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Numerical Solution

of Nonlinear Differential Equations

with Algebraic Constraints I: Convergence Results

for Backward Differentiation Formulas

By Per Lôtstedt* and Linda Petzold**

Abstract. In this paper we investigate the behavior of numerical ODE methods for the solution

of systems of differential equations coupled with algebraic constraints. Systems of this form

arise frequently in the modelling of problems from physics and engineering; we study some

particular examples from electrical networks, fluid dynamics and constrained mechanical

systems. We show that backward differentiation formulas converge with the expected order of

accuracy for these systems.

1. Introduction. In this paper we investigate the behavior of numerical ODE

methods for the solution of systems of differential/algebraic equations (DAE) of the

form

(1-1) 0 = Fx(x,x',y,t),       0 = F2(x,y,t),

where the initial values of at least x are given at t = 0 and dFx/dx' is nonsingular.

Systems of this form arise frequently in the modelling of problems in physics and

engineering. In general, there are many DAE systems, including simple linear

systems, which cannot be solved by numerical ODE methods because of numerical

instability [14]. However, the DAE systems arising in several areas of application

(for example, the simulation of electrical networks and mechanical systems, and the

solution of the equations of fluid dynamics) share certain properties that make them

amenable to solution by ODE methods, even though they are complicated nonlinear

systems. Our objective here is to develop an understanding of the behavior of

numerical methods for solving these special DAE systems. Strategies for solving

them reliably and efficiently are suggested in [22, 26].

The basic idea of using a numerical ODE method for solving DAE systems was

introduced by Gear [13], and consists of replacing x' in (1.1) by a difference

approximation, and then solving the resulting equations for approximations to x and

y. The simplest example of a numerical ODE method for (1.1) is the backward Euler

method. Using this approach, the derivative x'(tn+x) at time tn+x is approximated

Received July 18, 1984; revised May 28, 1985.
1980 Mathematics Subject Classification. Primary 65L05, 65L07.

*Work supported in part by the National Swedish Board for Technical Development when the author

was at the Department of Numerical Analysis and Computing Science, Royal Institute of Technology,

S-10044 Stockholm, Sweden.

**Work supported by the U. S. Department of Energy Office of Basic Energy Sciences.

©1986 American Mathematical Society

0025-5718/86 $1.00 + $.25 per page

491



492 PER LÖTSTEDT AND LINDA PETZOLD

by a backward difference of x(t), and the resulting system of nonlinear equations is

solved for x„+x and yn+x,

(1.2) 0 = Fxlxn+x, X;+lZ*",yn+i,tn+x),       0 = F2(xn+x,yn+x,tn+x).
\ '« + 1        ln I

In this way the solution is advanced from time tn to tn+x. In this paper we consider

several different higher-order numerical ODE methods for the solution of (1.1).

Not all systems of the form (1.1) can be solved using numerical ODE methods,

even though the solutions to these systems are well defined. An important character-

istic for understanding both the properties of solutions to DAE systems and the

behavior of numerical methods for solving these systems is the index of the system,

for which a precise definition is given later in this section. The system (1.1) has index

zero when the second equation in (1.1) is missing, and index one when dF2/dy is

nonsingular. Numerical ODE methods can be used to solve linear and nonlinear

problems of index no greater than one with no great difficulty. The situation for

problems whose index exceeds one is considerably more complicated. The nonlinear

problems that interest us here have an index of either two or three, hence we can

expect some difficulties in trying to solve them. In order to better understand the

index and its role in the structure and solution of DAE systems, we give a brief

review of the properties of general linear differential/algebraic systems in the next

few paragraphs. For further details see [25].

In some sense the simplest DAE systems are linear constant-coefficient systems

(1.3) Ax'(t) + Bx(t) = g(t).

The equation (1.3) is easily understood by transforming the system to Kronecker

canonical form. The main idea is that there exists a nonsingular row scaling P and a

nonsingular change of variables Q that transform the system to a canonical form.

Now, if the system is solvable, that is, if solutions to (1.3) exist for all sufficiently

smooth input functions g(t), and solutions are uniquely specified by their values at

any time in the interval of interest [14], then we can find P and Q that decouple the

system into a "differential"part and a "singular" part

(1.4) x[(t) + Cxx(t) = gx(t),       Ex'2(t) + x2(t) = g2(t),

where

ô-'*m-H',j, >*«)-h'''
and E has the property that either there exists an integer m such that Em = 0,

£m-i ^ o or g is the "empty" matrix. The value of m is defined to be the index of

the system. The matrix E is composed of Jordan blocks of the form

í° \
1      0

1      0/

and m is the size of the largest of these blocks. If E is empty, then m = 0, and the

system is just a standard ODE system.
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Systems of index greater than one have several properties that are not shared by

the lower index systems. To explain these properties, we study the simplest index

three problem, written in the form (1.1),

(1.5) x[-x2 = 0,    x'2-y = 0,    xx-g(t) = 0.

The solution to this problem is xx = g(t), x2 = g'(t), y = g"(t). When initial

values are given for x and y which are not compatible with the solution given above,

then the solution will initially exhibit a jump discontinuity or possibly even an

impulse. Similarly, if the driving term g(t) is not twice differentiable everywhere, the

solution will not exist everywhere.

The surprising fact about linear constant coefficient DAE systems is that even

though they are so unlike ODE systems, there is a large class of numerical ODE

methods that work for solving them [25]. For example, when the backward Euler

method with constant stepsize « is applied to (1.5), we find that the solution is

accurate io 0(h) on all steps after the third step. However, the solution can be very

inaccurate on the first two steps, and for several steps after a change of stepsize. This

situation causes problems for the types of error estimators that are commonly used

in variable-stepsize codes. Therefore, to use numerical ODE methods effectively for

the solution of high-index constant-coefficient DAE systems, we must be clever

about how we construct the algorithms and the error estimates. We discuss these

issues further in [26].

Now that we have defined the index for linear constant-coefficient systems, we

can think about generalizing the concept for more complicated systems. For general

linear problems (where the matrices A and B in (1.3) are time-dependent), there are

several possible ways to define the index of a system [14]. The local index is the

index of the local constant-coefficient system (where A(t) and B(t) are held

constant at some fixed time t, and we study the structure of the resulting constant-

coefficient problem). The global index is defined in terms of a reduction of the DAE

to a semicanonical form. The idea behind this reduction, which is analogous to the

transformation to canonical form in the constant-coefficient case, is to decouple the

system via nonsingular time-dependent transformations into a "differential" part

and a "singular" part. For many practical problems, we can find a nonsingular

(time-dependent) change of variables and a nonsingular (time-dependent) scaling

that transform the system to the semicanonical form

x[(t) + C(t)xx(t) = gx(t),       Ex'2(t) + x2(t) = g2(t),

where the matrices are all constant except C(t) [14], If the index of E is m, then we

say that the system has a global index of m.

The definitions for the local and global index are useful from the point of view

that they provide a means for studying the underlying structure of complicated DAE

systems, but they fail to provide us with any kind of a simple procedure for finding

the index of a given DAE system. The following algorithm, described in [14], is

useful for these purposes. We describe the technique below for linear nonconstant

coefficient systems, but it applies directly to nonlinear problems (1.1) when Fx is

linear in x', and we will make use of it several times later in this paper.
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Algorithm 1.1

(1) If A in (1.3) is nonsingular, then we are done.

