
MATHEMATICS OF COMPUTATION
VOLUME 48. NUMBER 177
JANUARY 19X7. PA(¡ES 405-423

On the Parallel Generation of the Residues

for the Continued Fraction Factoring Algorithm

By H. C. Williams* and M. C. Wunderlich

Dedicated to Daniel Shanks on the occasion of his 10 th birthday

Abstract. In order to implement the continued fraction algorithm on a highly parallel

computer, like the Massively Parallel Processor, it is necessary to be able to compute certain

numbers which occur at widely-spaced intervals within the continued fraction expansion of fÑ~,

where N is the number to be factored. In this paper several properties of the continued

fraction expansion of a quadratic irrational are developed. These results are then applied to

the development of a very simple algorithm for finding the widely-spaced numbers referred to

above.

1. Introduction. The continued fraction algorithm (CFRAC) [8], [11] is a general

factoring method which has received a great deal of attention in recent years. If we

denote by N the integer which we wish to factor, the CFRAC algorithm is one of a

class of factoring techniques which determine integers X and Y such that

X2= Y2 (modTV).

If 1 < gcà(X - Y,N)< N, then we have a factor of N; if not, then we must

generate another (X, Y) pair and try again.

One way to calculate a pair (X,Y) is to first generate sequences {Z(i)} and

{(?(/)} suchthat

Z(i)2 = Q(i) (mod N).

If we can find a set J = {Q(ix), Q(i2), Q(i3),..., Q(i,)} such that

(1-1) Ó Qih) = y2>
7=1

where Y is an integer, then we have

X2 = Y2 (mod TV),

where

i

X= Il Z(ij) (mod N).
7 = 1

Received March 18, 1986.

1980 Mathematics Subject Classification. Primary 12A25, 10A32, 10A25.
* Research supported by NSERC of Canada Grant A7649 and the I. W. Killam Programme.

405

''1987 American Mathematical Society

0025-5718/87 $1.00 + $.25 per page

406 H. C. WILLIAMS AND M. C. WUNDERLICH

Leaving aside for the moment the problem of producing the sequences {Z(i)} and

{£(')}> we are teft with me problem of determining a set 2.. To do this, we can first

establish a factor base 0> = { p0, px, p2,..., pk), where p0 =-1 and p¡ (i =

1,2,3,..., k) are,distinct primes. We then trial divide the Q's by the elements of 3P

and consider only those which completely factor over 3P; that is, those Q(i)'s such

that

QiO-Up"1'-
7 = 0

We associate with such a Q(i) a binary vector e¡ = (ai0, aa,..., alk), where a¡j = a¡¡

(mod 2). Clearly, we can use as a set 1 a set of ö(0's which corresponds to a set of

linearly dependent (over GF(2)) ei vectors. Both the continued fraction algorithm

and the quadratic sieve (QS) [10], [3] are examples of this type of factoring method.

They differ only in how the residues are computed and how they are factored.

In the case of CFRAC we make use of some properties of the continued fraction

expansion of quadratic irrationals <b = (P + \rD)/Q, where P,Q. D e 3£ (the ra-

tional integers) and D is positive and not a perfect square. If we put** <f>0 = <f>,

?, = fol 4>/+i = l/(*/-«/). ' = 0,1,2,3,..., m, we get

1
<f> = <7o +-■

1
qx + -

1
q2 +-

= (q0,qx,.-.,qm,<t>m+i).

If we let Cm = (q0,qx,q2,...,qm), then it is well known that Cm = Am/Bm, where

we compute Am and Bm by the recurrence formulas

(1.2) Ar+x = qr+xAr + Ar_x, Br+x = qr+xBr+Br_x (r = -1,0,1,2,...),

together with the boundary conditions A_2 = 0, A_x = 1, B_2 = 1, B_x = 0.

In the case of P = 0, Q = 1, we know that </>,. = (Pr+ f5)/Qr (P„ Qr<^2Z),

(1.3) 0<Qr<2^fD,

and

0-4) A2r_x-DB2_x = (-l)rQr.

If we put D = N, we see by (1.4) that

A2_x = (-l)rQr(rnodN),

and (1.3) suggests that the quadratic residues (-l)rQr might be small enough to be

factored over a small prime base. Thus we can put

Z(r) = Ar_x, Q(r) = (-l)rQr.

