
MATHEMATICS OF COMPUTATION
VOLUME 46, NUMBER 174
APRIL 1986. PAGES 603-608

Effect of Improved Multiplication Efficiency

on Exponentiation Algorithms Derived

from Addition Chains

By D. P. McCarthy

Abstract. The interaction between the efficiency of the basic multiplication algorithm and the

addition chain used to compute x" is studied. We conclude that either repeated multiplication

by x or repeated squaring should be used and the provenance of each technique is established.

1. Introduction. Algorithms to evaluate x" where n is a positive integer and x an

object for which multiplication is defined have been designed and analyzed by a

number of authors, see Fateman [1] and [2], Gentleman [3], Graham [4], Heindel [5],

Horowitz [6], Knuth [7] and McCarthy [8]. These algorithms have included binomial

or multinomial expansions, fast Fourier transforms, evaluation homomorphisms,

repeated multiplication or squaring and multiplication sequences based on addition

chains for n.

Of these algorithms, those based upon the addition chain for n, including the

repeated multiplication and squaring algorithms, are distinguished by their simplic-

ity. Since, given an addition chain for n, the only operation involved in evaluating

x" is multiplication, it is natural to inquire as to what is the effect of improving the

efficiency of the multiplication. A good deal is now known about multiplication

algorithms (see Knuth [7], and Winograd [9]), in particular, the asymptotic behavior

of different multiplication algorithms. In this paper, we propose to examine four

different addition chains for « and see how they compare as we change the

efficiency of our multiplication algorithms.

2. Computational Model. We call An = (1 = ax, a2,...,ak = n) an addition chain

of length k for n if for all / > 1 there exist /',, i2 < i such that al■ = a¡ + a¡. This

chain then is used to compute x" as x" = x"k = xak¡ ■ x"k2 and so on for all

i = k — 1,... ,2. In general, the size of the object x"> is a function of a¡, so that the

cost of computing x"'i • x"'* depends on a¡ and a,, and, of course, the efficiency of

the multiplication algorithm. We introduce this efficiency as a factor a by assigning

a cost of multiplying x"'t by xa<2, called C(x":¡ • x"'ï), proportional to a¡ ■ a,2 to

the power of a. That is:

(2.1) C(x°n.x°.2) = (a,i-al2)a,       <*>0.

Received November 26, 1984; revised April 30, 1985.

1980 Mathematics Subject Classification. Primary 68A20.

©1986 American Mathematical Society

0025-5718/86 $1.00 + $.25 per page

603



604 D. p. McCarthy

The justification for this costing is simply that many multiplication algorithms have

a complexity or efficiency well bounded by 0(nß), where « is a measure of the size

of the multiplicands and ß a positive number. For example, multiplication of «-digit

numbers using the traditional algorithm is 0(n2), binomial expansion yields an

algorithm of (9(«log23), and the fast Fourier transform yields an algorithm of

0(n ■ log« log log«) which, while not of the form 0(nß), is well bounded by O(n).

In contrast, fixed-precision numbers are multiplied in time of 0(n°), that is, in

constant time. Note that all these complexity measures assume arguments of equal

size n = ai = a¡, so that a = ß/2.

Using this costing, we define a multiplicative cost CAn associated with a particular

addition chain A„ as follows:

(2.2) CA, E(«., ■ aty,
j = 2

aL = n.

3. The Algorithms. Next we look at some exponentiation algorithms based on

addition chains,

(a) Repeated Multiplication by x.

(3.1)
« = 1

,x • x"~x     « > 1

which is associated with the addition chain Rn = (1,2,..., a¡,..., n), where a¡ = i

for i = I,..., n.

(b) Binary Algorithm or Repeated Squaring. This algorithm is based upon the

binary representation of «:

(3.2) x  = x»/2 . x"/1

« = 1

« even

« odd & « > 1\x ■ x

which defines a binary addition chain Bn = (1,2,..., a¡,...,«), where

/l ••=■»    *
a,_, + 1

a,_i + a.•/-i

i = 1
a¡ odd

a¡ even

(c) Factor Chain. This is based upon the fact that either n is prime, or it may be

factored into at least two numbers fx and f2, n = /, • /2, in which case we raise x/2

to the power of fx as follows:

lr n = 1 \

« > 1 & prime

«=/l-/2.1</l</2<«

(3-3)

x

X ■ X
n-1

(*'*)' I

If we have the factor addition chains for fx and f2 as F, = (1,..., a\,...,/,),

and F2 = (1,..., a",.. .,f2), then we may compose a chain for « as Fn =

(1,..., a'/, ...,f2,...,a\-f2,...,fx-f2 = n). We note in passing that there are two

such chains, since (xfl)fx = (xfl)fl.