(2) Otherwise, premultiply (1.3) by a nonsingular matrix P(t) to "zero out" a

maximal number of rows of A and permute the zero rows to the bottom to

obtain:

Ai
o

x' +
12

x = g(t).

(3) Differentiate the bottom half of the system to obtain the new system

'Ay

B12

X' +

Bii

B'x2
x = g(t).

Now apply this process again to the new system.

The idea behind Algorithm 1.1 is that by differentiating the "algebraic" con-

straints of the system, we can reduce the system's index without changing its

solution. For solvable systems with no turning points (this includes all of the systems

that we study here), this algorithm terminates in m iterations if and only if the

global index is m [14]. Thus we can use this procedure for determining the global

index of a system. The algorithm can also be used to find the local index of a system

by considering the matrices A and B at some time to be constant, and then applying

the algorithm to the resulting system. In this case, the algorithm terminates in m

iterations if and only if the local index is m. For the systems that we study in this

paper, the local index will always be equal to the global index. However, for more

general DAE systems, this is not always the case [14].

Now we are able to extend our definitions of local and global index to nonlinear

systems as follows. The local index is the index of the linear constant-coefficient

system that results from linearizing a nonlinear system at a given fixed time. The

global index is the number of iterations before Algorithm 1.1 terminates when it is

applied directly to the nonlinear system (without linearization). The application of

the algorithm to particular nonlinear systems, where Fx is not necessarily linear in

x', is exemplified at the end of Section 2.

Unfortunately, numerical ODE methods that work for linear constant-coefficient

systems break down when the matrices are time-dependent and the (global) index is

greater than one [14]. In fact, we are not aware of any numerical ODE methods for

solving general linear DAE systems, let alone general nonlinear systems. (There is a

method which has recently been suggested by Campbell [6], [7] for solving linear

DAE systems, but it is not a numerical ODE method in the sense that we have

described here because it involves differentiating the coefficient matrices.) Thus, it

comes as quite a surprise that there is a large class of numerical ODE methods that

work for solving the special high-index nonlinear DAE systems that we study in this

paper. In many ways the behavior of these complicated nonlinear systems is

suggestive of the behavior of the much simpler constant-coefficient systems, and

numerical methods that work for constant-coefficient systems appear also to be

useful for solving the nonlinear systems that we study here.
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Now that we have finally dispensed with the background information that is

necessary for understanding our results, the outline of the rest of this paper is as

follows. In Section 2 we study the error propagation properties of the backward

differentiation formulas (BDF) applied to systems of the form (1.1). We show that

when the functions Fx and F2 satisfy a set of assumptions that are physically

reasonable for the problems studied in Section 3, then a zero-stable &-step BDF

converges with a global error of 0(hk). The assumptions in Section 2 guarantee that

the global index of the systems analyzed will be either one or two, that the local

index will be equal to the global index, and that there will be no turning points in

the system (turning points are points at which the system structure changes [9]).

In Section 3 we discuss several classes of problems arising in three application

areas. First, we describe the DAEs arising in the modelling of electrical networks.

These problems usually have an index of either one or two, and we can apply the

results of Section 2 to show that the BDF methods converge with the expected order

of accuracy (assuming sufficiently accurate starting values). Secondly, we discuss

DAEs that describe the flow of fluids. For example, when the incompressible

Navier-Stokes equations are discretized via the numerical method of lines, they yield

a DAE system that satisfies the assumptions of Section 2. Lastly, we investigate

DAEs that arise in the simulation of mechanical systems of rigid bodies. These

systems may be written in several different, but equivalent (in the sense that they

have the same analytical solutions) forms. In one form, which is probably the most

natural, it turns out that the index (both local and global) of the system is three.

Hence, the theory in Section 2 does not apply to these problems. We study the error

propagation properties of the BDF applied to these special index three systems, and

show that the BDF methods again converge with the expected order of accuracy.

Similar results on the convergence of BDF methods for the index two and index

three nonlinear DAE systems have recently been obtained independently by Brenan

[41.

2. Global Error Analysis for Index One and Two Nonlinear Systems. In this section

we analyze the errors introduced in the solution of the differential/algebraic system

(1.1) when it is discretized by a constant stepsize BDF method. We find that,

provided the functions Fx and F2 are such that the system is solvable and has a

global index of either one or two (for index two, one additional assumption must be

satisfied), then the global error of a zero-stable /c-step constant stepsize BDF method

isO(hk). A BDF method is zero-stable if 1 < k < 6.

2.1. Error Analysis. We begin by analyzing the error propagation properties for

functions satisfying the assumptions that we require to prove convergence. At the

end of the section, we demonstrate that these assumptions are equivalent to

assuming that the system has global (and local) index of either one or two, plus the

additional assumption, if the index is two, that the nonzero rows of dF2/dy are

linearly independent. Now, to begin the analysis, consider the system (1.1),

(2.1) 0 = Fx(x,x',y,t),       0 = F2(x,y,t).

Let F = (Fx, F2)T and assume that an analytical solution to (2.1) exists. To solve

(2.1) numerically at tn, Gear [13] replaces x'(t„) in (2.1) by pxn/h, where p is the
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difference operator defined by

(2.2) px„ = £ <*,*„_,,
/ = 0

« = tn — tn_x and a, are the BDF coefficients, to obtain the following system of

nonlinear equations:

(2.3) F[xn,-jf-,yn,taj = 0.

The solution (xn, yn) of (2.3) is calculated by Newton's method. According to the

implicit function theorem, [12, Theorem 10.2.2] (2.3) has a unique solution if the

inverse of the Jacobian

/ =

9F\ + ^o ^j.     ^\
dx       «   dx'       dy

dF2

dx

dF2

dy

exists.

Denote the global truncation error in x„ and y„ by e* and eyn, respectively, and

the discretization error when (2.2) is substituted for hx'(tn) by t„. The truncation

error of the BDF-A: method has the asymptotic behavior ||tJ = 0(hk). The residual

of (2.3), when the Newton iterations are interrupted, is denoted by tj = (tt[, t\t2)t.

The computed solution solves

V = F\xn,-Y,yn^n)

= f(*(0 + «.". Í^x{,m-\^eUi)ty{tu) + el,,„)

= F[x(tn) + e*n,x'(t„) + Tn + ^,y(t„) + el, t„j

= F(x(tn),x'(tn), y(tn), tn) + |f •; + |£(^ + r„)

8F
+ -r-el - {terms of higher order in el and el and t„ }.

Let 5 = (8f, 82)T be the sum of tj and the high-order terms in el and e%. Then the

errors el and el satisfy

(2.4)

dFx     , dFx     , 3FX
a°9^ + /,^7     hJy-

«^
9x

9F2

I   3^i / x ^•—^(c„ + «tJ+«o\
OX

«5,

where c„ = Ef=1a,e¿_, and the derivatives of Fx and F2 are evaluated at x(t„),

x'(i„), y(tn) and /„. For notational convenience, we introduce FXx = dFx/dx,

Fix = ^Fx/dx', Ax = a0F{x + hFXx, A2 = dFx/dy, A3 = dF2/dx, and A4 = dF2/dy

in (2.4) to obtain

(2.5a)

(2.5b)

To continue the analysis, we make the following assumption.

Ai     HA2    ej \ «J'

hA,    hA4\el "{el.

-F{x(c„ + hT„) + h8x*

h 8-,
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Assumption 2.1. For all /„, F{x, FXx, A2, A2 and A4 are bounded, F{x is a square

matrix and the inverses of F{x and the Schur complement A4 - hA3AxxA2 [10] exist

forO < h < h0.