** We use the symbol [x] to denote that integer such that x - 1 < [x] ¡s x.

CONTINUED FRACTION FACTORING ALGORITHM 407

The second author has been attempting an implementation of the continued

fraction algorithm on the Massively Parallel Processor (MPP) built by Goodyear

Aerospace at Goddard Space Flight Center. This computer consists of 16,384

processors in which arithmetic operations can be performed simultaneously on

different data. Since the operation of attempting to factor the quadratic residues

consumes most of the computer time in this algorithm, an obvious way to exploit the

parallel architecture of the MPP is to perform the trial divisions in parallel. A batch

of 16,384 different quadratic residues can be computed and they can be factored

simultaneously by dividing by successive primes in the prime base. This procedure

succeeds in dramatically reducing the computer time necessary to factor the Q's but

we still have the problem of generating the Q's and their corresponding squares A2.

It was originally believed that the host computer to the MPP, a VAX 11-780, could

serially compute the ((-l)kQk, Ak_x) pairs rapidly enough for the MPP to factor

them in parallel; however, recent timings indicate that the host computer would not

adequately keep up with the MPP for values of N much in excess of 60 decimal

digits. Daniel Shanks has suggested that by extending the ideas described in [13], it

should be possible to develop a procedure for generating the successive values of Q

and A themselves in parallel, thereby removing the need for a fast serial host

computer in implementing a parallel version of CFRAC. In this paper we explain

how this can be done.

2. Some Results Concerning Continued Fractions. In order to solve the main

problem of this paper, we shall require a number of results concerning the continued

fraction expansion of an expression of the form (P + {D)/Q, where P,Q, D g ¿2°

and D (> 0) is not a perfect square. Most of these results are well known and are

presented here for the convenience of the reader. For a more detailed discussion of

this material the reader is referred to Perron [9] or Chrystal [1],

We assume with no loss of generality that Q | D - P2 (if not, simply replace Q by

01(31, P by |ß|P and D by Q2D). If we put d = [4d\, P0 = P,Q0= Q, q0 = [<i»()],

<b = <b0 = (P0 + JD)/Q0, then <bm = (Pm+ 4D)/Qm, where Pm and Qm may be

computed by using the formulas

Pk+i = <ikQk-Pk,

(2.1) Qk + X = {D-P2k + X)/Qk, A: = 0,1,2,3.

4*+i= [iPk+i + d)/Qk+x],

If we put Q_x = (D - Pq)/Q0, R0 = P0 + d - q0QQ, it is a simple matter to show

that we can generate {Q„+X,Q„,P„+X,q„+X, RH+X, A„+x (modD), A„ (mod D)}

from {Q„,Q„-X,P„,q„,R„,An (modD),An_x (modD)} by using Tenner's algo-

rithm [4, p. 372], We will call this algorithm

Algorithm 1. (Single-Step Algorithm)

Pn+1 = d-R„,

Q„+i = Qn-i-q„(Pn+i-Pnl

<l„ + i = l(P„+i + d)/Qn+x},

R„ + i = Pn + i + d - qn + xQn + x

= remainder on dividing Pn + X + d by Q„+x,

¿n+i = °„ + iA,, + A„_x (modo).

We exemplify this procedure for D = 103, P = 0, Q = 1 in Table 1 below.

H. C. WILLIAMS AND M. C. WUNDERLICH

Table 1

J p, Q, v, R, A,
-2 — — — — 0

-1 103 0 1

0 0 1 10 2 10

1 10 3 6 2 61

2 8 13 1 5 71

3 5 6 2 3 100

4 7 9 1 8 68

5 2 11 1 1 65

6 9 2 9 1 35

7 9 11 1 8 100

8 2 9 1 3 32

9 7 6 2 5 61

10 5 13 1 2 93

11 8 3 6 0 1

12 10 1 20 0 10

13 10 3 6 2 61

Now since <í>m+1 = l/(4>„ - [<#>„,]), we have <#>„ > 1 for « > 1. Thus, we see that

qn > 1 for n > 1, and from (1.2), Bn > Fn+X (n > 0). Here Fk is the kiYi Fibonacci

number (F0 = 0, Fx = 1). Since

Fk+2>*k (r = (l + fi)/2),

we have

(2.2) Bk>r"-\

We also note that

(2.3) AnBn x - BnAn_x = (-I)""1 (n = -1,0,1,2,...).

Now

(2-4) +-+0-TB 7+B :•
Tm ^m - 1 ^m - 2

hence,

Replacing m by m + 1, putting $„ = (?„ + /ö)/ß0. <í>„,+ i = (^„, + i + JD)/Qm + X

in (2.5), and equating rational and irrational parts, we get

(2.6) Gm = Pm+xBm + Qm+xBm_x, DBm = Pm+xGm + Qm+xGm_x,

where Gm = Q0Am - P0Bm.

