
MATHEMATICS OF COMPUTATION
VOLUME 48. NUMBER 177
JANUARY 1987, PAGES 329-339

The Multiple Polynomial Quadratic Sieve

By Robert D. Silverman

For Daniel Shanks on the occasion of his 10 th birthday

Abstract. A modification, due to Peter Montgomery, of Pomerance's Quadratic Sieve for

factoring large integers is discussed along with its implementation. Using it, allows factoriza-

tion with over an order of magnitude less sieving than the basic algorithm. It enables one to

factor numbers in the 60-digit range in about a day, using a large minicomputer. The

algorithm has features which make it well adapted to parallel implementation.

1. Introduction. The basic quadratic sieve algorithm has origins which date back to

M. Kraitchik, but was first explicitly stated and analyzed by C. Pomerance. The only

two reported implementations of this algorithm were done by J. Gerver at Rutgers

and J. Davis and D. Holdridge at Sandia National Laboratories. The latter used a

Cray-1 to factor some numbers in the 60-70 digit range from the 'Cunningham

Project'. They also used a Cray XMP to factor the then 'MOST WANTED' number

(1071 - l)/9 in 9.5 hours. While some of the arguments that follow have been

detailed by Pomerance elsewhere [9], we present ours in a manner which is more

oriented towards implementation of the algorithm. The basic algorithm depends on

constructing a solution to the following equation, where TV is the number you wish

to factor:

(1) A2 = B2modN.

If A # B and A # -B mod N, then (A + B, N) and (A - B, N) are proper factors

of TV.

This version of the quadratic sieve generates a set of quadratic residues of N using

the following single polynomial:

(2) Q(x) = (xA[fW])2-N = H2modN.

It follows immediately that if a prime p \ Q(x), then p \ Q(x + kp) for all k e Z.

Thus, the values of the polynomial may be factored with a sieve, once one solves

Q(x) = 0 mod p. This may be solved by any one of a number of available

algorithms [5, p. 437]. The potential divisors p of Q(x) are exactly those primes for

which the Legendre symbol (N/p) = 1 and the unit -1 is needed to hold the sign.

The algorithm now proceeds as follows:

(i) Select a factor base FB = {pi\(N/p¡) = l,p¡ prime, i = 1,...,F} for some

appropriate value of F, and p0 = 1 for the sign.

Received October 24, 1985; revised February 11, 1986.

1980 Mathematics Subject Classification. Primary 10A25, 10A10; Secondary 10-04, 68C25.

©1987 American Mathematical Society

0025-5718/87 $1.00 + $.25 per page

329

330 ROBERT D. SILVERMAN

(ii) Solve the quadratic equation Q(x) = 0 mod/7, for all pi e FB. There will be

two roots rx and r2 for each p..

(iii) Initialize a sieve array to zero over the interval [-M, M] for some appropriate

M.

(iv) For all pi e FB add the value of [log(/>,)] to the sieve array at locations rx,

rx A Pi, rx ± 2Pi... and r2, r2 ± Pi, r2 ±2pi....

(v) The value of Q(x) will be approximately Mf~N over [-M, M], so compare

each sieve location with [\og(N)/2 + log(M)]. Fully factored residues will have

their corresponding sieve value close to this value. For these, construct the exact

factorization via division. Factorizations are found so infrequently that the time to

do this division is negligible. One need not check all the primes in the factor base in

doing this division. If x is the location in the sieve array, one need only compute

R = x mod p¡. Only if R equals one of the two roots do we go ahead and do the

multi-precise division;

(3) Q(x)-Y\PÎ', Pi^FB.
i=0

Let Vj be the corresponding vector of exponents [aJX aj2 aj3 ■ ■ ■ ajF] with H2 =

Q(x).

(vi) Collect F A 1 factorizations. One then finds a set of residues whose product is

a square via Gaussian elimination over GF(2) on the matrix formed by reducing all

of the Vj mod 2. This creates a linear dependency mod 2 on the exponents, and the

product of the vectors in that dependency forms a square. It is then trivial to

construct an instance of congruence (1).

