A„ = A.

Let

(f(xx) if 0 < x < xx,

\f(x„) iix„^x^l,

\f(x¡) if x = Xj, i = 2,3,...,« - 1,

k max{/(*,.),/(jc,-+1)} ifx,. < * < xj+x,i = 1,2,...,« - 1.

/max(*)

Finally, let

where

,/v J/«W+(l-»/)/C,    ifJce/,

l/max(x) otherwise,

Í 2    if / = (x¡, xl+x) for some /', 1 < i < n — 1.

C,= \l     if/=[0,x1)or/=(x,„l].

It can be verified that Vju = 1, fv & V(N, f), and /q1 fv(x) dx = Í/. An analogous

conclusion holds íorfL.    D

3. Optimal Information. From Lemma 2.2 we know that for all/g V(N, /), the

integral of/, /q1 /(x) dx, is confined to the interval [L, U]. We call

(3.1) r(N,f) = (U-L)/2,

the /oca/ radius of information N at/. From (2.4) we have

(3.2) r(N, f) = £ j £  |/(*, + 1) -/(x,)|A, + a(i - F,)J.

We define

(3.3) r(N) = supr(N,f)
/ef

as the global radius of information. The quantity r(N, f) measures the intrinsic

uncertainty of the integral of/, caused by indistinguishable elements in V(N,f),

and r( N) measures that of the worst /in F. We estimate the local and global radii of

information in

Lemma 3.1. Let N be information corresponding to the n-partition 0 = x0 < xx < x2

< •■■  < x„ < xn+x = 1. Then,

(3.4) r(A,/)<A/2   forallf&F,
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and

(3.5) r(A) = A/2.    D

Proof. Since A, < A for / = 1,2,...,« - 1, by (3.2),

■(N,f)

A
<2

E \f(xi+1)-f(Xi)\^ + à(i-vf)
;=1

Hi\f(xl+l)-f(xt)\ + (l-Vf)   =A/2,

i.e., r(N,f)^ A/2, proving (3.4). Let /= 0. Then by (3.2), r(N,0) = A/2, i.e.,

r(N) = sup/e/,r(Af,/) = /"(A^O) = A/2, proving (3.5).   D

The information N(f) in (2.1) is said to be of cardinality n. Let ^(«) be the class

of all information of cardinality «, and let r(n) = inf^^,,) r(N). Then information

N g <ff(n) is called nth optimal ii r(N) = r(n). An «th optimal information N has

the minimum radius of information, among all information in ^(«).

Let N* be information corresponding to the partition points x¡ = (2/ - l)/2«,

where i = 1,2,...,«, and « ^ 2. We have

Theorem 3.1. A^* is the unique nth optimal information with r(N*) = r(n) =

1/2«.    D

Proof. For the information A'*, A = 1/«. By (3.5), r(N*) = 1/2«. On the other

hand, for an arbitrary N g *(n), r(N) = A/2 > 1/2« = r(N*), by Lemma 2.1(i),

and the equality holds iff N = N*,by Lemma 2.1(h).   D

Remark 3.1. (i) If the class of integrands Fx consists of functions with a uniformly

bounded first derivative, then (see [1, Section 6.4]) A^* is an «th optimal information

with r(N*) = 1/4«.

(ii) To define information in (2.1), the partition points x¡ are independent of

function values at the previously chosen partition points. This is nonadaptive

information. If partition points are chosen sequentially, depending on the function

values at the previously chosen partition points, we have adaptive information. For

integration of functions of bounded variation, the integrand belongs to a balanced

convex set. Therefore, one gains nothing by using adaptive information. For the

proof, see [1, Section 2.7] or [2, Section 4.3].

4. Optimal Algorithm. Usually, one cannot compute the integral of a function

exactly, and instead seeks an approximation to the integral using an algorithm tp

(4.1) <p:N(F)-*R.

We define the local algorithm error oí fas

(4.2) \rf(x)dx-cp(N(f))e(cp,N,f)=     sup
/eK(/v,/)i

and the global algorithm error as

(4.3) e(cp,N) = supe(q>,N,f).
f*F

For a given / g F, the integrals of indistinguishable elements / g V(N, f) are in

the interval [L,U], where the sharp bounds L and U are given in (2.4). Therefore,

for an arbitrary algorithm <p, e(cp, N, f)^(U- L)/2, which by (3.1) is the local
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radius of information r( N, f ). Thus, we have

(4.4) e(<p,N,f)>r(N,f),

and

(4.5) e(<p, N) > r(N)    for all cp.

Therefore, r(N, /) and r(N) are the lower bounds of local and global algorithm

errors, respectively.

We present an algorithm, called the central algorithm, by choosing the center of

[L,U]asq>c(N(f)):

(4.6) <p<(N(f)) = (U+L)/2.

Then e(<pc, N, f) = (U- L)/2 = r(N, /), and e(<pc, N) = r(N). Since <p' has the

minimal e(<pc, N) among all algorithms, it is called an optimal error algorithm.

