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On the Sign of the Difference ir( x) — li( x)

By Herman J. J. te Riele

Dedicated to Daniel Shanks on the occasion of his 10 th birthday

Abstract. Following a method of Sherman Lehman we show that between 6.62 X 10370 and

6.69 X 10370 there are more than 10180 successive integers x for which w(x) - li(jc) > 0.

This brings down Sherman Lehman's bound on the smallest number x for which tr(x) - M(x)

> 0, namely from 1.65 X 101165 to 6.69 X 10370. Our result is based on the knowledge of the

truth of the Riemann hypothesis for the complex zeros ß + iy of the Riemann zeta function

which satisfy |y| < 450,000, and on the knowledge of the first 15,000 complex zeros to about

28 digits and the next 35,000 to about 14 digits.

1. Introduction. The prime number theorem, proved by Hadamard and de la

Vallée Poussin in 1896, states that 7r(x) ~ h(x), as x -* oo, where tr(x) is the

number of primes < x and li(x) = /0* dt/logt. This result tells us that the ratio

tr(x)/li(x) tends to 1 as x -* oo, but it does not say anything about the difference

ir(x) - h(x). This difference is known to be negative for all values of x for which

tr(x) has been computed exactly ([3]; also cf. Bateman's remarks on p. 943 of [4]).

However, already in 1914, Littlewood [5] proved that tr(x) - li(x) changes sign

infinitely often. More precisely, he proved the existence of a number K > 0 such

that

iog(x){tr(x)-h(x)}

x^logOogOogi*)))

is greater than K for arbitrarily large values of x and less than -K for arbitrarily

large values of x. In 1955, Skewes [11] obtained an upper bound for the smallest x

for which tr(x) > li(x), namely exp(exp(exp(exp(7.705)))). In 1966, Sherman Leh-

man [10] brought this bound down considerably by proving that between 1.53 X

101165 and 1.65 X 101165 there are more than 10500 successive integers for which

•n(x) > h(x). Sherman Lehman's method is described in Section 2. In order to prove

his result, Sherman Lehman performed two major computations, namely a verifica-

tion of the Riemann hypothesis for the first 250,000 zeros of the Riemann zeta

function, i.e., for the complex zeros ß + iy for which |y| < 170,571.35, and the

computation of the zeros \ + iy of the Riemann zeta function for which 0 < y <

12,000 to about 7 decimal places.
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In Section 3 we will bring down Sherman Lehman's bound by showing that there

are more than 10180 successive integers x between 6.62 X 10370 and 6.69 X 10370 for

which it(x) > h(x). To that end, we use the knowledge of the truth of the Riemann

hypothesis for the complex zeros ß + iy with |y| < 450,000 [9] and the knowledge of

the first 15,000 complex zeros of the Riemann zeta function with an accuracy of

about 28 digits [8] and the next 35,000 with an accuracy of about 14 digits. An error

analysis is given which shows that our result could also have been obtained with a

few digits less accuracy in the zeros of the Riemann zeta function.

In Section 3, we denote the imaginary part of the jth complex zero of the

Riemann zeta function by y, (yx = 14.13 ..., y2 = 21.02..., etc.).

2. Sherman Lehman's Method. In [10], Sherman Lehman derived an explicit

formula for ue~u/2{-n(e") - \i(eu)), averaged by a Gaussian kernel. He expressed it

in the following

Theorem [10]. Let A be a positive number such that ß = \ for all the zeros

p = ß + iy of the Riemann zeta function Ç(s) with 0 < y < A. Let a, tj, and w be

positive numbers such that « - tj > 1 and the conditions

(2.1) 4A/u ^a^A2

and

(2.2) 2A/a < tj < w/2

hold. Let

(2.3) K(y):= (a/2-n)X/2e'a"^2.

Then for 2-ne < T < A,

(2.4) f"  " K(u - u)ue'"/2{tT(eu) - \i(eu)} du = -1 + H(T,a,o>) + R,

where

e lyià

(2.5) H(T,a,a) =

and

r/2«

0<|y|<7"      P

1*1 < I s,
i=i

with

Sx = 3.05/(« - tj),        52 = 4(to + T7)exp(-(w - tj)/6),

S3 = 2exp(-aT,2/2)/(Tj(2vTa)1/2),       54 = 0.08a1/2exp(-aTj2/2),

Sj-exp(-7-V2«){^>o8(£) + ^ + £}    -

S6 = A\ogAexp(-A2/2a +(u + tj)/2)(4«-1/2 + 15tj).

