
MATHEMATICS OF COMPUTATION
VOLUME 46. NUMBER 173
1ANUARY 1W6. PAGES 119-133

Natural Continuous Extensions

of Runge-Kutta Methods*

By M. Zennaro

Abstract. The present paper develops a theory of Natural Continuous Extensions (NCEs) for

the discrete approximate solution of an ODE given by a Runge-Kutta process. These NCEs

are defined in such a way that the continuous solutions furnished by the one-step collocation

methods are included.

1. Introduction. We consider the following initial value problem (IVP) for ODEs:

dl (/(<)-/(„(.»,
l>Vo) =%.

where y0, y and / are m-vectors and t is a real variable. Further, we suppose that /

is as smooth as necessary both in t and in y.

A p-stage Runge-Kutta (R-K) process is a means to find an approximation y to

the value of y at the point t0 + h.

Following the notation of Butcher [4], we write

(2) g(0 = /U0 + c,h, y0 + hía¡jgvÁ,       i = l,...,v,

V

(3) y = y0 + hZbig{,),
i-l

where g(,), i = l,...,v, are «i-vectors, the numbers a¡j, b¡ characterize the method,

and c, = Ey_ ! a¡j, i = 1,..., v. The integer v is the number of stages.

If the R-K method is accurate of order p (> 1), then \y(t0 + h) -y\ = 0(hp + 1).

The symbol | • | stands for any norm on Rm. By iterating this process, one usually

finds an approximate solution on a mesh A = {t0 < tx < • • • < tN = T} of the

interval [t0, T], such that

(4) max   \y„-y(t„)\=0{\A\P),

where |A| := maxj^„^ N\tn - tn_x\ and the y^'s are the approximate values.

In this way one gets information of the solution y on a discrete set of points. On

the other hand, it is sometimes useful to have a continuous approximate solution

available. For this purpose one could use interpolation at nodal values; that involves
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120 M. ZENNARO

a number of mesh points and the resulting method has the characteristics of a

multistep one. Nevertheless, it is well-known that some implicit R-K methods are

equivalent to collocation methods (see Wright [13]). Therefore, they naturally give

successively a continuous extension of the approximate solution, without any extra

evaluations of the function /.

The following question then arises. Does there exist for each R-K process a

continuous extension given successively by the method itself, without any extra

evaluations of the function /?

A kind of answer has been recently given by Norsett and Wanner [10], since they

have proved that a large class of R-K processes can be considered as a somewhat

perturbed collocation (PECO-method). Their definition includes ordinary colloca-

tion, as a particular case. However, if the number of stages is v, they always find a

polynomial of degree v. This fact causes some troubles, particularly with explicit

methods, since it often happens that the derivatives of the perturbed collocation

solution are unbounded for « -* 0.

The aim of this paper is to provide Natural Continuous Extensions (NCEs) of the

solution given by the R-K process (2)-(3), which, in case of equivalence with

collocation, continue to include the collocation solution and, in a certain sense,

behave like it in other cases. However, we do not look at the problem from Norsett

and Wanner's point of view.

To formulate our definition, we need the following results.

Consider the one-step collocation method at v Gaussian points (which is equiva-

lent to the unique p-stage R-K process of order p = 2v) to approximate the solution

of (1) at r0 + «. The collocation solution u, which is an w-vector polynomial of

degree v, satisfies the following error bounds (e.g., Guillou and Soulé [7], Hulme [8],

Norsett and Wanner [9] and [10]):

(5) max     \y{k)(t)-u(k)(t)\= 0(h"+l~k),        k = 0,l,...,v,

and

\y(tQ + h)-u(t0 + h)\=O(h2>+x),

which is often referred to as the phenomenon of superconvergence at the nodes.

By using the same arguments of N0rsett and Wanner [9] and [10], the author [14]

has proved the more general superconvergence result:

(6) f'0+hG(t)[y'(t)-u'(t)}dt=O(h2^x)

for every sufficiently smooth matrix-valued function G.

Equation (6) can be regarded as a sort of asymptotic orthogonality condition.

Our definition of NCE is given in such a way that conditions similar to (5) and (6)

are required.

Definition 1. The p-stage R-K process (2)-(3) of order p has a NCE u of degree d

if there exist v polynomials b,(0), i — 1,..., v, of degree < d, independent of the

function /, such that, by putting

V

(7) u(t0 + dh): = y0 + hZb,(6)g<i),       0 < 6 < 1,
i = i
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the following statements hold:

(8) u(tQ)=y0   and    u(t0 + h) = y;

(9) max     \y'(t) - u'(t)\= 0(hd);
t0^t*it0 + h

(10) f0+hG(t)[y'(t)-u'(t)]dt = O(h^x)
'o

for every sufficiently smooth matrix-valued function G.