The chief difficulty with this approach is that one must obtain approximately as

many fully factored residues as there are primes in the factor base. In order to obtain

enough factorizations, M must be very large, and the residues grow linearly in size

with M.

A way around this problem was formally suggested by Peter Montgomery: Simply

use many polynomials to generate the residues and sieve each polynomial over a

much smaller interval. Utilizing multiple polynomials enables one to keep the sieve

interval small, and hence makes the residues easier to factor. We have implemented

this approach and found that it is quite effective. It allows one to find enough

factored residues using less than one-tenth the total sieve length in the single

polynomial version. We also show that the cost of changing polynomials is small.

In fact, the implementation of Sandia was done in two stages. Their first version

used a single polynomial. A later version used multiple polynomials, but in a

disguised rather than explicit form. This latter version created implicit polynomials

from subsequences of the main sieve which were divisible by a large prime q lying

outside the factor base. They called their method "special q\". Montgomery's

suggested polynomials are somewhat better, however, because they yield residues

which are smaller on average and are less clumsy to implement.

In Section 2 we shall discuss how to select the coefficients of the polynomials.

Section 3 will show how to compute those coefficients efficiently. Section 4 will

discuss the basic steps of the algorithm. Section 5 will discuss selection of the

THE MULTIPLE POLYNOMIAL QUADRATIC SIEVE 331

algorithm's input parameters. Section 6 will present some numerical results. In

Section 7 we discuss its parallel implementation and finally, in Section 8, we

compare our algorithm with other methods.

2. Selection of Coefficients. Select Q(x) = Ax2 A Bx A C. In order to make

Q(x) generate quadratic residues, it is required that B2 - 4AC = N. Since this

latter expression is congruent to 0 or 1 mod 4, it means that if N = 3 mod 4 one

must premultiply it by a small constant k, so kN = 1 mod 4. This is also a good

thing to do, in general, because it usually allows one to find a factor base which is

much richer in small primes. We will later discuss a function that may be used to

evaluate a multiplier. A suggestion by Pomerance [8] allows one to do away with

requiring kN = 1 mod 4: Simply take 25 as the middle coefficient rather than B.

However, we have not yet implemented this suggestion. It would be advantageous to

keep the value of Q(x) small, in some appropriate sense, over [-M, M]. There are

several obvious ways of doing this, e.g.,

(a) Minimize sup | Q (x) | over [-M, M]

/M
\Q(x)\dx

-M

(c) Minimize I Q2(x)dx

subject to

(d) B2-4AC = kN and A,B,C(=Z.

It is easily seen that (4a) and (4b) are essentially equivalent. The length of the base

of the parabola is 2 M and its area will be directly proportional to its height.

Relaxing the integer constraints and solving each of the above Lagrange multiplier

problems, one finds that they all yield essentially the same result. The exact answer

for (4a) is

A = WxfkÑ/M,

(5) 5 = 0,

C= W2M4k~Ñ,

where

Wx = v/2/2 and W2 = -l/2\/2 .

The only difference among the results of the different minimization problems is

that the constants Wx and W2 change very slightly. Wx ranges from .70 to .75 and W2

ranges from -.3 to -.35 with WXW2 = - \.

The maximum value of Q(x) over [-M, M] is MfkW/2f2, a factor of >/8

improvement over (2) and the 'special q' polynomials at Sandia.

B = 0 follows immediately from symmetry considerations, but (4a) and (4c) give

similar results for A sind C because the constraint B2 - 4AC = kN is very binding

on the shape of Q(x). The simplest way to see this is to realize that at the roots its

slope will be ± fkÑ. We would really like to flatten the parabola, but the constraint

on the discriminant means that the curve must have a certain 'steepness'. Thus, we

can do little more than translate the parabola up and down.

332 ROBERT D. SILVERMAN

3. Computation of Coefficients. A simple method for selecting A, B, and C comes

from a method for finding modular square roots quickly. To satisfy (4d) one must

have

(6) B2 = kN mod4A.