It follows from the definition of Ax that Axx exists if « is sufficiently small. Ax

and A4 are both square matrices. The inverse of hJn is computed by Gaussian

elimination

(2.6)   (kl„)   -
\      -(^-^m,-1^) -Mr1 (/i4-M3^2) //i

Thus, if Assumption 2.1 is satisfied, then a solution to (2.1) exists. Using (2.6), we

find that the explicit expressions for the errors are

€" = "^1_1 + MxA^A" ~ ^AxxA2ylA,A-xx){Flx(cn + «t„) - h8x)

-hAxxA2(A4 - hA3AxlA2)~182,

< = {A4 - hA,A-xxA2ylA,Axx{F(x(cn + hrm) - h8x)

+ (A4-hA2A-xxA2)~182.

Note that the errors in the "algebraic"variable y on previous time steps ef, i < « do

not influence the errors in any of the variables at the current time tn.

Consider two different possibilities: I. A4 is nonsingular, II. A4 is identically

equal to zero. (Later, we will show that it is sufficient to consider these two cases.)

An error analysis for Case I is carried through in Liniger [20]. In this case, it follows

from (2.5b) that

(2.8) el = A4x(82-A3el).

For Case II, by the assumption that A4- hA3AxlA2 is nonsingular, A2 has full

column rank when A4 = 0. Hence, el is uniquely determined by (2.5a). Multiply

(2.5a) from the left by A\ and solve the resulting equation for eyn in Case II:

(2.9) el = {A\A2yA\[8X -[f{J& + FXxel + F¿t„)).

The asymptotic expansion in power of « for e% in (2.8) and (2.9) are directly

dependent on the corresponding expansions for e*. These expansions will now be

investigated.

The nonsingular F{x has an LU-factorization F{x = BXB2. Let y denote h/a0 and

B = (F/J-1 = B2lBxl. It follows from the definition of Ax that

Ax = a0Bx{l + yBxxFXxB2l)B2,

and if « is sufficiently small, «||751-1F1;t752'1||/a0 < 1, then

(2.10) A-Xx = B2X{I + yA'xx)Bxla-0l = (B + yA^cC,1,

where

Mull-0(A0)-0(1).
Let

A2 = a0Ax1A2 = BA2 + yAxxA2
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and substitute (2.10) into the Schur complement

(2.11) D = A4- yA3A'2 = A4- yA3BA2 - y2A3AxxA2.

Substitute (2.10) and (2.11) into (2.7a) and simplify to obtain an expression for el

which is valid for both Case I and Case II:

(2.12) a0el = -(/ + yA'2D-xA3)(l + yAxxB-x)(cn + «t„ - hB8x) - hA'2D~x82.

Now we will proceed to bound the size of el and el for both cases. For Case I,

A4 is nonsingular, so that for « sufficiently small, the inverse of D in (2.11) can be

written

D-x = A-4l + yDx,       || Di |-0(1).

It follows from (2.12) that el satisfies the difference equation

pel = -«r„ - y(AxxB-x + A2D-XA3)\ £ «,<_, + «tJ
(2.13) \, = i /

+ hB8x - hA'2D-x82 + y2b + hy83,

where ||è|| < kb\\cn + «t„|| and \\83\\ ̂  ks\\8\\. Suppose that « is sufficiently small

and that the initial global errors are bounded, \\ex\\ < £, i = 0,1,...,k — 1, and

that ||S|| < e. Then, it follows from Lemma 3.2 in Henrici [18] that there are positive

constants Kx, K2, K3, and K4 such that

\\el\\< {K¿ + K2t„hk + K3tne)cxp(K4t„).

Hence, the asymptotic behavior as £ -» 0, h -» 0, and e -> 0 of the global error for a

given tn is

(2.14) \\el\\= 0(£)+ 0(hk) +O(e).

The global error in a purely differential system (1.1) without algebraic equations

would exhibit the same dependence on £, «, and e as el in (2.14). The conclusion

from (2.8) is that

(2.15) \\el\\= Ott) + 0(hk) + O(e).

For nonlinear systems, 8X and 82 in (2.9) and (2.13) depend on el and el because

they are higher-order terms that were neglected in forming (2.4). Apart from the

residuals from the Newton iteration, 8X and 82 consist of terms of the form

92F d2F d2F
—-exex     -——exey     ——eyey

dx2  ""'    9* o/""'    dy2  " "'

32F  lpel\lpel\       d2F    J pexn\        92F    J pexn

(dx')2\  h  )\  h  r    dxdx'e"\  h  j'    dydx'6

where the derivatives are evaluated somewhere between the true solution and the

numerical solution.

It follows from the definition of 8 that

llSNhll+Codl^H + lle^ll + llpei/«!!)2.
Furthermore, by (2.13), \\pex„/h\\ < C'(hk + \\el\\ + \\8\\). Thus, if | = 0(hk) and

||t/|| = 0(hk) in Case I, then we infer from (2.13), (2.14) and (2.15) that there is an e

of 0(hk) and the magnitude of the errors \\el\\ and \\el\\ is of 0(hk).
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Now in Case II, we have A4 = 0, and if we assume additionally that in (2.11)

A3BA2 is nonsingular, then the inverse of D for sufficiently small values of « is

D-i = -((A3BA2)~l + yD2)/y,       \\D2\\ = 0(1).

Recall that y = h/a0. The equation in this case that corresponds to (2.12) is

a0el = -(/ - BA2(A3BA2ylA3 + yA5){l + yAxxß-x)(cn + hr„ - hB8x)

<216) I       , m \
+ a0(BA2(A3BA2y  + yA6)82.

The terms proportional to y', i > 1, in the first matrices multiplying the two error

terms in (2.16) are collected in A5, \\A5\\ = 0(1), and A6, \\A6\\ = 0(1). The

assumption guarantees that the index of the system will be two. An example where

this assumption does not hold is analyzed in Section 3.

Let H = BA2(A3BA2)~lA3. Then the matrix H is a projector with the properties

[1]:

(1) H2 = H,
(2) An eigenvalue of H is either 0 or 1,

(3) If z e N(A3) = N(H) then Hz = 0, and if z e R(BA2) = R(H), then

Hz= z,

where N(H) and R(H) are the null space and the range of H, respectively. It

follows from (2.5b) that the component of el in R(H) fulfills

(2.17) Hel = BA2(A3BA2)-X A3exn = BA2(A3BA2)-\.

The errors ef, i = n - k, n — k + 1,..., n — 1, also satisfy relations similar to

(2.17),

(2.18) H,ex = B^XA^A^A^ef = B^A^A^X = C,82i,

where the subscript i indicates that an array is evaluated at x(t¡), x'(t¡), y(t¡), t¡,

and H = Hn. By virtue of (2.17), the difference equation (2.16) can be written

pexn = -y{As +(I-H + yA5)AxxB-x)cn

+ Hpel -h(l-H+ yA5)(l + yAxxB-x)(rn - B8X) + a0yA682.

The following identity is derived using (2.18):

k k

Hpel = I «,/.„_,<_, + £ «,(H - H„_,)el_,
i-O 1=1

n k

=    E   «„-,C,ô2,+ £ at(H - #„_,)<-*•
i=n—k 1=1

Thus,

k

P« - Cn82n) = « E «,^,-,<-, - hZ(rn - B8X) + hA682
i=i

k

(2.19) = h E «,W„-,(<-, - C„_,Ô2,„_,)
1=1

k

+ h E «,Wn-iCn-fi2,n-i - hZ(rn - B8X) + hA682,
i = i
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where

K-i = {H     "n~'] - <{A5 +(I-H + yAs)AxxB-x),

Z=(l-H + yA5){l + yAxxB-x).