It is easily seen that condition (9) implies the following error bounds for the higher

derivatives of the NCEs:

(11) max     \y{k)(t) - uw(t)\= 0(hd-k + x),        k = 2,...,d,
t0^t^t0 + h

and, obviously, u{k)(t) = 0 for k > d + 1.

Therefore all the derivatives of the NCE u are uniformly bounded as « -* 0.

Moreover, by integrating (9) and by (8), we have also

(12) max     \y(t)-u(t)\=0(hd+l),
t0*it<t0 + h

while simple integration by parts, together with (10) and (8), yields

(13) ('0+hG(t)[y(t)-u(t)]dt-O(h"+x)

for every sufficiently smooth matrix-valued function G.

After proving the existence of NCEs for all R-K processes (Section 2), we find the

relationships with collocation and with PECO-methods, and give the NCEs for some

of the most popular explicit R-K processes (Section 3).

Section 4 is devoted to applications. First we prove a theorem which allows us to

extend to all R-K processes some results of Bellen [2] and Vermiglio [12] concerning

one-step collocation and one-step subregion methods, respectively, applied to DDEs

(delay differential equations). Furthermore, some recent results of the author [14]

concerning the order of uniform convergence and stepsize control for the one-step

collocation method are extended to all R-K processes.

2. On the Existence of NCEs. In this section we prove the existence of NCEs for

all R-K processes.

First of all,we recall some general results which were published by Butcher [4] and

[5]. He considered, for the study of the p-stage R-K process (2)-(3), the expansions

r\
(14) y(t0 + h)=y0 + Z*F\i

and

(15) y=y0 + I,ß*F (/•-I)!'

The summations are over the different elementary differentials F for the function /,

arranged in a sequence of nondecreasing order r. $ is the corresponding elementary

weight, while a and ß are numerical coefficients independent of the function /.
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Proposition 2. Each elementary weight $ has the form

V

$ = £ b,9w
1=1

w/zere $(,) ¿s independent ofbj, j = l,...,v.

Proposition 3. The R-K process (2)-(3) is of order p if and only if

$ = a/ßr

for all elementary weights $ corresponding to elementary differentials F of order r < p.

Proposition 4. Let the R-K process (2)-(3) be of order p. If $ = LJ=1Z>,4>(,) is an

elementary weight corresponding to an elementary differential F of order r < p — 1 and

s is an integer such that 1 < s < p — r, then, by putting

V

Ô:=   X>,c?$<0>
/ = i

we get an elementary weight corresponding to an elementary differential F of order

r + s and, moreover, (r + s)* = r<í>.

In view of (7), it is quite easy to verify that the following continuous version of

(15) holds:

(16) u(t0 + eh)^y0 + Y1ß^(6)Fj^--,       O<0<1,

where, by Proposition 2,

V

(17) $(0) = £ ¿,.(0)*(,'\       0<tf<l,
( = i

are continuous elementary weights.

Moreover, we have the continuous version of (14)

(is) y(<o + M) = yo + L«F^f,     o<6Ui.

Therefore, by comparing (16) and (18), one can easily see that the two conditions

(9) and (10) are equivalent to

119) $'(0) s aOr~l/ß    for all O corresponding to elementary

differentials F of order r < d;

together with

J   05O'(0) dO = —-     for all 0 corresponding to elementary

(20) differentials F of order r = d + 1,..., p

and for every s = 0, ...,/> — r.

Observe that, if d = p, condition (20) must not be considered.

As far as condition (8) is concerned, it is clear that it is equivalent to

(21) b,(0) = 0   and    b,(l) = />,.,       i = l,...,v.

Hence, by (17), we have

(22) $(0) = 0   and    0(1) = $    for all*.
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Observe that, if d = p - 1, then (22) and (19) imply also (20).

If p is the order of the R-K method (2)-(3), then we define

q:= [(p + l)/2],

where [ • ] stands for " the integer part of.

Moreover, we define v* as the number of distinct values of the numerical

coefficients c¡, i = 1,..., v. One obviously has v* < v.

Theorem 5. // u is a NCE of the v-stage R-K method (2)-(3) of order p, then its

degree d must satisfy

(23) q < i/< min{v*,p}.