Put ^m = (JD - Pm)/Qm-X = l/<f>„,. We have 0 < *m < 1. Define

A-l

(2.7) 0X = 1, 0k=U^, ik>l).
i = i

CONTINUED FRACTION FACTORINCi ALGORITHM 409

Let Q(\[D) denote the quadratic field formed by adjoining {D to the rationals Q.

Let a denote the conjugate of a g Q({D) and N(a) = aä. We now give a

generalization of (1.4) in

Theorem 2.1. For 0k defined as above, we have

(2.8) N(0k) = (~\)k-lQk_x/Qo

and

(2.9) ** = (-!)*" W2-***-2)-

Proof. (2.8) follows easily from (2.7) and (2.1); (2.9) can be easily deduced by

using induction on k and (2.5). D

In much of what follows we shall be concerned with the problem of when <f>,„ < 0.

We first give

Theorem 2.2. For m ^ 1, we have <j>m < 0 if and only if Pm < ^ÍD and Qm > 0.

Proof. Clearly, 0„, = (Pm - {D)/Qm < 0 when Pm < {D and Qm > 0. If $m < 0,

then since <#>„, > 1, we have 2{D /Qm = <jjm - cbm > 0. Hence Qm > 0 and Pm <

\[D. D

Note also that since <i>„, > 1, we have Pm> Qm- 4d > -{D; thus, if <f>„, < 0,

then \Pm\ < {D and Qm <Pm + {D < 2{D . Note further that if 4>m < 0, then

K+i = V(4>m - [4>J) < 0._
The question of whether </>m is ever negative is answered in

Theorem 2.3. // |<i>0 - ¿y > l/Bm_xBm_2 (m > 2), then $m < 0.

Proof. From (2.5) and (2.3) we get

(2-10) *m= i-Bm-2+i-l)mPmBm_x)/Bm_x

where p„, = Am_x/Bm_1 - <b0. If we put e = \Am_x/Bm_x - <b0\, then it is well

known that Am_x/Bm_x - % = (-1)"'£ and e < l/BmBm_x; also,

(-l)mp„, = (-!)"'iAm_x/Bm_x - 4>0 + 4>o- 4>o) = (-l)"'(*o - *o) + e.

Now if (-l)"'p„, < 0, then <b„, < 0. Suppose (-1»,, > 0. If (-l)"'(^>o " <í>o) < °-

then

(-l)"'Pm < -l/Bm_xBm_2 + \/Bm_xBm < 0,

a contradiction. If (-l)m(<iJ0 - <i>0) > 0, then (-l)m(<t>0 - <f>0) > l/Bm_xBm_2 and

(-l)"'p„, > l/Bm_xBm_2. It follows from (2.10) that 4>„, < 0. G

Corollary 2.3.1. IfB2_2 > |öo/2^l (m>2), then <f>„, < 0.

Proof. We have |<J>0 - ¿0| = 2¿D/\Q0\ > Bml2 > \/Bm_2Bm_x. D

Corollary 2.3.2. lfm > max[l,3 + log(|Ö0l/2\/Ö)/(21ogT)], then 4>m < 0.

Proof. If m > 3 + log(|g0|/2/D)/(21ogT), then T2(m"3)> \Qçy\/2{D and by

(2.2) we have B2_2 > \Qfí\/2{D and m > 2. D

Hence, we see that for some m (̂ 0) we must eventually have <bm < 0. By

Theorem 2.2 we have Qm > 0 and \Pm\ < ■¡D. If Qm > {D, then 0 < Q„,_x =

(D - P2)/Qm < /D ■ In fact, we have

Theorem 2.4. Let t be the least integer (> 0) such that (¡>r < 0. If s is the least

integer (> 0) such that 0 < Qs < \D , then t = s or t = s + 1, unless (t,s) = (0,1).

410 H. C. WILLIAMS AND M. C. WUNDERLICH

Proof. If t > 1, then 0 < Q, < {D or 0 < Q,_x < ¿D ; hence, s < t. If t = 0,

then <f>[< 0 and ^ = 0 or 1. Now

qs = (/>,+ {D~)/Qs - e (0 < £ < 1) and lui)/Qs > 2 > 1 + e;

hence, qsQs > Ps - Jd + Qs. It follows that Ps+X > -/O + Qs and -fï+1 =

-1/<£Ï+1 > 1; thus, 4>s + 1 < 0 and t ^ s + 1. Thus, if (t,s) * (0,1), we have í = ior

i = s + 1. D

We close this section with

Theorem 2.5. If m > 3, 0m_, > 0, then 0 < 0m» < \Qo/Qm.xBm_3\.