Let A = D2, (D/kN) = 1, D = 3 mod4 and A ~ y/kN/2/M. It is desirable

that D be prime because if a prime in the factor base divides A, then Q(x) = 0

mod p has only one root and the probability that p \ Q(x) over [-M, M] drops from

2/p to 1/p. It is sufficient for practical purposes that D be only a probable prime.

Alternatively, one may select D to be the product of primes not in the factor base,

but its factorization must be known to solve (6). Our implementation took D to be a

probable prime. To find the coefficients, compute

(7a) h0=(kN)iD-3)/4modD,

(7b) hx = kNh0 = (kN)(D+1)/4modD.

Then

(8) h\ = kN(kN){D~1)/2 modi) = kN modD since (D/kN) = 1.

Let

(9) h2 = (2hxyl
kN - h\

modD.
D

One now has

(10) B = hx + h2D mod A

said

(11) B2 = h\ A 2hxh2D Ah\D2 = kN mod A.

Since B must be odd, if it is even subtract it from A.

The value of (2/i,)_1 mod D is easily obtained since h0 = /if1 mod D has already

been computed. One also has

(12) C \B2-kN
(U) C - [4A

It is not necessary, in practice, to actually compute (12) since the value of C is not

really needed. It may be used, however, as a check on the other computations.

Compute and save the value of 1/2D mod kN for later. This will enable us to

quickly compute Q(x) when we find a factorization.

As a result of the way D was chosen, one also has

(13) 2(*) = //2=(^f±l)2mod*/V.

Some care must be taken: If x lies between the real roots of Q(x), then Q(x) is

negative, and one must subtract its value from kN.

The cost of finding the coefficients is dominated by the probable prime and

residue tests on D, the computation of hx and l/2hx modD and 1/2D mod kN.

Nevertheless, the total arithmetic to be done is small.

Finally, the roots of Q(x) mod p„ p¿ e FB, are

(14) (-B A v/WV)(2^)"1mod/»,,

since B2 — 4AC is invariant.

THE MULTIPLE POLYNOMIAL QUADRATIC SIEVE 333

Most of the cost of changing polynomials occurs in computing (14). The cost of

computing (14) is dominated by the computation of (1/2A) mod p¡, which must be

done for all primes in the factor base. Even with an efficient algorithm for doing

this, such as the extended Euclidean algorithm, one must typically do this thousands

of times when changing polynomials. On a SUN-3/75, for a 60-digit number with a

factor base of 3000 primes, it takes .9 seconds to compute the coefficients and 2.6

seconds to compute all the roots.

4. Description of the Algorithm. We outline here the basic steps of the algorithm,

(i) Select a multiplier k such that kN = 1 mod 4 and kN is rich in small

quadratic residues. We prefer .-t/V = 1 mod 8, since 2 e FB only under this condi-

tion.

(ii) Select the size of the factor base F, the length of the sieve interval 2 M A 1,

and a large prime tolerance T. Suggestions for the values of these parameters are

given below.

(iii) Compute a test value

\JmMK\,
\ pmsix j

where />max is the largest prime in the factor base. If T < 2, then whenever a value

in the sieve exceeds this value, the corresponding value of Q(x) will be fully

factored. If T > 2, then Q(x) may not be fully factored. However, these partial

factorizations can also be useful, as we shall see later.

(iv) Compute the factor base FB said fkÑ mod /?, for all /?, e FB. Compute

[log(/>,)]forall/>, GFB.

While (not enough factorizations)

begin

Generate coefficients for the polynomial.

Solve Q(x) = 0 mod/?, for all /?, e FB.

Do the sieving.

Scan the sieve array: if any value exceeds the test value

begin

Compute Q(x) from (13) and try to find its factorization via division.

Save the value of H and the exponent vector from the factorization of

Ô(*).
end

end

(v) Large Prime Procedure. Many of the factorizations found in (iv) will not be

complete over the factor base. However, it has been noted that if Q(-x) is factored as

(15) Q(x) = UpÏ'L, where L>1,

then, whenever we find two or more instances of the same value of L occurring, we

may multiply the corresponding instances of (15) together. This yields a factor of L2

on the right-hand side and we may save this result for the matrix reduction step.