Since A3iBiA2i, i = 0,1,...,n are nonsingular, and the matrices defining C, and Hi

are smooth, there exist constants Jf0, Jt"x and Jf2 independent of h with the

properties

(2.20) |C,||<jr0,    \\H-Hn_,\\^ihJPx,    \\WA<**
Note that (2.18) is valid only for i > k because i < k are the initial values. Thus,

(2.19) and the identity preceding (2.19) are valid only for n > 2k, because they

involve k past values of exn. It is possible to show [4] that el = 0(hk), el = 0(hkX)

for n = k,... ,1k — 1. In the remainder of the analysis, we assume that we are

starting with these approximations as the 'initial values'.

Suppose that ||<??|| < £, i = 0,1,..., Âc, \\8X\\ ̂ ex and ||fi2/|| < e2. Then, \\ef -

CfiitW < £ + ^oe2 f°r i = 0,l,...,k. Then, Lemma 3.2 of Henrici [18] asserts that

there is an upper bound on the solution to (2.19),

IIeí - cAll < (M + k2tnhk + k3tnex + k4tne2)exp(k5tn),

where k¡, i = 1,..., 5 are positive constants. The bound on ||e*|| is

II < II < IICA11 +Ik*-CAII
< Jío«2 + (M + M,** + k3tnex + k4tne2)exp(k5t„).

The asymptotic behavior of the global error in x as £ -» 0, h -* 0, ex -* 0 and

e2 -> 0 is

(2.21) \\el\\ = Ott) + 0(hk) + 0(ex) + 0(e2).

Introduce the expression for pel from (2.19) into (2.9) and utilize (2.21). The

asymptotic behavior of el is

(2.22) \\ey„\\ = Ott) + 0(hk) + 0(ex) + 0(e2/h).

Since A4 = 0 in Case II, ô2 is a function only of el and not of eyn. Suppose that

£ = 0(hk), Tj! = 0(«*)and tj2 = 0(hk + x). It follows from (2.19) that

\\pexn/h || < fe'flleill +hk+ \\8X\\ + \\82\\ + ||pC„62„ll/«) < k"(kk + ex + e2/h).
According to the definition and (2.21), (2.22) and the above estimate, 8X and 82 are

bounded by

l|SiNhill + ̂ o(lknxll + lkll + llp</MI)2

(2.23) < k\h"+ h2k + e¡ + f2 + h% + hk~hl + Ejfr)'

II «2II < I11211 +M'if
< k3(hk + x + h2k + e2 + e\ + hkex + hke2 + exe2).

Determine ex and e2 as solutions of

ex = k\hk + h2k + e2 + | 4- hkex + hk'\ + E-f
(2.24) \ « h

e2 = k3(hk + l + h2k + e2 + e2 + hkex + hke2 + exe2),
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and solve (2.24) by functional iteration e = G(e) with the initial value £(0> satisfying

e<°> = *!**>        e2°> = k3hk + l.

Then e(1) = G(e<0)) has the property

e[X)=0(hk), e2x>=0(hk + 1),

as before and ||9G/9e|| = 0(hkX), where the derivative is evaluated at e<0). For

k > 1, we can use the contraction mapping theorem to conclude that ex = 0(hk)

and e2 = 0(hk + 1). For k = 1, we cannot apply the theorem directly because

l|9<2/9e|| = O(l). But, if we scale the variables by êi = ex/ {h, l2 = e2/h, we can

then apply the same strategy as above to reach the conclusion.

A complication to the above analysis is that the matrices 92F/9x2, 92F/9x9v,

d2F/dy2, etc., depend on el and el, and we have not taken this into account in

(2.23). Modify G by multiplying by C'(l + h + \\el\\ + \\el\\) where the extra terms

arise because the matrices depend on t, el and eyn. Then solve the new system by

functional iteration with the initial value e<0) taken to be the converged solution of

the previous iterative procedure. The same analysis applies also in this case. Hence,

there exist ex = 0(hk) and e2 = 0(hk+1) for k > 1 such that the inequalities

HSiH < £! and \\82\\ < e2 are satisfied. Moreover, it follows from (2.21) and (2.22)

that the error in Case II behaves asymptotically as we would expect with a BDF-&

method,

|k1=0(«*),       |k||=0(A*).
Examples of systems of physical and technical importance with the above structure

are discussed in the next section.

The case when A4 is singular but A4 ^ 0 can easily be brought to the form of

Case II by a linear transformation if we assume:

Assumption 2.2. If A4 is singular, then the rows in A4 different from zero are

linearly independent.

Permute the rows of A3, A4 and 62 such that they have the structure

-(£)■ Mir)- *-(£).
where the rows of A4X are not identically equal to zero. If Assumption 2.2 holds,

then there is a permutation of the columns of A2 and A4X and of eyn,

A4X = (A42,A43),       (el)T=((el2)T,(ey„3)T),

where A42 is nonsingular. The components eyn2 of eyn corresponding to A42 can be

expressed as

(2-25) eyn2 = A-4\(82X - A3Xex„ - A43ey„3),

see (2.5b). Insert (2.25) into (2.5a) and remove the rows of A3X, A4X and 82x. The

original system has been reduced to a Case II system with the global errors el and

eyn3 where 822 depends only on exn. The Case II analysis is directly applicable. The

asymptotic behavior of ||e^2|| is obtained by (2.25).

2.2. Index of ODEs Coupled with Constraints. The error analysis of Section 2 is

now complete. The structure of the DAE systems in the above analysis is either

(2.26a) Fx(x,x',y,t) = 0,

(2.26b) F2(x,y,t) = 0,
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where dF2/dy is nonsingular, or

(2.27a) Fx(x,x',y,t) = 0,

(2.27b) F2(x) = 0.

The number of equations in Fx (F2) is the same as the number of components of x

(y)-

In both (2.26) and (2.27), F{x = dFx/dx' is nonsingular and in (2.26), also

A4 = dF2/dy is nonsingular. Apply Algorithm 1.1 to (2.26) and take the time

derivative of (2.26b) to obtain

9F
(2.28) A3(x, y, t)x' + A4(x, y, t)y' + ^ = 0.

dt

The matrix A in the algorithm is

A is invertible and by the implicit function theorem [12, Theorem 10.2.2] we can

solve (2.26a) and (2.28) for x' and v'. The result is an ODE system. The algorithm

has terminated and the global index of (2.26) is one. Since FXx and A4 are invertible,

Assumption 2.1 is fulfilled by (2.26). On the other hand, if Assumption 2.1 is valid

for (2.26) and A4 is nonsingular, then the global index is one.

In (2.27) compute the time derivative of (2.27b),

(2.29) A3(x)x' = 0.

Solve (2.27a) for x' as a function of x, y, and f :

(2.30) x' = t(x,y,t).

This is possible since F{x is nonsingular. Insert (2.30) into (2.29) and compute a new

time derivative of A3\¡/. According to [12, Theorem 10.2.2],

(A,*)' = ^iK - A3BFXxx' - A3BA2y' + A3^ = 0,

where B = (F{x)~x. Our matrix A in the algorithm is

dA

FL 0

^-A3BFXx    -A3BA2

If A3BA2 is nonsingular, then A shares this property. We can solve the equations for

x' and y' to obtain an ODE system. The algorithm has terminated. The global index

of (2.27) is two. If F{x and A3BA2 are invertible and A4 = 0, then Assumption 2.1

is valid for (2.27). Conversely, if Assumption 2.1 is satisfied for a system with the

structure (2.27) and the inverse of the Schur complement is of 0(1/h) when « -* 0

then the inverse of A3BA2 exists and the global index is two. The asymptotic

behavior of the global error follows from the analysis of Case II.