Proof. If pm is defined as in the proof of Theorem 2.3, we see by (2.9) that

8m = (-!)'"-xBm_2pm_x. If 0m_, > 0, then by (2.10) we have

-Bm-, + \/K > o.

It follows that 0 < 6m < 1/Bm_3. By (2.8) we have 0Jm = (-l)"-lQm_x/Q0. By

(2.7) we know that 0m > 0, and since 0mx = \0mx\ = \Q0/Qm^x\9m, the result follows.

D

3. The Ideals in 0n. Let D0 be a square-free positive integer and put

11 when D0 = 2 or 3 (mod 4),

\ 2 when D0 = 1 (mod4).

Define <o0 = (r — 1 + •¡D~0)/r, A0 = (w0 - w())2 = 4D0/r2, <o = «w(1 + /¡, where

«,/z g 2". Let [a.jß] denote the module {xa + yß\xy g 3°) and note that [a,ß] =

[y, 5] if and only if

(¡m;)-
where X g Gh2(3"), the group of all 2 X 2 matrices with entries from ,2° and

determinant ± 1.

Put 0„ = [l,/7co0]= [l,<o], A = (w - w)2 = «2A0. For g= gcd(r,n), a = r/g,

put Z) = (n/g)2D0; then A = 4D/a2. Of course, i?„ is an integral domain and

#„ £ f[, the set of all algebraic integers of ô(v'A))■

Now a is an ideal in (9n if a ç On and a possesses the following properties:

(i) if a, ß G a, then a + ß G a,

(ii) if a G a and 17 g $„, then otj g q.

In this section we shall summarize several properties of the ideals in 0n. Most of

these can be found in any standard text, for example Cohn [2]. Those that are not

explicitly in [2] can be easily demonstrated. Another useful source for some of this

material is Ince [5].

Theorem 3.1. // û is an ideal in On and a <£ 3°, then a = [a, b + cw], where

a,b,c G 2T, a > 0, b> 0, c\bandc\a. D

Corollary 3.1.1. For a given a in (Sn, the integers a and c are unique. Indeed, a is

the least positive rational integer in a. D

We will denote the least positive rational integer of a by L(a) and we will denote

the value of cL(a) by N(a).

Theorem 3.2. Let a = [a, b + ceo], a is an ideal in On if and only if c\a, c\b. and

ac\N(b + ceo). D

CONTINUED FRACTION FACTORING ALGORITHM 411

Definition. If a = [a, b + w] and a \ N(b + u), we say that a is a primitive ideal

of &n. Note that if a is primitive, then N(a) = L(a). If we denote by

(ai,a2,a3,... , am) the set

a = < E V,a,\v, e 0,,, / = 1,2,3,...,ml,

then clearly a is an ideal in 0n\ indeed, we say that a is the ideal generated by

a,, a2,a3,..., am and call ax,a2,a3,.. .,am the generators of a. If a (= (a)) has a

single generator, we say that a is a principal ideal of (Sn. It is an easy matter to show

that (ax, a2) = [ax, a2]; thus, any ideal of 0n need have at most two generators.

Definition. If a = (a,, a2, a3,..., am), fa = (ßx, ß2, ß3,_ßk) are ideals of &n, we

define the product ideal a fa to be that ideal generated by the mk generators aßj

(i = 1,2,3.m; j = 1,2,3.k).

Theorem 3.3. Let a g 0n and let a be any ideal in ©,,. If fa = (a)a, we have

N(b) = |JV(a)|JV(a).

Corollary 3.3.1. If a = (a), then N(a) = \N(a)\. D

If a = [a, ß] is an ideal of Gn we call {a,ß) an integral basis of a. We partially

address the problem of finding an integral basis of the product of two ideals in

Theorem 3.4. // ax = [ax, bx + w] and a2 = [a2, b2 + w] are primitive ideals of

0n and gcd(a1,a2) = 1> then a3 = axa2 = [03,^3 + u], where a3 = axa2 and

s lbx (modai),

3 \b2 (moda2). D

We can, of course, obtain a more general result than Theorem 3.4 (see, for

example, Lenstra [6] or Schoof [12]), but this particular result will be adequate for

the purposes of this paper.