From (2.4), we have

"¿lA*m)-/MA-/ + A(l-K/)(4.7) e(oo\N,f) = \
. i = i

(4.8) e((pc, N) = A/2,

(4.9) cp<(N(f))=f(xx)A0+f(xn)An+ "¿l /U)+/U + i)a->
i-i z

or

(4.10) *<(*(/)) =f(xx)(A0 + At/2) + £1/(x/)A'-1.+ A-
1-2 ¿

A.
+/(*„)(a„ +

2

An algorithm is //«ear if it is of the form

(4.11) f(N(f))= tf(x,)H,
i = i

Therefore, the central algorithm is linear. We summarize the above in

Theorem 4.1. Given information N, the central algorithm <p' is a linear optimal error

algorithm, with local and global algorithm error equal to the local and global radius of

information, respectively.   D

Remark 4.1. It is true in general (see [2, Sections 1.3 and 1.4]) that the central

algorithm is optimal and that the local and global algorithm error of the central

algorithm are equal to the local and global radius of information, respectively.   D

Given the unique «th optimal information A7*, we compare the algorithm error of

the central algorithm with those of other linear algorithms in

Theorem 4.2. The central algorithm <pl using the unique nth optimal information N *

is

1Ä./2I-1(4.12) 9c(Ar*(/)) = ^E/(
2«

Furthermore, the linear optimal error algorithm is unique.   D
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Proof. Let q> be an arbitrary noncentral linear algorithm, with <p( N *(/)) =

Y."=xf(xi)Hi, and let/» be the largest subscript of H such that Hp =f= 1/n. Let

0    if x < xr

1     if X > xr

Then we have

e(<p,N*,fp)=      sup
feV(N.f.)

t M - f f(x) dx

= max

= max

H,+

i-i

n - p

n
- U Hp +

H„

Hp

1
«

2«
//  -- +p     « 2«

L

+ è>è = '(*'>**)•
2«     2«

Therefore, e(y, A"*) > e(<p, N*, f ) > e(<pc, N*) and <p is not optimal.    D

5. Complexity. Given information N, we seek an algorithm <p to compute an

¿-approximation to the integral of any functions in F, with algorithm error e(<p, N)

< e, where e > 0. We use the «th optimal information N* and the central algorithm

<pc to obtain an e-approximation. Then, from Theorem 3.1 and Theorem 4.1, we have

e(œc, N*) = r(N*) = r(n) = 1/2« < e. Therefore, « = fl/2e]. It is obvious that

f 1/2 el is the minimal number of function evaluations for which we can have an

e-approximation to the integral of any functions in F.

Assume that the cost of each arithmetic operation is 1 and that of each function

evaluation is c. We first compute N(f) = y = (yx,...,y„) with information complex-

ity en, where « is the cardinality of N. We then compute <p(y) with combinaiory

complexity comp(<p (y)). The complexity of algorithm <p is thus comp(<p, N) = en +

sup/eFcomp((p(j>)). By (4.12) we have

(5.1) comp(<pc,N*) = (c + l)\j-e

We define the problem complexity of an e-approximation as

(5.2) comp(e) = inf (comp(<p, N): e(<p, N) < e},

and an optimal complexity algorithm <p* as

(5.3) comp(<p*, N) = comp(e),    and   e(y*, N) < e    for some A7.

As noted at the beginning of this section, « = fl/2e] is the minimal number of

function evaluations to guarantee an e-approximation. Thus, the information com-

plexity is no less than c[l/2e], and the combinatory complexity is no less than

fl/2e] - 1. Therefore comp(e) > (c + l)[l/2el - 1. Comparing this with (5.1), we

notice that the difference between comp(a/, N*) and comp(e) is at most 1. We

propose the following

Conjecture. The central algorithm using the optimal information is the optimal

complexity algorithm, that is,

(5.4) comp(a/, N*) = comp(e).    D
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6. Comparison With Other Algorithms. We estimate the global algorithm error and

algorithm complexity of some linear algorithms; the proofs are routine and are

omitted.

(i) Another Riemann Sum. Let the partition points be x¡ = (i — 1)/«, i =

1,2,...,«, and A = 2/«.

(6.1) <pW)) = ̂ E/(V-)-
1 = 1

(6.2) e(<p,N) =

i=i

1

« '

The algorithm complexity for an e-approximation is

1
(6.3) comp(<p, N) = (c + 1)

£

(ii) Composite Trapezoidal Rule. Let the partition points be x¡ = (i — l)/(« - 1),

i = 1,2,...,«and A = l/(« - 1).

(6.4)     ,w/» - jj^tï) [/m +/<i>] ♦ ̂ -r %f{^\

(6.5) «(#,,,)-j-Lj.

The algorithm complexity for an e-approximation is

(6.6) comp(<p, N) = (c + 1) -   + c + 2.

(iii) Composite Simpson's Rule. Assume that « = 2m + 1. Let the partition points

bex, = (/ - l)/2m,/' = 1,2,.. .,2m + 1, and A = l/2m.

1    r ,,^        ./.*, 1     £   M- W 2      ™      111- 1\
(6-7)    f(^/)).¿[/(0)+/(l)]+¿E/(i^i)+¿_£/(

(6.8) e(ç>,JV) =

2     v      "• """/-i 2W

(6.9) comp(cp, A7) = (c + 1) + c + 3.

3(«-l)-

The algorithm complexity for an e-approximation is

2_'

3e

Observe that the costs of the linear algorithms (i)-(iii) are within a constant factor

of comp(e).
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