334 ROBERT D. SILVERMAN

Note that it is not necessary that L be prime: We only need two or more to match.

We search for matches simply by sorting all instances of (15) using the value of L as

the key. We refer to (15) as a large prime factorization. The value of T in (ii) allows

one to control the size of L. We choose to keep all L's whose value lies below

/?maxr, where /?max is the largest prime in the factor base. This can have the effect

of more than halving the run time.

Let FF be the number of residues fully factored over the factor base and let FT

be the total number of factorizations with F as the size of the factor base. Then

(16) R =
FT

F A FT- FF

Use this to determine when enough factorizations have occurred [11]. A dependency

can almost always be found by taking R = .96. In practice it is not necessary to

collect F A 1 factorizations. Usually, having about .9F rows in the matrix is

sufficient to find a dependency, and taking R = .96 achieves this.

(vi) Matrix Reduction. Finally, collect all of the factorizations found and reduce

the matrix over GF(2). For each linear dependency S,

Px = Y\Hj mod kN for ; e S,

(17) '
P2 m Y}pfjvJ'/2 mod kN for all p, e FB and j e S.

i

If Px # P2 said Px # -P2 mod kN, then (Px A P2, kN) and (Px - P2, kN) will be

nontrivial factors of N.

(vii) Some Coding Considerations. Initializing the sieve array when changing

polynomials does take some time. Since the sieve is an array of bytes, one should

equivalence the sieve array to a full word array of the machine before doing the

initialization. One can also combine the array initialization with sieving the smallest

primes by selecting an appropriate value with which to initialize the sieve.

5. Selection of Input Parameters. The author has found, after many trials, that the

following combination of parameters works well (K means 1000):

Number

of Digits

24

30

36

42

48

54

60

66

Factor Base

Size

100
200
400

900

1200

2000

3000
4500

Table 1

M

5K
25K

25K

50K

100K

250K

350K

500K

T Median VAX/780

Run Time

1.5 15 sec

1.5 80 sec

1.75 400 sec

2.0 1800 sec

2.0 8100 sec

2.2 27600 sec

2.4 97200 sec

2.6 360000 sec

THE MULTIPLE POLYNOMIAL QUADRATIC SIEVE 335

The multiplier may be evaluated using the following modified version of the

Knuth-Schroeppel function:

f(k,N) = YaSÍPí, kN) \og(p) - ilog(Är) for all p, e FB,
i

g(p,kN) = 2/p iipik, g(2,kN) = 2 ifAr = lmod8,

= l/p if p\k, =0 otherwise.

It was observed in [7] that one might not want to keep all of the large prime

factorizations that were found. For this algorithm, the time spent doing the division

is significant for small numbers. A large T means the algorithm spends a lot of time

constructing factorizations that might not be of much use. This is because the

probability of finding a match between very large primes is small.

As numbers get larger, the percent of time spent doing the factorizations drops

sharply. Since the cost of handling the large primes is small, it is advantageous to

keep as many as possible. For reasons of programming convenience and ease of data

management we restricted our program to single-precision integers on our machine

(32 bits). The value of />maxr is usually larger than 32 bits, however, for numbers

greater than 54 digits. The reason for this is to allow a margin for round-off error,

since we only work with integer approximations to log(/>). Also, since sieving with

respect to prime powers is expensive, we do not do it. Instead, multiple instances of

a given prime factor are found when constructing the factorizations. Selecting a

larger value of T allows for more multiple prime factors.

Also, because of differences in machine architecture, it is desirable to break up the

sieve interval into pieces. The optimal size usually depends on the amount of cache

memory available. When sieving, one would like to keep global memory references

to a minimum and for that purpose should make each piece of the sieve interval

small enough to fit in cache.

Depending on the quality of the multiplier k and the corresponding value of the

modified Knuth-Schroeppel function, one often sees variations in run time of up to a

factor of 2.5 for numbers of a given size. Thus, the above times are only approximate

and represent typical times that we observed in our computations.