The concept of a reduced ideal and the properties of such ideals will be very

important in subsequent work. We first give the following

Definition. We say that a = [L(a),ß] is a reduced ideal in 0n if n is primitive

and there does not exist any nonzero a œ a such that both \a\ < L(a) and

|S| < L(o)hold.

Theorem 3.5. a is a reduced ideal in 0n if and only if there exists some ß g q such

that a = [L(a),ß],ß> L(a), and-L(a) < ß < 0.

Proof. Suppose a is a reduced ideal in 0n and a = [L(a),y], where y = b + u

(b gJ). There certainly exists an infinitude of pairs (x, y) g 3"2 such that

\xa + yy\ < a,

where a = L(a). (For example, x = [-yy/a], y = 1,2,3.) Let (t, s) be one such

pair and put v = ta + sy; let ß be that element of a such that \ß\ < a, ß > 0 and ß

is least. Since there can only be a finite number of elements a g a such that \a\ < \v\

and |a| < a, we see that ß is well defined. Since |j8| < a and a is a reduced ideal of

6n, we must have ß > a. Now 0 < ß - a < ß; hence, by selection of ß we have

|)8-a|>|j8|.

It follows that ß and a have different signs and ß < 0.

412 H. C. WILLIAMS AND M. C. WUNDERLICH

Let ß = pa + qy, where p,q g 2Z'. If \q\ > 1, let p = s (mod \q\), where |s| <

|<7|/2. Then (ß - sa)/q = y + xa g n (x G &). If we let p = |(jS - .ra)/<?| g a,

we have

|jS| = \(ß-sa)/q\ < |j8/9| + |*i/9| < a/2 + a/2 = a.

Also, fi > 0 and

M < |jB/<7| + \sa/q\ *S ß/2 + a/2 < ß.

But such a ft 6 a is impossible by the selection of ß; hence, \q\ < 1. Since q ¥= 0, we

have q = +1 and a = [L(a),/?].

Next, suppose a = [a,ß], where a = L(a), ß > a. -a < ß < 0. If a is not a

reduced ideal of On there must exist p g a such that p ¥= 0, |p| < a, and \p\ < a.

Also, p = xa + yß (x, y G ¿t). Now since \xa + yß\ < a and \xa + yß\ < a. we see

that if x = 0, then y = 0; and, if y = 0, then x = 0; thus, jcy =£ 0. If xy > 0, the

first inequality cannot hold; if xy < 0, the second inequality cannot hold. It follows

that a must be a reduced ideal in (Sn. D

Corollary 3.5.1. // a is a reduced ideal in On, then L(a) < v/Ä.

Proof. By the theorem, a = [L(a),ß], where ß > L(a) and -L(a) < ß < 0.

Thus, L(a) < ß- ß = w - w = i/5\ n

We have a simple sufficient condition for an ideal in 0n to be reduced in

Theorem 3.6. // a is a primitive ideal in On and L(a) < i/A/2, then a is a

reduced ideal in &n.

Proof. Let a = [L(a),y], where y = b + u (b G &). Put ß = y +

[-Y/L(o)]L(ct). Then a = [L(a),ß], where -L(a) < ß < 0. Since« -/? = to- w

and /8 > -L(a), we get ß > w - w -L(a). Also, w - w = \/A > 2L(a); thus,

ß > L(n) and our result follows immediately from Theorem 3.5. D

If a is any reduced ideal in &n, then a = [L(a),b + w] and we may certainly

assume that 0 < b < L(a). Since L(a) < i/Â, we see that there can only be a finite

number of reduced ideals in 6n.

We say, as usual, that two ideals a, fa of 6n are equivalent (written n ~ fa) if there

exist nonzero a,ß G On such that (a)n = (ß)b. Now if a (=£ 0) g 0n and (a)a =

(a)fa, then (a«)a = (aa)fa and (a)a = (a)b, where o = «« e f. Thus, a = fa.

Lemma 3.1. // a a«i/ fa are equivalent ideals of 0n, there exists some y g a such

that

(3.1) (y)fa = (L(fa))a

a«i/ 0 < y < L(û).

/'roo/. Since (a)a = (ß)fa. where a,ß (¥= 0) G 0„, then |ß|L(fa) = |a|A for some

À g a. Let 7] (> 0) be any unit of On. There must exist some power tj* of tj such

that t]kX < L(a). Put y = t/à. If we put c = (y)fa = (A)fa, then(L(fa)ß)b = (a)c

and(L(fa)a)n = (a)c; hence, c = (L(b))a and(y)fa = (L(b))a. n

We also point out that if o, fa + (0) are ideals in 0n and a g 6\, 5 g 3°, a, s + 0.

and

(a)b = («L(b))a,

then there exists y G a such that sL(b)y = L(b)a; hence, y = a/s g n.