In order to determine the local index of the general system (2.1), we linearize the

system and freeze the coefficients. The following system has the same local index as
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Compute the time derivative of the last row of (2.31). The local index is one if and

only if A4 is nonsingular, and then we are done. Now if A4 is singular, let the

singular value decomposition (SVD) of A 4 be

(2.32) A4= U2V1 Mî : = U^VT.

Then N(A4) is spanned by V2 and R(A4) is spanned by Ux. The diagonal matrix 2j

has positive diagonal elements [1]. Split y into two parts,

(2-33) y = Vxyx + V2y2.

Differentiate (2.33) and the last row of (2.31). The result is

(2.34) A3x' + A4Vxy[ = 0.

Premultiply (2.34) by UT and eliminate x' by means of (2.31). Let C = A3BA2.

Then

(2.35)

If'rlx

o

0

0

2

0

o\

0

0

>'l

Fu

UXTA3BFU

U2TA3BFU

A2VX

-UXTCVX

-U2TCVX

A2V2

-UXTCV2

-U2TCV,
2/

\l x\

>'l

\y2

= o.

Take the time derivative of the last row of (2.35). Our new matrix A is nonsingular if

and only if U2A3BA2V2 is nonsingular. According to Algorithm 1.1 this is the

necessary and sufficient condition for the local index of (2.1) to be two. If A4 = 0

(Case II), then we can take U2 = V2 = I and 2 = 0 in (2.32). We have found that

the global index is equal to the local index for index one systems of the form (2.26)

and if the global (local) index of system (2.27) is two, so is the local (global) index.

3. Systems of Importance in Physics and Engineering. Three areas of application

are discussed in this section: the simulation of electrical networks, the solution of

certain equations in fluid dynamics, and the simulation of mechanical systems.

Other areas of application, which we do not discuss here, are control theory [8],

power systems [27], and heat flow [3]. The last reference discusses common proper-

ties in models of physics with a network structure. It is often natural and convenient

to pose and solve these problems as DAE systems. In the examples presented below,

the index (both global and local) never exceeds three. All of these problems can be

solved by numerical ODE methods, although as we point out in [22], [26], some

special care must be taken in implementing these methods so that they are reliable

and efficient for solving these complicated nonlinear problems.

3.1. Electrical Networks. The computer-aided design of electrical networks has

been the subject of many papers. Here we are interested only in design problems

requiring the numerical solution of a DAE system of the form (1.1). The formulation

of these problems is treated in more detail in [2], [5], [17], [19], [27].

The electrical networks under consideration consist of branches and nodes. The

variables x and y in (1.1) correspond to currents and voltages in the network. The

constitutive relationship between the current and the voltage in a branch with an

inductor or a capacitor is an ODE. In a resistor branch the relationship is an

algebraic equation. Furthermore, the topology of the network introduces constraints

on  the variables. These constraints are linear algebraic equations representing
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Kirchhoffs current law and Kirchhoff s voltage law. These relations together form a

DAE system (1.1).

Sincovec et al.   [27] state the equations characterizing a network containing

voltage sources and linear capacitors and resistors:

CVC

0

0

0

0

0

0

The variables V.

(3.1)

'0

0

0

0

-/

0

0

and

0

/

0

-I

0

0

0

0

0

/

0

0
-I

0

0

0

0

0

0

0

AT

0

0

0

0

0

ATc

0

0

-R

0

0

0

AT

0

0

0

AE

Ac

Ar

0 'Ni

T represent the voltages and currents in branches with

voltage sources, capacitors or resistors (i = E,C or R). The node voltage vector is

VN. The diagonal matrices C and R have positive diagonal elements and may be

time-dependent. The matrices A¡, i = E, C or R, reflect the structure of the

network, and the equations in which they appear are derived from Kirchhoffs laws.

The driving term E = E(t) on the right-hand side of (3.1) characterizes the voltage

sources. The Jacobian of a nonlinear problem has a similar structure [27].

Let A+ and Ä be defined by

A,

(AE\

A,

A' =
Ac

It is shown in [22] and [27] that if the columns of A„ and the rows of Ä are linearly

independent, then the system (3.1) has index one.

In Sincovec et al. [27] the conditions on A* and Ä are given physical interpreta-

tions. The columns of A+ are linearly independent if and only if there is a path from

every node through branches to the ground node, i.e., the network is "connected". A

loop in the network is a path from one node via branches in the loop back to the

original node. The rows of Ä are linearly dependent if and only if there is a loop in

the network with branches containing only voltage sources and capacitors.

The size of the DAE system containing the differential equations can be reduced

by eliminating variables. There are several ways of performing this elimination

systematically. The objective of Kuh and Rohrer [19] is to obtain a system of ODEs

satisfied by the state variables. This is always possible by Algorithm 1.1 when the

system is linear and the matrix corresponding to A4 in the Jacobian of (3.1) is

nonsingular. Then the rest of the variables are expressed as linear functions of the

state variables. These reductions are also carried out in Hachtel et al. [17] and

Sincovec et al. [27].

In the case when the rows of A' are linearly dependent, Sincovec et al. [27] operate

on the original DAE system with linear transformations, yielding a system of the

form

(3.2)

>Ai

0

0

0

0

0^

0

0

+

0

A\

\BX

0

B,

0\

0

/
»(0.
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where Ax is nonsingular. This system has a global and local index of two and

satisfies Assumptions 2.1 and 2.2, and so the error analysis of Section 2 applies. We

can see that (3.2) has a global index of two by applying one iteration of Algorithm

1.1 to (3.2). To do this, differentiate the second and third rows and substitute for the

upper part of y' from the first equation to obtain

(3-3)

0

0

B,

y' +

o
,r

\s;

2     1       2

732 - BXA~XA2

o\

0

0

y-ê(t)-

By interchanging column and row two and column and row three, we can see that

the index of (3.3) is one if the inverse of ATA[XA2 exists, i.e., if and only if A2 has

linearly independent columns. Since (3.3) was obtained by applying one iteration of

Algorithm 1.1 to (3.2), and each iteration of that algorithm reduces the index of a

system by one [14], it follows that the global index of (3.2) is two. Using a virtually

identical argument on the local linearization of (3.2), we can show that the local

index of (3.2) is two.

The index of the subsystem in (3.2) defined by

(3-4)
'Ax

0

0'

o /+
0

0 \y = g(<)

is also two, by a similar argument. The reduction of this subsystem (3.4) is continued

in Sincovec et al. [27] by differentiating the algebraic constraints and using the

differential equations to eliminate the variables appearing in the equations without

derivatives. The result is a subsystem of only ODEs.