If the Riemann hypothesis holds true, then conditions (2.1) and (2.2) and the last term

(S6) in the estimate for R may be omitted.   D

Sherman Lehman first looked for places where on heuristic grounds tr(x) could be

expected to exceed li(x), namely, in the neighborhood of values of u for which the
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sum

(2.6) ST(u):=
0<|y|«T     P

which is the sum in (2.5) with the factor e y /2a omitted, is somewhat larger than 1.

He found three values of u, namely,

727.952,    853.853   and   2682.977,

for which Sxooo(u) is approximately 0.96. Next, after experiments with values of T

greater than 1000, he finally concentrated on the third case. He computed

77(12000,107,2682 + 16005 X 2"14) « 1.00201,

and, moreover, he was able to prove that the computed value of 77 could not exceed

the true value by more than 6.8 X 10 "4, so that

77(12000,107,2682 + 16005 X 2"14) > 1.00133.

By applying his theorem with A = 170,000 and tj = 0.034, and by deriving small

upper bounds for |S,|, i = 1,..., 6, he found that

(2.7) f  V K(u-u)ue'u/2{tr(eu)-li(eu)) du > 0.00006.

He concluded that, because of the positivity of K (defined in (2.3)), there must be a

value of u between u - tj and co + tj where tr(e") - li(e") > 0. Moreover, since

j™xK(u) du = 1, it follows that

(2.8) f+V K(u - u)ue-u/2{eu/2/u) du < 1,

so that, by combination of (2.7) and (2.8), it follows that for some value of u

between co - tj and co + tj we have

ir(eu) - \i(eu) > 0.00006<?"/2/w > 10500

(since co = 2682.9768... and tj = 0.034). This implies that there are more than 10500

(in fact, probably many more than 2 X 10500) successive integers x between 1.53 X

101165 and 1.65 X 101165 for which tr(x) > \i(x). Sherman Lehman suggested that

one might prove a similar result in the neighborhood of es53 853 if enough zeros of

f(j) were calculated. We have followed this suggestion, and the results are described

in the next section.

3. Applying Sherman Lehman's Theorem Near exp(853.853). In our attempt to

show that H(T,a,u)> 1, for w close to 853.853, we have chosen, after several

experiments,

.     v ,4=450,000,    a = 2xl08,    tj = 0.0045,

T = Y5o,ooo = 40433.6873854...,    co = 853.852286.

The truth of the Riemann hypothesis for all the complex zeros p = ß + iy of ¡¡(s)

with |y| < 450,000 follows already from [9]. In fact, one may choose for A any value

not exceeding 545,439,823.215 ... (= Yi.5xio9> cf. [7]), but this is much more than is

actually needed for our purpose. The choice T = Yso.ooo implies the necessity to
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know y, f°r / = 1,...,50,000 to sufficient accuracy. The first 15,000 y/s were

known already with an accuracy of about 28 digits from computations carried out in

1979 [8]. The next 35,000 y,'s were computed with the help of the so-called

Riemann-Siegel asymptotic formula for the function Z(t) (whose real zeros coincide

with the imaginary parts of the zeros ß + iy of the Riemann zeta function f(s)

which have ß = \) truncated after four terms. According to Gabcke [2, p. 5], the

absolute value of the error in the computation of Z(t) caused by this truncation is

bounded above by 0.031 X r225. The FORTRAN-function DZ(DT) on pp. 28-29

of [6] shows the details of our implementation of this Riemann-Siegel formula.

Together with the y¡, for i = 15,001,..., 50,000, we also computed in the same way

Y, for / = 10,001,..., 15,000, as a check.

The y,,  ' = 10,001,..., 50,000, were computed in two steps. First, they were

separated in the usual way (cf. [1]). This yielded numbers y, and y, such that

Y, < Y, < Y, = Ym    and    Z(y,)xZ(y,)<0.

Next, with the aid of the zero-finding IMSL-routine ZBRENT, which uses a

combination of linear interpolation, inverse quadratic interpolation and bisection,

the approximations y, and y, to y, were improved until y, - y¡ < 10"9 and Z(y¡) X

Z(y¡) < 0, thus yielding an approximation y* to y, for which

(3.2) |y,*-y,|<10-9.