CONTINUED FRACTION FACTORING ALGORITHM 413

4. Ideals and Continued Fractions. In this section we will draw together the results

of the last two sections in order to show the connection between the ideals in <9n and

the continued fraction expansion of <b = (P + {d~)/Q. We first suppose that

[a, b + co] is any primitive ideal in 0n. If we put <b = (b + u)/a, we see that

4> = (P + {D)/Q, where

(4.1) P = (rb + n(r- 1) +hr)/g£&, Q = ar/g&£°,

and r, n, g, h are defined at the beginning of Section 3. Since a \ N(b + a), it is a

simple matter to deduce that oQ\P2 - D; hence, Q\P2 - D. We also have P =

-n/g (moda), a |2, and gcd(n/g,a) = 1; thus, P = 1 (moda). We now see that

o= ¡Q/o,(P+ 4b~)/o\.

If we have Q,P (= & such that a | Q, P = 1 (mod a) and oQ \ D - P2, then

a= \q/o,{P + 4d)/o\

must be an ideal in &n. For, if we put

a = \Q\/o, b= (P - l)/a -n-h +(n + g)/r^%,

we have a = [a, b + u] and a \ N(b + u).

In the following theorem we see that if we are given a primitive ideal ax in 0n, the

continued fraction algorithm can be used to find a sequence of ideals a,, o2, a3_

such that ak ~ ax (k = 1,2,3,...).

Theorem 4.1. Let ax = a = [a, b + co] (a, èef) and define P0 = P, Q0 = Q,

<b0 = (P0+ ÍD)/QQ, where P, Q are given by (4.1). //

««= [ôm-iA.(^,-i + Vo)/a],

where <¡>m_x = (ß„,_] + 4D)/Qm_x is found by expanding <b0 into a continued

fraction by using (2.1), then am is an ideal in 0n and

(4-2) (ôo<Uam=(ôm_,)a,

where 0m is defined by (2.7).

Proof. Certainly û[is an ideal in 0n, o\Q0, P0 = 1 (moda), and oQi)\D - P{2.

Suppose ak is an ideal in 6n; we have a\Qk_x, Pk._x = 1 (moda), and oQk_x | D -

Pk_x. Since Pk = qk-XQk-X ~ Pk-\, we see that Pk = 1 (moda). Further,

Qk = (D- P2)/Qk_x = (D- P¡_x)/Qk„x - ql-XQk.x + 2<?A._1i_1;

thus, since a\(D - P2-X)/Qk-X, a|ö*-i' an^ o 12, we have o\Qk. Also, oQ\D -

Pk2. Hence, ak + x is an ideal in &n. It follows by induction that am is an ideal in &ir

Now by (2.9) we have

e"' \-xil
em+1j XU

where

-A„ , ß„
^=(-D

\ Am-1 Dn

and |A-|= +1 by (2.3). Thus,

and

(Ôo^1)am=(Ôm_i)û1. ü

414 H. C. WILLIAMS AND M. C. WUNDERLICH

Note that we can write (4.2) as

(4-3) (L(ax)Om)am=(L(am))ax.

We will now describe conditions which are sufficient for o m to be a reduced ideal

in G„.

Theorem 4.2. //>„, < 0, then am+x is a reduced ideal in &„.

Proof. Put y = \Pm + jD\/o. Since 4>m > 1, we have y > \QJa\ = L(am+X).

Also, N(y) = <t>m4>mL(am+x)2 < 0; hence, y < 0. Put

ß=[-y/L(am + x)]L(am+x) + y.

We have

a«+i = [L(am+X),y] = [L(am+l),ß]

and ß > L(am+X),-L(am + X) < ß < 0. It follows by Theorem 3.5 that am+x is a

reduced ideal of On. D

Corollary 4.2.1. If a = ax = [Q0/o, (P0 + \[D)/o] is any primitive ideal in 6n,

then am is a reduced ideal in 0n when

m > max(2,4 + log(|ß0|/2^D)/(21ogT)).

Proof. Follows easily from the theorem and Corollary 2.3.2. D

Theorem 4.3. //, by developing <j>0 = (P0 + \rD)/Q0 into a continued fraction, we

find the least m (> 1) such that 0 < Qm_x < {D, then am is a reduced ideal in &n

and

V < 2Q0/Qm_x.