Further, the polynomials b'¡(d), i = l,...,v, span the whole space Hd_x of polynomi-

als of degree < d - 1.

Proof. Butcher [4] has shown that, for every r > 1, there exists an elementary

weight of the form
V

* = £ Vi-1    (if c,. = 0, then c?. := l).
i = i

Hence, by Proposition 2, and by (17) and (19), we can state

V

(24) £ ¿i^K-1 = 0r_1>       Kr^d,
i = i

since in this case a = ß = 1.

It is clear that the matrix C:= ((c¡x)) satisfies

rank(C) = min{v*,d}.

Moreover, if we choose d distinct values 0., 0 < 0- < 1 (0° := 1), we can consider

the matrices B := ((£>,'(0,)))r and 0 := ((0/-1)). We obviously have

rank(5) < d   and   rank(0) = d.

On the other hand, (24) gives

(25) BC = 0

which, by well-known arguments of linear algebra, implies

d < min{min{iv*,i/), rank(5)).

This yields both d < v* and rank(5) = d.

The order of the R-K method being p, the inequality d < v*, by (8) and (12),

implies d < m'm{v*,p}. Moreover, rank(5) = d states that at least d polynomials

among the ¿>,'(0)'s are linearly independent. Since they all have degree < d - 1,

they span the whole space Ud_x.

In order to prove q < d, we observe that, for r = d + 1, condition (20) must be

satisfied for every s = 0,...,p - d - 1. This imposes p - d linearly independent

conditions to the polynomial $'(<?)> the degree of which is < d — 1. Thus, we must

have p — d < d, and then q < d.   D

This theorem gives a range for the possible degree d of a NCE. However it is not

true that there exists a NCE for every d satisfying (23).

As far as the existence of NCEs is concerned, we have the following theorems.
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Theorem 6. Let p > 2. If the R-K process (2)-(3) has a NCE u of degree d> q,

then it has also a NCE ü of degree d' for every d' = q,...,d — 1.

Theorem 7. Every R-K process (2)-(3) has a NCE u of minimal degree q.

Before proving these theorems, we remark that Theorem 7 gives a positive answer

to the question we have posed in Section 1.

We shall need the following lemma to prove Theorem 6.

Lemma 8. // « is an integer such that q < « < p — 1 (this can be true for p > 2),

then there exists a linear projector Pn of the space C° of the continuous functions in

[0,1] onto the space H„_x of polynomials of degree < « — 1, such that

(26) f1 0sPJ(0)d6= f 6sf(6)d6,       s = 0,...,p - n - 1,

for every f G C °.

Proof. Since [(p + l)/2] < « < p - 1, we have 1 < p - « < [p/2]. On the other

hand [p/2] <[(/? + l)/2] and hence 1 < p — « ^ «. This is sufficient to prove the

lemma, provided other 2n — p linear conditions (if 2« - p > 0), linearly indepen-

dent of those defined by (26) on the space nn_,, are chosen.   D

Proof of Theorem 6. Since q ^ d' < d ^ p, by Lemma 8 we get the existence of a

linear projector Pd, of C° onto Hd-_x such that (26) holds with « = d'. Put

b',(6): = Pd,b',(6),       b,(0):=0,       i = l,...,v,

and consider the polynomial (see (7))
V

û(t0 + 6h):=y0 + hZ b,(e)gw,       0 < 0 < 1.
/=i

By (17), we can state that the corresponding continuous elementary weights are

(27) $'(0) ■ Pd&'(0),        0(0) = 0.

Since (19) holds for u and since Pd> reduces to the identity map on the space

n</'-1, by (27) we can state also

a0r~x
dj>'(0) = —-—     for all 4» corresponding to elementary

differentials F of order r < d''.

That is, (19) is verified also for ti.

Moreover, since (19) and (20) hold for u, we have that

I   0S<&'(0) dd = —-     for all $ corresponding to elementary
•'o ß(r + s)

differentials F of order r = d' + 1,..., p

and for every s = 0,..., p - r.

Since p-r^p-d'-l, by Lemma 8 and by (27) we have that (20) is satisfied

also by íí.

To complete the proof, observe that p - d' - 1 > 0. Thus, for 5 = 0, Lemma 8,

together with (21) for u, yields

6,(i)= rb¡(e)de= f1 b'l(e)do = bi(i) = bi,     * = i,...,*,
•'o •'o

that is, (21) is satisfied also by ü.   D
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Proof of Theorem 1. For every i = 1,..., v, consider the unique polynomial b¡(6)

of degree < q which satisfies

(28) 6,(0) = 0

and

(29) Í1 esb'i(6)dd^b,cl       s = 0,...,q-l.