(d) Power Chain. On page 402 of Knuth [7] are displayed the first eight levels of a

power tree and the procedure for extending it. Once created, this tree provides a

nearly optimal short addition chain to compute all the tree node values. Thus, for



IMPROVED MULTIPLICATION EFFICIENCY ON EXPONENTIATION ALGORITHMS        605

,p,,...,pk = n),

., k, so that

each « appearing in the tree, there will be a chain Pn = (1,.

where for all /' there is a j < i such that />, = />,-_i + Pj, i = 2,.

<3-4> *"=(*<-■*>. ;:!)•

We are now in a position to evaluate cost functions for these four exponentiation

algorithms based on Eqs. (2.1), (3.1), (3.2), (3.3) and (3.4). We define CRn, CBn, CFn

and CPn as the cost of the repeated, binary, factor and power algorithms, respec-

tively:

From (2.2) & (3.1)

From (2.2) & (3.2)

«-i

CRn = (n-l)a + CRn_x= £/«.

i = i

CB „ = («/2)2° + CBn/2

{(n - l)a + CBn_x

n = 1

n even

« odd

From (2.2) & (3.3)

CF =

to
(n-l)a+CFn_x

f2° ■ CFh + CFh

« = 1

« prime

» = /i • h
From (2.2) & (3.4)

CP =
0

(Pk-l pjy+cp»^
« = i
n=pk>\

4. Comparison Between the Algorithms. The cost functions CRn, CBn, CFn and

CPn may be most readily compared by plotting their values on a common set of

ordinates. As was noted in the presentation of the computational model, certain

values of a are associated with particular multiplication techniques; we may usefully

tabulate some of these:

a        MULTIPLICAND

0 Fixed-precision integers

.5       Infinite-precision integers

log 3/2       Infinite-precision integers

1 Infinite-precision integers

2 Dense univariate polynomials with

infinite-precision coefficients.

v = 1,2,3       Dense multivariate polynomials in v

variables.

ALGORITHM

Traditional

Bound on FFT

Binomial expansion

Traditional

Traditional

Traditional

In Figure 1 below we show these four cost functions plotted against « for values of

a = 0, .5,1,1.5 and from them we draw the following inferences.

1. In practical terms, there is no difference between algorithms based on the

binary, factor and power tree algorithms. This being so, we may take the binary

algorithm, which is the easiest to compute, as representative of all short chains.



606 d. p. McCarthy

m

LTJ

Oc
CJC

o .0.5

0} a =1.5

+ a
+ * *

+ a »
+ * «} a=1.0

>}a=0. 5

+ *« + *<!> + l.» + A«'+*<!> + ** + ** + *«>}a=t)

Thon        20.00        40.00        60.00        80.00        100.00      120.00

n

The logxo ofCR =
Figure 1

-, CB = <3>, CF — + , CP = A plotted against nfor various a.

2. For values of a less than 1 and with « increasing, repeated multiplication is an

unacceptably costly method of exponentiation.

3. For a — 1, repeated multiplication, though a little costlier, compares well with

the other algorithms, particularly bearing in mind that it produces all powers of x

intermediate between 1 and «.

4. For a = 1.5, and with n increasing, repeated multiplication provides an

emphatically cheaper method of evaluating x".

5. If we can improve our multiplication algorithm so, for example, a decreases

from 1 to .5, then looking at « = 100 we find for a = 1 that CRX00 = 5000 and

CBXOO = 3200, while for a = .5, CR100 = 640 and CBl00 = 100, so that order of

magnitude improvements are possible.

We now strengthen these ideas with the following theoretical results.

5. Theoretical Results, (a) a = 0. In this case, it is clear that the shortest chain for

« will yield the cheapest evaluation of x". Unfortunately, no simple algorithm to

find even the length of this chain has emerged (see Knuth [7, pp. 402-418]).

However, since the length of the binary chain at worst is less than twice the length of

the shortest chain, and is generally about the same length, it represents a satisfac-

torily efficient algorithm for this situation.



IMPROVED MULTIPLICATION EFFICIENCY ON EXPONENTIATION ALGORITHMS        607

(b) a = 1. In Graham and Yao [4], it is shown that in this case, the binary

algorithm provides absolutely the cheapest addition chain based exponentiation

algorithm.