Proof. Since L(am) = Qm-x/o < \ÍD/a = {h./2, we see by Theorem 3.6 that

am is a reduced ideal in 6n. If m = 1, then 0m = 1 < 2Q0/Q0. If m = 2, then since

Q0 > 0, we must have Q0 > {D'. Also, 0ml = <bx = (Px + {D)/Qx. Since D - Px2

= ßoßi > 0. we have Kl < 2JD/QX < 2QJQm_x. Suppose m > 3.

Let k be the least integer (> 0) such that <bk < 0. If k = 2, then from the proof of

Theorem 2.5, we get Qx < 0. Since |P2| < Jd, Q2 > 0 by Theorem 2.2, and

Q2QX = D — P2, this is impossible; hence k =£ 2. By Theorem 2.4 we have k = m or

k = m — 1. If k = m > 3, then </>„,_! > 0 and

V < Qa/Qm-iBm-3 < öo/Ö„,-i

by Theorem 2.5. If A: = m — 1 > 3, then ^„,_2 > 0. Also, we must have Qm x > 0,

l^-il < v^; thus, we find that Qm_2 = (Z) - ßi-1)/(2m-i > 0 and, as a conse-

quence of the definition of ßm_1, we get Qm_2 > {D . By Theorem 2.5 we have

K-i < Qo/Qm-2Bm-<;

hence

Ki = Cî-i^-i < (ßo/öm-2^,-4)(2v/ö/Öm-1) < 2Ô0/Ôm-,. □

Thus, the continued fraction expansion algorithm applied to any primitive ideal

a = ax in On will ultimately yield an ideal am equivalent to ax such that am is a

reduced ideal in Qn. We now show that if the continued fraction algorithm is applied

to any reduced ideal a in 6n, it will produce all of the reduced ideals in &n which

are equivalent to a.

CONTINUED FRACTION FACTORING ALGORITHM 415

Theorem 4.4. If a = ax is a reduced ideal in 0n, then -1 < <bx < 0.

Proof. Since ax is a reduced ideal in On and L(ax) = Q0/o, we have Q0/o < ■fK

= 2{D /a by Corollary 3.5.1. Also, y = L(&x)iix = (P0 + {D)/o - q0Q0/a; hence,

y g a,. Since y = Q0/o<bx and <bx > 1, we have 0 < y < Q0/o and |y| > Q0/a (ax

is a reduced ideal in &n); thus, 0 < \[D - Px < 2{D and Px + {D > 0. Since

\px = (-Px - 4D)/Qq and <j>, = 1/^, we get our result. D

Corollary 4.4.1. // ax is a reduced ideal in (Sn, then so is am for any m > 1.

Proof. Follows easily from Theorem 4.2 and the fact that if -1 < $x < 0, then

-1 < 4>m < 0 for any m>l. D

Theorem 4.5. If a = ax and fa are two reduced, equivalent ideals in &n and y g a

such that

(y)fa=(L(fa))a

with 0 < y < L(a), then there must exist some m > 1 such that fa = am and

0m = y/L(a).

Proof. By Lemma 3.1, we certainly know that such a y g a exists. We also know

(Theorem 4.1) that

«i = [ß<A-i/°. QAM
for any k > 1. Since a, is a reduced ideal of 0n, we have ^>, < 0 for any ; > 1 by the

previous theorem; hence, Sk_x and 0~k have different signs. Since y < L(a) and the

0ks decrease as k increases, we must have either

0m = y/L(a), or 0m+x < y/L(a) < 6m

for some m, or y/L(a) < 0¡ for all 6¡. Since

|ö„/ßm-2l = \Am-i/Bm-2 -<l>\< \/Bm_xBm_2,

we see that 0 < 0m < 1/Bm_x; hence, by (2.2) we cannot have the latter case.

Suppose

L + i<y/L(a)<Om

for some m. Since y g a, we have y/L(a) = x0m + y0m + x for some xjef.

Since y > 0m + xL(a), we must also have |y| < |öm + 1|L(o). For, if |y| > |öm + 1|L(a),

and X = L(a)0m+x, then X g a and L(b)X = yp for some p g fa (p J= 0). Further,

\p\ = L(b)\X/y\<L(b) and |p| = L(fa)|Â/Yl < L(b).

Since this contradicts the fact that fa is reduced, we can only have |y| < \0m + x\L(a).

It follows that

*9m + y6m+i\< K and \x~0m + yOm+x\< \Sm+x\.