Then, by using (7), we get a polynomial u of degree < q.

By (29) for s = 0 we get ¿>,(1) = b„ so that, by (28), Eqs. (21) and (22) hold.

Let 1 < r < p and let $(0) be a continuous elementary weight corresponding to

an elementary differential F of order r. Then (17), together with (29), yields for

r + s < p,

f10!<i>'(0)¿0= Y.  f osb',(e) doWl) = ¿Ví*(0.
J0 ;_,W0 I , = 1

which, by Proposition 4, is an elementary weight $ corresponding to an elementary

differential F of order r + s < p. í> is such that (r + 5)$ = r<¡>, where, by (22),

$ = *(1). Hence, since $ = a/ßr by Proposition 3, we get

(30) i1 0ÍÍ>'(0)¿0 = ———-    ifr + Ä</>andj = 0,...,9-l.
•'0 j8(r + 5)

Since /?-<7-l<<5f-l,we can conclude that (20) holds with d = q.

On the other hand, for 1 < r < q, we have q - 1 < p - r. Thus (30) implies that

the polynomial <b'(9) - a8rX/ß, the degree of which is < q - 1, lies in the kernel

of q linearly independent linear functionals; this implies (19) with d = q.

The existence of a NCE u of degree q is proved.   D

Observe that both proofs are of a constructive type.

In general, nothing can be said about the uniqueness of the NCEs and, in fact,

there are examples of nonuniqueness. The only uniqueness result is included in

Theorem 9 (next section).

3. Collocation, Perturbed Collocation and NCEs. Further Examples. In order to

simplify the discussion, we briefly recall the definition of PECO-method given by

Norsett and Wanner [10].

They define a perturbation operator P: n„ -> ü„ by

Pu(t): = u(t)+ £ Nj(e)u^(tQ)hf       O<0:= *-^ < 1,
y=i

where the A^(0)'s are polynomials of degree < v. Then the PECO-method is

(31) lu'(t0 + cih)=f(t0 + cih,Pu(t0 + cih)),       i = l,..:,r,

\y:= u(t0 + h),

where the c,'s are assumed to be distinct. They define the polynomial M(8): =

\~\"¡=x(d - c¡), which is of degree v.

The PECO-method (31) is equivalent to a suitable R-K process (2)-(3) which has

the same c,'s (hence v* = v) and is such that g(,) = u'(t0 + c¡h), i = l,...,v.



126 M. ZENNARO

In particular, for N(0) = 0, j = l,...,v, that is, for P = I (identity map),

ordinary collocation is obtained.

Theorem 9. Let the v-stage R-K process (2)-(3) of order p be such that v* = v < p.

Then it has a NCE u of degree v if and only if it is equivalent to a PECO-method (31)

such that N(6) = 0, j = 1,..., v — 1, and, if v < p, such that

f1 0sM(6)d0= fl 0sNv(6)d0 = O,       s = 0,...,p - v - 1.
Jo ■'o

Moreover, in this case, the NCE u of degree v is unique and it is just the perturbed

collocation solution.

Proof. First of all, we observe that d — v satisfies the necessary condition (23),

since (as is well-known) v > q.

Consider, like Norsett and Wanner [10], the Gröbner-Alekseev nonlinear varia-

tion-of-constants formula. If « is a function such that u(t0) = y0, then

(32) y(t) - u(t) = f K(t, x)[f(x, u(x)) - u'(x)] dx,
'o

where K(t, x) is a variational matrix depending on u such that K(t, t) = I.

By differentiating (32) we get

y'(t) - u'(t) = /' ¡-(K(t,x)[f(x,u(x)) - u'(x)\ dx

(33)

+f(t,u(t))-u'(t).

Then, by multiplying (33) by a sufficiently smooth matrix-valued function G, after a

small calculation we obtain

J'0 + hG(t)[y'(t)-u'(t)}dt

(34)

= f° + h H(t0 + h,x)[f(x,u(x)) - u'(x)\ dx,
ffi

where

H(t,x): = G(x)+f GU)o±K(t,x)dt.

If) By the equivalence of the methods, (8) follows for the perturbed collocation

solution u.