6. Some Numerical Results. We present here several factorizations from the

MOST/MORE wanted tables of the Cunningham project [1], along with several

others of interest (U and V are respectively Fibonacci and Lucas numbers) and the

factorization times. These were all obtained with a SUN-3/75. Typically, about 15

to 20 percent of the total run time was spent computing coefficients of the

polynomials and finding their roots, although the larger numbers took up to 30

percent. The processing of the large primes from (15), the matrix reduction step, and

the computation of congruence (1) took only a small fraction of the total run time.

This post-processing depends only on the size of the factor base and not on the

number being factored. For a factor base of 3000 primes, processing the large primes

took about 10 minutes, reducing the matrix about 20 minutes, and computing

congruence (1) about 1 minute. A factor base of 1000 primes took only about 1

minute total for all three steps.

336 ROBERT D. SILVERMAN

Number Size Factors

The designation a, b + or a, b - means ah A 1 ot ab — 1, respectively, while

2,446L is part of the Aurefeullian factorization of 2440 + 1 [1]. The designation Pxx

means a prime number of xx digits. Those factorizations marked with * were done

using a parallel implementation, described below. The time given for these factoriza-

tions is the total time summed over all machines.

Table 2

Factorization Times

TIME

(his)

V298 45 271293387891105049.P28 0.25

U507 53 17340889195212892399797173.P27 2.50

U615 54 1846858344247612322281.P33 2.33

12,67- 54 17577834702049211.P38 3.10

6,91- 56 48215910563832798697.P37 4.10

5,83 + 56 4029666108840585686296627.P31 3.75

6,86 + 56 2914764989376043020733.P35 6.50

2,224 + 58 167773885276849215533569.P35 11.5

3,131 + 60 114742271896804438572098194909.P30 10.0

2,446L 60 52016435676012089.P43 14.2

2,263- 62 120226360536848498024035943.P36 15.2

11,62 + 63 4311672901046383796549.P41 22.2*

2,239 + 66 32605142983704221670173899.P41 42.1

7,79- 66 913242407367610843676812931.P40 37.5

6,94 + 69 1029538544148223697293.
30585762365533687252981.P25 81.0

10,73 + 70 10826684964539959837294043117.P42 87.0*

2,272 + 74 335631827046798245410603730138717057.P38 255.0*

6,128 + 75 2339340566463317436161.

2983028405608735541756929.P29 315.0*

2,269 + 81 424255915796187428893811.P57 1265*

7. Parallel Implementation. The algorithm lends itself readily to parallel implemen-

tation and we have already done so. A central processor selects the value of D from

Section 3, and passes it to a satellite processor. The satellite computes the poly-

nomial roots, performs the sieving, and returns any factorization back to the central

processor. Since all of the computations on the satellites are done independently of

one another, and since the satellites need only communicate with the central

machine, it is possible to obtain the maximum theoretical utilization of all the

processors. In our implementation we have achieved having N satellites give an

N-fold speedup. A further advantage of having multiple satellites is that of a greatly

enhanced real memory. The amount of swapping and paging is reduced to virtually

nil, and we have far fewer cache misses.

THE MULTIPLE POLYNOMIAL QUADRATIC SIEVE 337

8. Comparison With Other Methods.

A. Continued Fraction Algorithm. The CFRAC algorithm of Morrison and Brill-

hart has been a champion among factoring algorithms until the QS implementation

by Davis et al. It had been thought that the crossover point of QS with CFRAC was

between 50 and 70 digits. Until now, no one has ever programmed both methods on

the same machine. We have considerable experience with a VAX version of CFRAC

that uses Pomerance's early abort strategy and we present a comparison of the two

methods:

6-1 log,o (Seconds)

5-

4-

35 min

3- /

/ S 8 min

4 min <//

/fî min

1r S

-i-1-1-■-1-1-1-1-r-

24 30 36 42 48 54 60 66

Size of Number

The multiple polynomial version of QS is significantly faster, unless the numbers

are very small and those numbers take an insignificant time to factor anyway.

When one selects a value of M sufficiently large so that our algorithm only uses

one polynomial, the run time increases dramatically. A crossover point with CFRAC

appears around 40 digits.