The error due to the use of the truncated asymptotic formula for Z(t) is bounded

above by 3.2 X 10"n (this number is obtained by substituting the smallest value of

Y used, namely Yio.ooi = 9878.6..., in Gabcke's upper bound given above). All the

computations were carried out in double precision on the CYBER 750 computer of

SARA (with an accuracy of about 28 digits), so that the truncation and rounding

errors are small compared with the accuracy (3.2) in y¡. The "check" values y¡,

i = 10,001,. ..,15,000, were compared with the 28D approximations already com-

puted in [8], and all the actual errors were bounded above by 10~12. The time needed

for the computations of y*, i = 15,001,..., 50,000, was about one hour CPU-time.

With these y * we computed the following approximation 77 * to 77:

(3.3) #*(y5o,ooo>2 X 108,853.852286) = 1.0240109....

The error |77 — 77 *| may be bounded from above as follows. Since the complex

zeros of the Riemann zeta function appear in complex conjugate pairs, it follows

from (2.5) that

(3.4) 77(7,a,co) = -    £    t(y)
0<y«T

where

t(^\ = ,--v2/2«cos(tov) + 2Ysin(coY)
W 0.25 + Y2

By the mean-value theorem, we have

(3.5) \t(y*) -?(y)| =|y* - y| -|''(y)|    with |y - yI <|y* - y|-
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For t'(y) we have

t'(y) -y2/2a
cos(coy)(2coy _ y/a) - sin(coY)(co + 2y2/ö)

0.25 + y2

2y(cos(coy) + 2Ysin(coY)}

(0.25 + y2)2

so that, since y < « (cf. (3.1), and (3.6) below),

2coy + co + 2Y2/a        2y(1 + 2y)
\t'(y)\<e'" /2a

< e-r2/2«

0.25 + y:
(0.25 + Y2)'

2co       co        2        2        4.+        +_ + — + _
a       ~3       ^2Y        r       «       r       r

From the (in)equalities

(3.6) 14 < Yt < Y < Yso.ooo < 40434>    w < 854>    « = 2 X 108,

it follows that

1770
(3.7) I''(y)|<

From (3.1), (3.5), (3.7) and the errors in y*, we deduce

15,000 50,000

\H-H*\*   E   \t(yi)-t(y*)\+     E     \t(y,) - t(y?)\
i = l 1 = 15,001

15,000 50,000

=   E hr,-Y,*||*'(y,)|+    E    |y,-y*||í'(y,)|
i = 1 i=15,001

15,000   177ri 50,000     177n

< 1Q-22   y

i = l

+ 10-9  E
Y' 1 = 15,001     Yi

1770 1770
< 10"22 X 15,000 x —— + 109 X 35,000 X

14 ' 14040

< 5 X 10"6.

The many computations of 77* needed to find (3.1) and (3.3) were carried out on

the CYBER 205 vector computer of SARA, which is very suitable for such very long

sums. One 77*-computation consumed about one second CPU-time on this CYBER.

For the numbers S¡, i = 1,..., 6, in Sherman Lehman's theorem, we found

\SX\< 0.0036,    |52|<10"58,    |53|<10-10°,

|54| < 10"100,    |S5| < 0.0058,    \S6\ < 10"28.

With these inequalities and (3.3), we conclude from Sherman Lehman's theorem

that, for co = 853.852286 and tj = 0.0045, we have

C+V K(u - u)ue-u/2{tr(eu) - li(e")} du
O) — TJ

> -1 + 1.024010 - 5 X 10"6 - 0.0036 - 0.0058 > 0.0146.
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Proceeding in the same way as Sherman Lehman did (cf. Section 2), we find that

between co - tj and co + tj there is a m such that

■n(eu) - li(«fu) > 0.0146 X e"/2/u > 10180.

This implies that there are more than 10180 successive integers x between eu"* =

6.627... XlO370 and e"+" = 6.687... Xl0370 for which tr(x) > \i(x). This proves

the result announced in Section 1.

Remark. We have done some experiments in the neighborhood of e121952, the

smallest of the three candidates given by Sherman Lehman. These experiments

indicate that for the choice of the parameters: T = 4.105, a = 1010, and A = 3.106,

it might be possible to prove the existence of another interval for which tt(x) - \i(x)

> 0. This would require computing all the zeros of the Riemann zeta function with

imaginary part below 4.105 to sufficient accuracy: about ten times as many zeros as

we used.
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