Like Norsett and Wanner (Theorem 10 in [10]), we split (34) in two parts:

f'n +

't0

where

rtn + h

f0+hG(t)[y'(t)'W(t)}dt = (l)+(U),

(I):= f'°     H(t0 + h,x)[f(x, Pu(x)) - u'(x)] dx
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and

(II):= fa + h H(t0 + h,x)[f(x,u(x)) -f(x,Pu(x))] dx
'o

= - j'° + h H(t0 + h,x)°^yf(x,u(x))Nv[^y*\t0)h>dx

+ 0(h2" + l).

Since (as is well-known) p < 2v and since the hypotheses of Theorem 10 in [10] are

satisfied, we can similarly conclude that (10) holds for u.

Analogously, we split (33) in two parts:

/(0-«'(0 = (ni)+(iv),
where

(III):= f jK(t,x)[f(x,Pu(x)) - u'(x)\ dx+f(t,Pu(t)) - u'(t)
'o

and

(IV):= f ^K(t,x)[f(x,u(x)) - f(x, Pu(x))] dx + f(t,u(t)) - f(t, Pu(t))
'o

= -Jf' ¡-tK(t,x)°^f(x,u(x))N„l[^]lu^(t0)h"dx

-^yf(t,u(t))N^^y^(t0)h> + 0(h2*).

By Proposition 9 in [10], the derivatives of u remain uniformly bounded as « -> 0.

Thus (IV) = 0(h") and, since /(/, Pu(t)) - u'(t) vanishes at v points (see (31)), also

(III) = 0(h"). Therefore (9), too, is satisfied by u. We can conclude that the

perturbed collocation solution u is a NCE of degree v.

Only if) If a NCE u of degree v exists, then (24) becomes

v

X>,'(0)cj-1 = 0r-\        r=l,...,v.
i = i

Therefore, all the three matrices in (25) are square of dimension v, and C is

invertible, since v* = v. In particular, by choosing 6/.= Cj, j = l,...,v, we have

0 = C and hence B = I. This implies that the polynomials b'((6) are uniquely

determined and that they must coincide with the Lagrange polynomials relative to

the nodes c¡. Hence, (7) yields u'(t0 + c¡h) = gU), i = l,...,v. Moreover,the R-K

process (2)-(3) turns out to be interpolatory and thus, by Theorem 6 in [10], it is

equivalent to a PECO-method (31), the solution ü of which satisfies ü'(t0 + c¡h) =

g(,), i = 1,..., v. This yields ü = u.

Since (9) holds for u and since, by (31), also (III) = 0(h"), it is immediately seen

that one must have JV,(0) = 0, j = 1,..., v - 1, in order that (IV) = 0(h"), too.

The R-K process (2)-(3) being interpolatory of order p, the quadrature formula

with the nodes ct and weights b¡ is exact for polynomials of degree < p - 1. This

implies /o10iM(0)rf0 = 0, s = 0,..., p - v - 1, and (1) = 0(hp+l). It follows that

(II) = 0(hp+x), from which also /O10W„(0) dO = 0, s = 0,..., p - v - 1.   D
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This theorem, together with Theorem 7, shows that every R-K process (2)-(3) of

optimal order, that is such that v = q (e.g., those in Butcher [5] and, in part, [6]), has

a unique NCE, which is just the perturbed collocation solution of the equivalent

PECO-method. Recall that, if p = 2v, then the equivalent PECO-method is the

collocation method at v Gaussian points.

By Theorem 6, if a R-K process (2)-(3) is not of optimal order (that is v > q) and

satisfies the hypotheses of Theorem 9 and the respective sufficient and necessary

condition, then it has more than one NCE: it has a NCE of degree d for every

d = q,...,v. The NCE of degree v is unique; it is the perturbed collocation solution

of the equivalent PECO-method (which, in particular, may reduce to a collocation

method).

It is interesting to point out that, whenever a R-K process (2)-(3) is equivalent to

a PECO-method such that Nj,(6) * 0 for a j* < v - 1, the perturbed collocation

solution is not a NCE.

We conclude this section by listing all the NCEs for some of the most popular

explicit R-K processes (2)-(3), that is, methods for which atj = 0 for i ^j.

1-stage R-K process of order 1 (Euler method).

d=q=v=p = l bx(6) = e.

2-stage R-K processes of order 2.

d = q = l bi(6) = bie,       i = l,2.

bx(6) = (bx-l)d2 + 6
d = v = p = 2 <

\b2(B) = b262.

3-stage R-K processes of order 3 (with c2, c3 + 0).

d=q = 2 bi(d) = wie2+(bi-wi)6,       i = 1,2,3,

where wx := — [X(c3 — c2) + c2]/2c2c3, w2 := X/2c2, w3 := (1 — X)/2c3 and X e R.