(c) a > 2. No theoretical results have been presented for this case, but, in

Gentleman [3], analysis is presented relating to the exponentiation of sparse poly-

nomials which strongly suggests that repeated multiplication is optimal for large

enough «. The following theorem strengthens this.

Theorem. If C(x' • xJ) = (/' ■ j)a and a > 2, then repeated multiplication provides

uniquely the cheapest method by which to evaluate x" for all n.

Proof. We consider first a = 2, where the theorem is demonstrably true for

« = 1,2,3. Next, we assume it is false for « = p + q, where p 3* q > 1, so that we

must have

(P ■ qf <P2 +(P + I)' + • • • +(P + q - if = ' E   *2.
i-p

or

(p ■ qf < p2q + q(q - \)p + q(q - l)(2q - l)/6,

implying

p2q(q - 1) - q(q - l)p < q(q - l)(2q - l)/6.

But q > 1, so that p2 - p < (2q - l)/6. But p < p2 - p for all p > 2, and

(2q — l)/6 < q for all q, so that we derive p < q in contradiction of the assump-

tion p > q. Thus, the theorem is proven true and for all p > q > 1 we have shown

p + q-l

(5.1) (P-q)2>    E    i2-
i-p

We extend this result to include a > 2 by letting a = 2 + A, A>0, and observing

that (p ■ ¿7)A > 1 and ;'A < (p • q)^ for all i = p,..., p + q - 1. Hence, from Eq.

(5.1) we have

p+q-l P+q-l

(p-q)2-(p-qt>(p-qt    E     i2 >     E    ¡2 + \
i=p i=p

SO

(p-q)2+A>"Í   '2+A    for all A >0.
i-p

(d) 1 < a < 2. We examine this interval in order to observe the manner in which

the advantage shifts from the binary algorithm (short chain type) to repeated

multiplication as a increases. Let «0 be the lowest integer such that repeated

multiplication is cheaper or as good as the binary algorithm. That is,

CB„o_x < CRno_x    and    CB„ > CRn    for all n > n0.



608 d. p. McCarthy

This function is best evaluated numerically and is shown below for selected values of

1.05    1.10   1.15    1.20   1.25    1.30    1.35    1.45    1.50   1.55    > 1.55

1024    206      48      22      14      10        8        6        6        1 1

It is clear from this that once a > 1.0, repeated multiplication should be used.

6. Conclusion. This paper has compared algorithms to compute x" derived from

addition chains for « and, from the results here presented, we conclude:

1. Despite the fact there are many addition chains for most n, if we wish to

minimize the multiplicative cost of evaluating x", we need consider only two,

repeated multiplication and the binary algorithm.

2. When we characterize the cost of multiplying x' by xJ as (;' ■ j)a then, in

practical terms, if a < 1, we should use the binary algorithm and if a > 1, we

should use repeated multiplication. If a = 1, then although repeated squaring is

about twice as fast as repeated multiplication, the fact that the latter yields all the

intermediate powers of x makes it the more attractive.

Department of Computer Science

Engineering School

Trinity College

Dublin 2, Ireland

1. R. J. Fateman, "On the computation of powers of sparse polynomials," Stud. Appl. Math., v. 53,

1974, pp. 145-155.

2. R. J. Fateman, "Polynomial multiplication, powers and asymptotic analysis: Some comments,"

SIAMJ. Comput., v. 3, No. 3,1974, pp. 196-213.

3. W. M. Gentleman, "Optimal multiplication chains for computing a power of a symbolic poly-

nomial," Math. Comp., v. 26,1972, pp. 945-949.
4. R. L. Graham, A. C- C. Yao & F.- F. Yao, "Addition chains with multiplicative cost," Discrete

Math., v. 23, no. 2, 1978, pp. 115-119.

5. L. Heindel, "Computation of powers of multivariate polynomials over the integers," /. Comput.

System Sei., v. 6, 1972, pp. 1-8.

6. E. Horowitz & S. Sahni, "The computation of powers of symbolic polynomials," SI A M J.

Comput., v. 4, 1975, pp. 201-208.
7. D. Knuth, The Art of Computer Programming—Vol. II, Seminumerical AIgorithms, Addison-Wesley,

Reading, Mass., 1968.

8. D. P. McCarthy, "The optimal algorithm to evaluate x" using elementary multiplication methods,"

Math. Comp., v. 31, 1977, pp. 251-256.

9. S. Winograd, Arithmetic Complexity of Computations, CBMS-NSF Regional Conf. Series in Appl.

Math., Vol. 33, SIAM, Philadelphia, PA, 1980.