3.2. Fluid Dynamics. The flow of an incompressible, viscous fluid is described by

the Navier-Stokes equations

du
u,(3.5) -T- +(u ■ v)« = -Vp + YV

(3.6) V • u = 0,

where u is the velocity in two or three space dimensions, p is the pressure and y is

the kinematic viscosity. Equation (3.5) is the momentum equation and (3.6) is the

incompressibility condition. In addition to (3.5), (3.6), the flow satisfies problem

dependent boundary conditions. After spatial discretization of the equations with a

finite difference or finite element method, the vectors U and P approximating u and

p satisfy

(3-7)

(3.8)

MÙ + (K + N(U))U+ CP=f(U,P),

cTu = o,

according to Gresho et al. [15]. The system of partial differential equations (3.5) and

algebraic equations (3.6) has been transformed by the "method of lines" into the

DAE system (3.7), (3.8). The mass matrix M is the identity matrix (finite dif-

ferences) or a symmetric positive-definite matrix (finite elements). The discretization

of the operator V is C and the forcing function / emanates from the boundary

conditions.
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The system (3.7), (3.8) has the same structure as (2.27) with A2 = C - df/dP,

A3 = CT and B = M'x. Suppose that either 9//9F = 0 and C has linearly indepen-

dent columns, or CTM~yA2 is nonsingular. One of these conditions is usually

satisfied. Then, under these conditions, the system has local and global index of two.

Thus the error analysis of Section 2 applies to these systems. These results about the

local index were also obtained by Painter [23] by explicitly computing the transfor-

mation matrices P and Q in (1.4). Note the similarity between (3.4) and (3.7), (3.8).

The algebraic constraint is defined by AT and CT, and the variable without

derivative in the system is multiplied by A2 and C.

An alternative formulation to (3.7) and (3.8) is used by Gresho et al. [16] to solve

the Navier-Stokes equations in three dimensions. The DAE system to be solved is

written as

(3.9) M(I + (K +N(U))U+CP=f(U,P),

(3.10) AP = CTM-l(f-(K +N(U))U),

where A = CTM~XC is a discretized approximation to the Laplacian operator into

which the velocity boundary conditions have been (automatically) incorporated.

Equation (3.10) is derived from (3.7) and (3.8) by first differentiating (3.8) with

respect to time, and then multiplying (3.7) by CTM~l. The fact that CTÙ = 0 is then

used to eliminate Ù from (3.7) and the resulting equation is solved for P. Note that

this is exactly one iteration of Algorithm 1.1, hence it follows that the index of the

reformulated system (3.9) is one. This formulation has the advantages that first,

since the index is one, there are more algorithms and better theory available for

solving the problem; and second, (3.9) can now be solved with an explicit method,

while (3.10) is essentially a Poisson equation and can be solved by an implicit

method. A possible disadvantage is that for finite elements, the matrix A may not be

very sparse (although it is sparse for finite differences). Because the constraint (3.8)

was linear with constant coefficients, it turns out that using the formulation (3.10)

the original constraint (3.8) is satisfied exactly at every time step [16] (as opposed to

"drifting off the original constraint due to truncation errors in the solution, a

phenomenon that we discuss in [26]) even though (3.9), (3.10) is implicitly using only

the differential constraint CTÙ = 0.

The equations satisfied by a compressible, inviscid, isentropic medium are the

Euler equations [11]:

(3.11a) gy+(«• v)p + pv • m = 0,

(3.11b) ^j+(u-v)u + ^ = 0,

(3.11c) p-f(p) = 0,

where the scalar p is the density. The first equation (3.11a) represents the conserva-

tion of mass, (3.11b) is the momentum equation, and (3.11c) is the equation of state.

If we, to simplify the discussion, ignore the boundary conditions, discretize (3.11) in

space, and substitute the spatial derivatives by finite difference approximations, then
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the density vector D and the velocity and pressure vectors U and P satisfy a DAE

system:

(3.12a) D + CX(U)D + C2(D)U = 0,

(3.12b) Ù + C3(U)U + C4(D)P = 0,

(3.12c) P-F(D) = 0.

This system has the same structure as (2.26). We find immediately that the matrix in

(3.12) corresponding to A4 in (2.5) is / and consequently, the index of the system is

one. To create a subsystem of (3.12) with index zero, simply replace P in (3.12b) by

F(D). Then (3.12a) and (3.12b) constitute an ODE system. The addition of viscous

terms dependent on U on the right-hand sides of (3.11a) and (3.11b), or an extra

entropy equation, does not change the index of the discretized problem.

3.3. Systems of Rigid Bodies.

3.3.1. Problem Description. The mechanical systems considered here consist of

rigid bodies interconnected directly by joints or via other components such as

springs and dampers. The vector q of coordinates of the bodies satisfies the

following equations [28],

(3.13a) M(q)q"=f(q,q',t) + G(q)X,

(3.13b) <S>(q) = 0.

The mass matrix M is nonsingular almost everywhere, X is the Lagrange multiplier

vector and 9$/9g = GT. The algebraic equation (3.13b) often represents geometri-

cal constraints on the system.

A simple example of a system such as (3.13) is the physical pendulum. Let L

denote the length of the bar, \ the force in the bar, and x and y the Cartesian

coordinates of an infinitesimal ball of mass one in one end of the bar. Then x, y,

and X solve the DAE system

(3.14) x" = 2xX,    y" = 2yX - g,    x2 + y2 - L2 = 0.

Here, GT = (2x, 2 v) and g is the gravity constant.

If the initial condition q0 = q(0) is consistent with (3.13b), ®(q0) = 0, then the

algebraic constraint (3.13b) can be replaced by its differentiated form

(3.15) GT(q)q' = 0.

Moreover, if <P(q0) = 0, q'0 = q'(0) and GT(q0)q'0 = 0 then the condition (3.15) is

equivalent to

(3.16) d(GTq')/dt = GTq" + G'Tq' = 0.

We obtain a system of linear equations satisfied by X by introducing q" from (3.13a)

into (3.16),

(3.17) GTM'lGX + GTM'xf+ G'Tq' = 0.

It is shown in Lötstedt [21] that even if the columns of G are linearly dependent in

(3.17) and (3.13a) and X is not unique, the contribution GX to the equations of

motion (3.13a) is unique. Furthermore, there is a matrix G* consisting of linearly

independent columns of G which can replace G in (3.13a) and (3.17) such that the

solutions to (3.13) with G and Gm are identical. Henceforth, we assume that the

columns of G are linearly independent.
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We eliminate X in (3.13a), using the solution of (3.17), and arrive at an ODE

system

(3.18)        Mq" + G(GTMxG)'lG'Tq' = (i - G(GTM-xG)~lGTM-x)f

to solve for the coordinates. Note that each time the constraints are differentiated in

(3.15), (3.16), this is equivalent to one iteration of Algorithm 1.1. Hence, the global

index of the system with the constraint (3.15) is one less than the index of the system

with the constraint (3.13b), and the index of the system with the constraint (3.16) is

one less than the index of the system with the constraint (3.15). Now, since (3.13a)

coupled with (3.16) is equivalent to (3.17) coupled with (3.18) by simple substitutions

which do not change the index, and the index of (3.17) coupled with (3.18) is

obviously one (as long as GTM~XG is nonsingular), it follows that the index of

(3.13a) coupled with (3.15) is two, and the index of (3.13) is three. By a similar

argument based on the local linearization of (3.13), we can show that the local index

of (3.13) is three, and that the local index is reduced by one whenever the constraint

is differentiated. The systems (3.13) and ((3.13a), (3.15)) have the form (2.27). The

matrices corresponding to A3BA2 in the error analysis are identically zero for (3.13),

and GTM~XG for ((3.13a), (3.15)). The DAE system ((3.13a), (3.15)) has the same

symmetry property as (3.4) and ((3.7), (3.8)).