Here we have a one-parameter family of NCEs, that is, an example of nonunique-

ness of NCEs of minimal degree q (observe that v > q). The NCE furnished by

Theorem 7 is

6,(0) = 3(2c, - 1)6,02 + 2(2 - 3c,)bi0,       i = 1,2,3,

which corresponds to the particular value X = 6c2(2c2 - l)b2.

In this case no NCE of degree v = p exists.

4-stage R-K processes of order 4.

d = q = 2 bi(6) = 3(2c,-l)bi62+ 2(2-3ci)bi6,       i = 1,2,3,4.

For d = q the NCE is only the one furnished by Theorem 7.

jbx(6) = 2(1 - 4bx)63 + 3(3bx - 1)02 + 0,

\b,(0) = 4(3c, - 2)6,.03 + 3(3 - 4c,>,02,        i = 2,3,4.

Also in this case no NCE of degree v = p exists.

4. Applications. The main application of the NCEs can be found, in our opinion,

in the next theorem.

Before stating it, we consider the following IVP with driving equation:

/z'(t) = F0,(t,z(t)),
(35)

U(t0) = z0
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where F(v)(t,x): = F(t, x, y(<¡>(r)), y'(<j>(r))), z, zQ and F are m-vectors, t is a

real variable and y is the solution of (1). Also in this case F is supposed to be

sufficiently smooth. Moreover, the function <f> is one-to-one between [t0, t0 + p] and

[/0 = </>(t0), t0 + p = 4>(t0 + p)] and is sufficiently smooth together with its inverse

Theorem 10. Consider a R-K process (2)-(3) of order p to approximate the solution

of (1) at the point t0 + h, « < p, and let u be a NCE (of degree d). Moreover,

consider the IVP

W'(T) = f(u)(t,w(t)),

w(To) = zo>

in the interval [t0, t0 + « = \p(t0 + ft)], where

F(u)(r,x): = F(r,x,u(4>(T)),u'(<t,(r))).

If z is the solution of (35), then

(37) max  . \zw(r) - wik)(r) |= 0(hd+1~k),       k = 0,...,d,

and all the higher derivatives ofw remain uniformly bounded as « -* 0;

(38) |z(t0 + «)-w(t0 + «)|= 0(hp+l);

(39) r°+Ä G(t)[z<*>(t) - w<*>(t)] dr = 0(h"+l),       k = 0,1,

for every sufficiently smooth matrix-valued function G.

Proof. By (9) and (12) we have

max    \yik)(*(T))-ulk>(4>(T))\
(40) r°<T<To+h

=     max    |/*>(r)-«(*)(')|=0(«''+1~*)>       ik — 0.1.

This yields

max   _\F{v)(r,x)-F(u)(j,x)\=0(hd)

uniformly with respect to x in any bounded set of R.

By standard arguments on IVPs for ODEs, we get

max  Jz'(t) -w'(r)\= 0(hd).

This easily implies (37) for every k = 0,..., d. The uniform boundedness of the

higher derivatives of w (as « -» 0) follows by (11) and by the smoothness of </> and

F.

Before proving (39), observe that (38) is a particular case for G(t) = I (identity

matrix) and k = 1.

(36)
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If G is a sufficiently smooth matrix-valued function, then, by (35) and (40), the

analogue of (34) for the IVP (36) becomes

f0 + 'hG(T)[z'(r)-w'(r)}d

= f0 + 'hH(r0 + h,x) — Fiy)(x,z(x))(y(<b(x))-u(<t>(x)))
3
3v

a
-;F{r)(x,z(x)){/(4>{x))-u'(l>(x)))

ay
dx

+ 0(h2d+x),

where H(t, x) is a suitable matrix depending on w, the derivatives of which remain

uniformly bounded as h -» 0.

Since 2d > 2q > p, by (10) and (13) and by substituting x := $(£), we obtain

h
f° +   G(T)[z'(T)-w'(r)]dr

d
fo+hH(T0 + h,m) )yFw(Hi),z(Hî)))(yU)-u(i))

^-Fiy)(m,z(*tt)))(y'(0-u'tt))
oy

nO di

+ 0(h2d+1) = 0(hp+ï).

Hence (39) is proved for k = 1. Simple integration by parts, together with (38) and

(39) for k = 1, finally yields (39) for k = 0.   D

Roughly speaking, the properties (9), (10), (11), (12) and (13) of the perturbation

y - u are reproduced for the error z - w. In particular, the order p + 1 of the local

error at the nodes is preserved, although the uniform rate of convergence to zero of

the perturbation y — u can be lower.