B. Single Polynomial QS. We present here data, taken from [2], along with our

own data, which shows the total number of residues examined by the variations of

QS. These data represent typical values for the total number of residues sieved by

both our method and the single polynomial and 'special q' versions of Davis et al.

The values given are typical for numbers of a given size, but the columns do not

represent factorizations of the same numbers.

338 ROBERT D. SILVERMAN

Table 3

Size MP-QS/VAX SPECIAL-Q/CRAY BASIC-QS/CRAY
52 8.0E + 8 LOE + 9 9.0E + 9

53 4.0E + 8 2.0E + 10

55 5.0E + 8 — 1.4E + 10

58 LOE + 9 4.3E + 9 2.7E + 10

60 2.1E + 9 2.2E + 10 9.0E + 10

63 LOE + 9 1.2E + 10 —

One can clearly see a dramatic improvement over the basic algorithm in both the

'special q' and our versions. Our version performed somewhat better than the

'special q' version for several reasons:

(i) We used multipliers while Sandia did not.

(ii) We used the large prime variation while Sandia did not.

(iii) We changed polynomials as frequently as possible. Sandia could have

obtained better performance by using more 'special <jr's'.

(iv) The pipeline architecture of the Cray makes sieving extremely efficient.

Sieving on the Cray is relatively much faster than the VAX, even considering the

average difference in machine speeds. Thus, it is profitable to do more sieving on

each polynomial.

(v) Our polynomials generated residues which were smaller.

These results show that it is desirable to change polynomials as frequently as

possible. The exact amount of time one should spend doing this, relative to doing the

sieving, will be machine-dependent and may require experimentation. By changing

polynomials frequently one gains at least 10 digits over the basic algorithm, and the

new polynomials we have presented gain about 1 additional digit.

The author is grateful to Peter Montgomery at System Development Corporation

for providing many valuable suggestions and insights, to James Davis for granting

permission to publish the results given in Table 3, and to the research computer

facility at The MITRE Corporation for providing the computer time used on this

project.

The MITRE Corporation

Burlington Road

Bedford, Massachusetts 01730

1. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman & S. S. Wagstaff, Jr.,

Factorizations of b" ± 1, b = 2,3,5,6,7,10, 11, 12 Up to High Powers, Contemp. Math., vol. 22, Amer.

Math. Soc., Providence, R. I., 1983.

2. J. Davis & D. Holdridge, Factorization Using the Quadratic Sieve, Sandia Report #SAND

83-1346,1983.

3. J. Davis & D. Holdridge, "Status report on factoring," Advances in Cryptology (T. Beth, N. Cot,

and I. Ingemarrson, eds.), Lecture Notes in Comput. Sei., vol. 209, Springer-Verlag, Berlin and New York,

1985, pp. 183-215.

4. J. Gerver, "Factoring large numbers with a quadratic sieve," Math. Comp., v. 41, 1983, pp.

287-294.

5. D. Knuth, The Art of Computer Programming, Vol. 2, Semi-Numerical Algorithms, Addison-Wes-

ley, Reading, Mass., 1969.

THE MULTIPLE POLYNOMIAL QUADRATIC SIEVE 339

6. P. Montgomery, personal communication.

7. M. Morrison & J. Brillhart, "A method of factoring and the factorization of FT," Math. Comp.,

v. 29,1975, pp. 183-205.

8. C. Pomerance, personal communication.

9. C. Pomerance, "The quadratic sieve factoring algorithm," Advances in Cryptology (T. Beth, N. Cot,

and I. Ingemarrson, eds.), Lecture Notes in Comput. Sei., vol. 209, Springer-Verlag, Berlin and New York,

1985, pp. 169-182.
10. C. Pomerance, "Analysis and comparison of some integer factoring algorithms," in Computational

Methods in Number Theory (H. Lenstra and R. Tijdeman, eds.), 1982, pp. 89-141.

11. C. Pomerance & S. S. Wagstaff, Jr., "Implementation of the continued fraction integer

algorithm," Congress. Numer., v. 37, 1983, pp. 99-118.