There are other methods based on classical analytical mechanics aimed at reduc-

ing the number of algebraic equations in (3.13). A particular method is developed in

Wittenburg [28] and several other techniques are reviewed in Paul [24].

For the numerical treatment of (3.13), the differential equations are rewritten in

first-order form:

(3.19a) u' = v,

(3.19b) M(u)v' =f(u,v,t) + G(u)X.

The scaled Jacobian of (3.19) and (3.13b) is

(3.20) hJ,

a0I

hX

\hGT

ct0M + hY

0

0   <

hG

0   ,

where

dM , _

du du
9/_ 9G

9«
A, Y = K

fo-

il instead of solving (3.13), we choose to solve the (analytically) equivalent system

(3.13a) coupled with (3.15), then the scaled Jacobian of this new system is

(3.21)

where

hJ.

u0j

hX

\hZ

0

a0M + hY    -hG

-hi

r +

hGT

-     9Gr
Z =  —-V.

ÖU
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Since the index of this system is two, the error analysis in Section 2 applies here.

However, it does not apply to the original system (3.13). We shall now investigate

the propagation of errors in this case where the index is three.

3.3.2. Error Analysis for Index Three Case. The global error in u = q at tn is

denoted by eun and the error in v = q' by evn. Let O^ = ((8?)T, (8^)T)T in (2.7). For

nonlinear systems 8X and 82 depend on e", evn and el (the error in X). Apart from

the residuals from the Newton iteration r\x, the leading terms of Si" are of the form

du
2 ^ n   n >

92/
dudv

„    2cnc«

00

(i.e., terms which are of order two in e" and el), as well as

9G   u x
— e e
du

,   9M „pe;;
and    -r— <-r-.

9w       «

In the analysis to follow, we will define 8X to consist of the terms which are of order

two or higher in eun and evn. The other neglected term, 82, is of the form

82 = - —r<e„" + (higher-order terms in e„"} + tj2,
1 du

where tj2 consists of the residuals from the Newton iteration and round-off errors.

The equation for the errors corresponding to (2.4) is then given by

(3.22)

a0I -hi 0

hX     a0M + hY    -hG

hGT 0 0

We can solve for e^ as in (2.9) to obtain

\ le»\

ex

-hrnu - cu„ + h8"x

-hMrl - Mcv„ + h8vx

h8,

(3.23)    exn = (GTM-lG)'lGT{rl + JT + M"ly< + M~lXe1 - M~X8VX

Insert the matrices from (3.22) corresponding to Ax, A2, A3 and A4 in (2.7a), and

form the matrix D in (2.11),

Irv.r -hi       \~l

D = h(GT0)\
a0I

hX a0M + hY

(3.24) = y(Gr0)I^2S;lX    ^

\    -yS~xX        S"1

= y2GTS-xG,

where S = M + y Y + y2X and y — h/a0. There is a matrix Sx, for 7 sufficiently

small, such that

(3.25) S~x = M~x + ySx,       \\SX\\ = 0(1).

Now, utilizing (3.24) and (2.12), the errors e" and e"n satisfy

'/- S-lG(GTS-1G)~1GT

(3.26)

-5-1G(G7S1G)~1Gt/y     /

•(/ + *4112r1)(c)I + ATII-A£ô1)

+ ar

1   \
S-1G(GTS~1G)

S-1G(GTS-xG)~1/yl
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Let

(3.27)
Kj-Sj-HSjiGfr^jY1,

Hj = KjGJ,    H = Hn,    H' = (0     Hj-

Premultiply (3.26) by the projector (I - H') to obtain

(3.28)       a0(I - H')el = -(I - H'){l + yAnB~l)(cn + hrn - hB8x),

where (ezn)T = ((eun)T,(evn)T). We have from the definition of B that

B8X =
M~l8vx

In the absence of round-off errors, 8" = 0 by virtue of the linearity of (3.19a). Since

GfS^Gi, i = 0,1,..., n, are nonsingular, and G, and S¡ are smooth, then we have

that there is an Jif3  such that

(3.29)

cf. (2.20).

It follows from (3.26) that

(3.30)

where

denoted by 83 ,,

\H'-Hl_,\\^ihJe3,

Hrf = Kj82J,

where 82 ■ is evaluated at tj. Let the error in the differentiated constraint at tj be

8Xj = Gjef = GjVj.

Let Lj_¡ = (Gj — Gj_x)T/h. Since G is smooth, L,_i is bounded independently of

«. From the discretization of the equation u' = v and (3.22) we have that

(3.31a)

and hence that

(3.31b)

p(S,   ) k

( = 0

HjeJ = Kfa = Kp^- + Hjr; + Kj E «.L^e».,.
i = 0

Rewrite the right-hand side of (3.28),

k

(3.32)

a0(I-H')el= -1.0,(1-H;.t)e'm.,

{h;_, - h>)

i-i

k

«E«,
1 = 1

+ a'0l(l - H')AXXB-1

+ h(I-H'){l+yAxxB-x)(B8x-Tn).
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Split ezj into two parts:

511

(3.33)

e) = [l-Ef)e) + Efe)

= (/ - Hj)ej + KjSf.

Insert (3.33) into (3.32) and rearrange the terms. The difference equation satisfied by

(/ - Hf)e] is

p[(l-K)eB]

k

= -h E o,wa.,(i - K-H-t + hz(BSi - O
i=i

* / fi,
-*L«,»iXii

i=i

(3.34)

2,n-i

/ 0

-*E«,M-<
i=i

-»E^-A'-i
i=i

2^   amLn-i-m\*        "n-i-m)en-i-

m = 0

0 \

¿^   am    n — i- m     n — i — m  2,n — i — m

m = 0

where

»;-< =     '„     + «oH/ + hoai^-1,

Z = (I-H')(l + yAxxB~l),

and we have used (3.30) and (3.31b) to find Htf and Hrf, and ej_¡ in (3.31b) has

been split into two parts.

Note that, as in Section 2, (3.30) is not satisfied for the initial values. Conse-

quently, (3.34), which involves 2k past values of 82j, is not valid for « < 3k. In the

analysis to follow we assume that we are starting with n > 3k with the previously

computed approximations as the 'initial values'. A detailed analysis of the errors in

this initial region is given in [4]. The errors after these few initial steps are of 0(hk),

as we require below.

By (3.29), ||W„_,|| is bounded independently of «. ||Z|| has the same property.

Change the order of summation in

k l n \ k k

(3-35)

where

»E^^-^^Vl-S^-^^iwJ
E ajdn-j = Pdn<

7-0

d^ia.W^K^l^.
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The equation (3.34) can be rewritten using (3.35),

p [{I-HI) el + d„]

= -*E#H[('-t,>»!-,+ ¿,-,]
1=1

k

+ h E *Wu-¿.-t + hZ(B8x - r„) - h E *tWm_tK'm_t\ J'"^

(3.36)
i=i

A

i = l G'   T-

-* E o.K-iK-i E omL'„_,_m[(l - Hl_,_m)el_,_m + dn_,_m]
i = l m = 0

A A:

-ÄE«,^-Ä-,E«m^-,-
i" = l m = 0

The definition of L'„_,__ is

^n'-i-ml 5
0

2,«-i-

n —i — m

l:»-'-<"       0    L
0 0

n — i — m

Assume that HfijJI < ex, ||fi2,|| < e2 and ||^z|| < £ for all i and j = 0,1,...,2k. It

follows from the definition of di that ||d,|| < C0e2 for some C0 > 0. Apply Henrici's

lemma to (3.36). The upper bound on ||(7 - H'n)ezn + i/„|| in terms of «, e1( e2 and £

is

(3.37)    ||(7 - Hl)ezn + d„\ < (k¿ + k2tnhk + k3t„ex + k4tne2)cxp(k5t„),

where k¡, i = 1,2,...,5 are positive constants. If £ = 0(hk), then by (3.30), (3.31)

and (3.37),

(3.38)

/

eln-K,\p82Jh+ E«,¿„-,C
¡-o

< \(I-H')en + dn\\ + \\dn\\ +

< C1(hk + e1 + E2).