As an application of Theorem 10 we consider the following IVP for DDEs of

neutral type:

(y'(t)=f(t,y(t),y(t-a(t)),y'(t-a(t))),

(41) !y(t) = o(t)     for t^t0,

\y'(t) = u(t)    for t<t0,

where the delay a satisfies a(t) > ä > 0.

Recently, many papers have appeared in the literature on this subject, even in

much more general contexts. Numerical methods for (41) have been investigated, for

example, by Zverkina [15] and [16]. In the particular case that the equation is not of

neutral type (i.e., / is independent of y'), we quote Oberle and Pesh [11], Arndt [1],

Bellen and Zennaro [3] and the references therein. However, we do not treat the

problem in detail here, and refer the reader to the cited papers.

We want only to remark that, in solving (41), one generally has to approximate the

solution y at the retarded argument with the same (or greater) order of accuracy of

the method he is using. Nevertheless, for nonneutral equations, Bellen [2] has proved

that, if one performs the one-step collocation method at v Gaussian points (of order
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2v), then he can use the collocation solution u to approximate the solution y at the

retarded argument (which, by (5), is uniformly accurate of order v + 1 only) without

losing the order 2v at the nodes, provided a particular choice of the mesh A is made

imposed by the delay a. The same result has been obtained by Vermiglio [12] for a

one-step subregion method of order 2f — 2.

They both assume the following hypothesis:

Condition 11. The delay a is such that the functional argument <¡>(t): = t - a(t) is

strictly increasing and sufficiently smooth together with its inverse \p.

We recall the cited restriction on the mesh A.

Condition 12. The mesh A includes the breaking points (i.e., the points at which

the solution y has discontinuities in its derivatives, caused by the delay a) and,

moreover, each node of the mesh is mapped exactly into another one by the functional

argument </>.

By virtue of Theorem 10, similar results are valid for all R-K processes. More

precisely, by induction on the intervals defined by the breaking points, one easily

gets the following very general result.

Theorem 13. // Conditions 11 and 12 hold, then any R-K process (2)-(3)

maintains its order p for the DDE (41), provided the solution y is approximated by a

NCE at the retarded argument.

Vermiglio [12] has observed that the method she proposes is equivalent to that

p-stage R-K process of order 2j» - 2 which is equivalent to the collocation method

based on the Lobatto quadrature formula at v points. One can verify by some

calculations that the continuous solution given by the subregion method is a NCE of

minimal degree v — 1. Moreover, one need only observe that the collocation solution

is, by Theorem 9, a NCE of degree v.

Hence, we can conclude that the order results in [2] and in [12] are included in

Theorem 13.

Going back to ODEs such as (1), another application of the NCEs could be the

tabulation of the solution y at nonnodal points. However, since in general the

degree d of the NCEs is lower than the order p of the R-K method, the accuracy at

nonnodal points is often worse. On the other hand, by (4) and (12), for the uniform

order p to be attained, it is necessary and sufficient to have a NCE of degree

d > p — 1. If d* is the maximum degree possible for a NCE of the R-K process

(2)-(3), Theorem 5 states that d* < min{v*, p}. More generally, only NCEs of

minimal degree q are assured to exist, and this is the case for the one-step

collocation method at v Gaussian points.

For this method, the author [14] has proposed a sort of Iterated Defect Correction

method in order to obtain uniform order 2v approximation. The procedure gives rise

to a sequence of v - 1 uniform corrections wk, k = 1,..., v - 1, of the collocation

solution u. These improved uniform approximations wk are polynomials of degree

< v + k which do not change the value of u at the endpoints t0 and tQ + h.

Moreover, they satisfy (9) and (10) with d=v + k and p = 2v. They are found in

an explicit way by making further evaluations of the function /. An algorithm

describing the procedure for p = 2,3 is given by Bellen and Zennaro [3]. In the

general case, it consists in formally embedding the equivalent p-stage R-K process
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(2)-(3) into another "larger" equivalent one, which has further stages g(,), i = v +

1,..., v', with corresponding weights bi = 0. These further stages are utilized only to

compute the improved uniform approximations wk, which turn out to be NCEs of

the new "larger" R-K process.

Furthermore, a last uniform correction wv is considered. It is a NCE of a still

" larger" equivalent R-K process and is utilized to give an accurate estimation of the

local discretization error of the original collocation method.

