607.-I. S. Gradshteyn \& I. M. Ryzhik, Table of Integrals, Series, and Products, corrected and enlarged edition prepared by A. Jeffrey, Academic Press, New York, 1980.

On page 679 the right member of formula 6.541 .2 should read

$$
\begin{aligned}
&(-1)^{n} c^{-2 n}\left\{I_{\nu}(b c) K_{\nu}(a c)\right. \\
&\left.-\frac{1}{2}\left(\frac{b}{a}\right)^{\nu} \frac{\pi}{\sin \pi \nu} \sum_{p=0}^{n-1} \frac{(a c / 2)^{2 p}}{p!\Gamma(1-\nu+p)} \sum_{k=0}^{n-1-p} \frac{(b c / 2)^{2 k}}{k!\Gamma(1+\nu+k)}\right\}
\end{aligned}
$$

for $0<b<a, \operatorname{Re} c>0, \operatorname{Re} \nu>n-1, n=1,2, \ldots$ For $0<a<b$, the arguments a and b should be interchanged.
The correct formula was derived by using Barnes' integral representation of the Bessel function $J_{\nu}(z)$, as proposed originally by Watson [1] for evaluating certain integrals.

The error of omitting the term beside $I_{\nu}(b c) K_{\nu}(a c)$ appears also in formula (11) on p. 49 of [2] and in formula (12) on p. 213 of [3].

It should be noted that when $n=0$ the integral is of Hankel's type [1] and is evaluated correctly in formula 6.541 .1 herein.
G. Solt

Institut de Physique
Université de Neuchâtel
2000 Neuchâtel, Switzerland

1. G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1966, pp. 434-436 and 428-431.
2. A. Erdelyi, W. Magnus, F. Oberhettinger \& F. G. Tricomi, Tables of Integral Transforms, vol. 2, McGraw-Hill, New York, 1954.
3. A. P. Prudnikov, Yu. A. BryČov \& O. I. MariCev, Integrals and Series, "Nauka", Moscow, 1983. (Russian)