KA'

HnTn   I

Hence,

(3.39) \\e"J^Cx{hk + ex + e2)

and if the Newton residual parts tjx and tj2 of Si and 82 satisfy ||tji|| = 0(hk+1) and

||tj2|| = 0(hk+2), then by the definition of 82 and (3.39),

(3.40) ||fi2||< C2(hk+2 + hk(ex + £2) +(El + £2)2).

An estimate of el is derived from (3.38) and (3.39):

(3.41) \\el\\^C3{hk + ex + e2 + e3),

where ||pfi2„/A|| < e3.

According to the definition, an upper bound on the leading terms of 8X is

(3.42) II«!»« Qtdl^ll + lleíll + lleílD'+ll^lKl^ll + llpey/il



NONLINEAR DIFFERENTIAL EQUATIONS WITH ALGEBRAIC CONSTRAINTS 513

A bound on \\e^\\ is obtained from (3.23),

(3.43) ||e„Ah C5(||T;|| + ||e„"|| + ||<|| + ||Ô!|| + ||p</«||).

In order to determine the asymptotic behavior of ||e*|| and ||8i||, we need an estimate

of pevJh ash^O. By (3.31), (3.33) and (3.36), ||pe¡¡/A|| is bounded by

P<

h
< (l-Hn)eVn

+ di + p(KnS3n)
+

Pd°n

h

(3-44) <Q(lk"ll + lk1 + ll «2 ll + ll*i ll + lkl

p(KnP82n)
+

p{Hn<)
+

p(K„pL„el)
+

pdn

where d"n is the part of dn corresponding to e"n.

The bound

\p(Hnrn»)
(3.45) < C7«A

follows from the fact that both  Hn and  t„" = -hku(-k+X)/(k + 1) are smooth

functions.

In the fourth term on the right-hand side of (3.44), pLneun can be written as

k

(3.46) pLnel = E «,(£•„-, - Ln)eun_, + LnPe"n.
i = 0

Since Ln is smooth, and ||e"|| is bounded by (3.39), the summation in (3.46) is of

0(hk + l + hex + he2). The last term in (3.46) is rewritten by means of (3.22). Then

||Lnp^||<«||Lj|(||<|| + ||T„"|| + ||ôi"||).

Hence, from (3.41),

||pL„en"|k«C8(«/t + £1 + £2 + £3)

and consequently

(3.47) P(KnpLne"n)
< C9(hk + Ex  + £2 + £3).

The fifth term in (3.44) is defined by (3.35) and is bounded by

(3-48) ||p¿„/« || <C10e3.

The second term in (3.44) calls for a closer examination. Let Q„ denote 0.592^>/9«2

at tn, and rn contain the terms of higher order in e" in 82n such that

*2„ = ô„<e„" + r„ + tj2„.

We have for k = 1 that e" -«"_! = he"n and

P$2n = Qn« - Qn-1<-K-1 + T)2„ ~ 12,»-1 + *»

= hQ„(eyH + e°ne«_l)+(Qn - Qn.x)eun_xe"„_x + tj2„ - tj2j„_! + s„,

where s„ = r„ - rn_x. It follows from the fact that ||tj2|| = 0(/i3) (3.49), (3.39) and

(3.41) that

(3.49)

(3.50)

p82„
< Cxx(h2 + e2 + e2 + £!£2 +hex + he2 + he3 + exe3 + e2e3 + \\s„\\/h)

= c(i).
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When k > 2, we accept the bound

(3.51)
PS2n

<Cx2-£^e3 = C(k), k = 2,3,...

Therefore, there is a CX3 such that

(3.52)
p(KnPS2n) CyC(k)

h
/c = 1,2,3,....

The upper bound on ||pey«|| is now derived from (3.44), (3.39), (3.40), (3.41),

(3.45), (3.47), (3.48), and (3.52),

(3.53)
pel

< cjhk + ex + £2 + e3 +
C(k)

The same bound is obtained for ||e^|| in (3.43) except for the constant CX4. Insert the

estimates (3.39), (3.41) and (3.53) into (3.42). Then

Ifiil<Ci5|«

(3.54)

k + l + e¡ + e\ + £2 + hkex + hke2 + hke3

+ exe2 + e2e3 + E!E3 + hk~xC(K) +
exC(k)   ,  £2C(A:)

+
h h    y

Suppose that ex = kxh', e2 = k2hj and e3 = k3hl, and choose i, j, and / as large as

possible such that ||ó\|| < ex, \\82\\ < e2 and ||p82n/«|| < e3.

Take i = k + 1, j = k + 2 and I = k + 1. Then, for k^-2, the conclusion from

(3.40) is that k2 = C2(l + C2) and from (3.51), that k3 = CX2k2, and from (3.54),

that kx = Ci5(l + C15), where C2 and C15 are bounded since « < h0. When k = 1,

it can be shown by the techniques used in (3.49) that the cubic terms in s„ satisfy

Ikll = 0(hA). Then the leading term of C(l) in (3.50) is Cxxh2. Therefore, k3 =

Cu(l + Cxx), kx derived from (3.54) is Ci5(l + CXi + C15), and k2 in the bound e2

of ||52|| in (3.40) is C2(l + Ci5(l + Cn) + C2), where Cn, C15 and C2 are bounded.

Thus, there are constants kx, k2, and k3 for k > 1 such that

M X   II < o    =  L-  hk + 1
\\°l II ̂  fcl       rzxrt       ,

II «2 II
P*2»|

(3.55) < £2 = k2h k + 2

< Ei k3hk + l.

The asymptotic behavior of e", evn and e\ is by (3.39), (3.41) and (3.43):

(3.56) Ik1=0(«*),    |e;|-0(**),    |kx||=0(A*).

Finally, we observe that 53„, the error in the differentiated constraint defined in

(3.31), also is of 0(hk).

In the above analysis, only the leading terms of the Taylor series part of 8X and 52

have been taken into account. However, the inclusion of the higher-order terms in e"

and evn will only lead to terms of higher order in h than hk+x in 8X and hk+2 in 52.

These higher-order terms have no influence on the order of the estimates in (3.55)

and (3.56).

3.4. Concluding Remarks. In all of the examples considered in this section, the

number of equations is equal to the number of variables. The matrix F{x is

nonsingular almost everywhere and in (3.1), (3.7) and (3.9) F{   is symmetric and
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positive definite. If FXx is nonsingular, then Ax is nonsingular if h is sufficiently

small. A standard Newton solver of nonlinear equations (2.3) requires hJn to be

nonsingular. Then, by the identity [10]

det(hJn) = det(,4i)det(/l4 - hA3A-xxA2)

the Schur complement A4 - hA3Ax~lA2 is nonsingular and Assumption 2.1 is

fulfilled. The assumptions that we have made to complete the error analysis in

Section 2 and Subsection 3.3 seem to be reasonable, and are usually fulfilled by

certain equations of fluid dynamics and by important subclasses of electrical

networks and mechanical systems.
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