One can easily see that these results can be generalized to all R-K methods. By

starting from a NCE of degree d*, one performs p — d* — 1 uniform corrections,

by applying the same procedure as in [14], in order to find a NCE of degree p - 1 of

a " larger" equivalent R-K process. The cost is, obviously, some extra evaluations of

the function /. In this way one reaches uniform order p approximation.

A last uniform correction yields a NCE of degree p of a still "larger" equivalent

R-K process, which can be utilized to estimate the local discretization error of the

original R-K method. In fact we have the following theorem.

Theorem 14. If u is a NCE of degree p of a R-K process (2)-(3) of order p, then

(42) y0 + f'° + hf(t, u(t))dt-y= y(tQ + ft) - y + 0(hp + 2).

Proof. By (12) with d = p and by the smoothness of /, we get

f(t,u(t))=y'(t)-f(t,y(t))+f(t,u(t))

= y'(t) + 0(h"+x),

and this implies (42).   D

Therefore, by using a quadrature formula which is exact for polynomials of degree

< p, the left-hand side of (42) gives the desired estimation of the local discretization

error (it is convenient to use Gauss, or Radau, or Lobatto quadrature formulas).

This manner of estimating the local discretization error is not convenient for

explicit R-K processes, since the well-known R-K-Fehlberg and R-K-Merson meth-

ods certainly require less evaluations of the function /. On the other hand, if one

uses an implicit R-K method (e.g., when some stiffness is present), then this

procedure can be quite practical, if compared to Richardson's extrapolation tech-

nique.

Istituto di Matemática

Universita di Trieste

Piazzale Europa 1

1-34100 Trieste, Italy

1. H. Arndt, "Numerical solution of retarded initial value problems: Local and global error and

stepsize control," Numer. Math., v. 43, 1984, pp. 343-360.

2. A. Bellen, "One-step collocation for delay differential equations," J. Comput. Appl. Math., v. 10,

1984, pp. 275-283.

3. A. Bellen & M. Zennaro, "Numerical solution of delay differential equations by uniform

corrections to an implicit Runge-Kutta method," Numer. Math., v. 47, 1985, pp. 301-316.

4. J. C. Butcher, "Coefficients for the study of Runge-Kutta integration processes," J. Austral.

Math. Soc, v. 3, 1963, pp. 185-201.

5. J. C. Butcher, "Implicit Runge-Kutta processes," Math. Comp., v. 18,1964, pp. 50-64.

6. J. C. Butcher, "Integration processes based on Radau quadrature formulas," Math. Comp., v. 18,

1964. pp. 233-243.



NATURAL CONTINUOUS EXTENSIONS OF RUNGE-KUTTA METHODS 133

7. A. Guillou & F. L. Soulé, "La résolution numérique des problèmes différentielles aux conditions

initiais par des méthodes de collocation," RAIRO, v. 3,1969, pp. 17-44.

8. B. L. Hulme, "One-step piecewise polynomial Galerkin methods for initial value problems," Math.

Comp., v. 26, 1972, pp. 415-426.

9. S. P. Norsett & G. Wanner, "The real-pole sandwich for rational approximation and oscillation

equations," BIT, v. 19,1979, pp. 79-94.

10. S. P. Norsett & G. Wanner, "Perturbed collocation and Runge-Kutta methods," Numer. Math..

v. 38, 1981, pp. 193-208.

11. H. J. Oberle & H. J. Pesh, "Numerical treatment of delay differential equations by Hermite

interpolation," Numer. Math., v. 37,1981, pp. 235-255.

12. R. Vermiglio, "A one-step subregion method for delay differential equations," Calcólo. (In press.)

13. K. Wright, "Some relationships between implicit Runge-Kutta, collocation and Lanczos -r-method,

and their stability properties," BIT, v. 10, 1970, pp. 217-227.

14. M. Zennaro, "One-step collocation: Uniform superconvergence, predictor-corrector method, local

error estimate," SIAMJ. Numer. Anal., v. 22, 1985.

15. T. S. Zverkina, "A modification of finite-difference methods for integrating ordinary differential

equations with nonsmooth solutions," Zh. Vychisl. Mat. i Mat. Fiz., v. 4 (suppl.), 1964, pp. 149-160. (In

Russian.)

16. T. S. Zverkina, "A modified Adams' formula for the integration of equations with deviating

argument," Trudy Sem. Teor. Differencial. Uravnenu s Otklon. Argumentom. Univ. Druzby Narodov

Patrisa Lumumby, vol. 3, 1965, pp. 221-232. (In Russian.)