Since 0m and 0m+x have different signs, both of these inequalities cannot hold;

hence, we must have y = OmL(a) for some m ^ 1. Since (y)fa = (L(b))a and

(L(a)0m)am = (L(am))a by (4.3), we get \N(y)\N(b) = L(b)2N(a) and

L(a)2\N(Om)\N(am) = L(am)2N(a). Since N(y) = N(0m)L(a)2, N(b) = L(b)

and Af(a) = L(a), we have L(fa) = L(q„,). Since (y)b = (L(am))a =

(L(a)ô„,)a„, = (y)am,wehave fa = am. a

Thus, we have shown that if ax is any primitive ideal in (Sn to which the

continued fraction expansion of a corresponding <f>Q is applied, we must ultimately

produce a reduced ideal am (~ ax), and once this has occurred, the subsequent

416 H C. WILLIAMS AND M. C. WUNDERLICH

ideals determined will be all of those which are reduced ideals in 0n and equivalent

to a,. As there are only a finite number of such ideals, this continued fraction

expansion must (as is well known) become periodic. Incidentally, we have also

shown that the preperiod of the continued fraction expansion of any quadratic

irrational of the form <j> above corresponds to the process of finding a reduced ideal

equivalent to an ideal in some 0n. By Corollary 4.2.1, we can even bound the length

of this preperiodic part of the continued fraction expansion of <f>.

5. Distance Between Ideals. Let ax = a and fa be any two reduced and equivalent

ideals in 0n. By Theorem 4.5 we know that fa = am for some m > 1, and by (4.3),

(L(ax)6m)am=(L(am))ax.

We will define the distance, d(a, fa), from a to fa to be -logôm. We note here that

d(am,ax)> d(am_x,ax)> 0 and d(am, ax) = 0 if and only if m = 1. The notion

of distance was first discussed by Shanks [13] and later refined by Lenstra [6] and

Schoof [12]. We are essentially using Shanks' definition of distance here. Notice that

distance is only defined between ideals of 0n that are equivalent and reduced.

A connection between d(am,ax) and m is furnished in the following result of

Levy [71.

Theorem 5.1 (Levy). Let

<í>= [io.?l'?2'"-»9*-l.**]-

For almost all irrationals <b we have

A,-

hm forf^ ■•• <f>k = e -
k —* oo

where X = 7T2/(121og2) = 1.1866. Q

Since
m — 1 m — 1

0m = n *, and 0-x = Ut-
i=i i=\

we expect that d(am, a,) = -log#m ~ (m - \)X.

Let ax (=(1)), a2,a3.ak,... be the sequence of reduced principal ideals in

0n and suppose that fa is any reduced ideal in Gn. Let (m)c = avfa,, where «ef

and c is a primitive ideal in &n. Let cm be a reduced ideal equivalent to c = c,,

which we find by using the continued fraction algorithm on c,, with m defined as in

Theorem 4.3. Since

c„, ~ t-! - asfa, ~ fa, ~ bx (as is principal),

and cm is reduced, we must have cm = bk for some k > 1. We can now prove

Theorem 5.2. //

d; = d(b„bx), d'k = d(bk,bx),

andds = d(as, ax), then

d'k = d[+ ds + 8,

where 0 < ô < log SD.

Proof. Let (6s)as = (L(as)) (L(a,)=l, a,=(l)), (L(bx)0,')b, = (L(b,))bx,

(L(c,)Ocm = (L(cJ)cx. Since (m)c, = asb„ we get L(b,)L(as) = i/2L(c,) by

Theorem 3.3. Also,

(uL(bx)Oßl')<l = (L(as)L(b,))bl;

CONTINUED FRACTION FACTORING ALGORITHM 117

hence,

{L(cm)L(cx)6ß;)cx = (uL(cx)L(cm))bx

and

iL(bx)8s0M/u)cm=(L(cm))bx.

Now u > 1 and 0 < 0S, 0,', 0'/, < 1; hence,

0 < y = L(bl)0ß;0;,;/u <L(bx) and y e bx.

By Theorem 4.5 we must have y/L(fa,) = 0'k. It follows that

d'k = ds + d[+ 8,

where ô = \og(u/0'n[). By Theorem 4.3 we have

(c)"1 < 2ôo7ô;;_i < 2QZ/0,

where L(c,) = Q'0'/o and Qs-iQ',-i/o2 = u2L(zx). Since as and fa, are reduced

ideals in <Sn, we must have L(as), L(bl) < /E by Corollary 3.5.1; hence, Qs_x,

Q',_x < 2{D and 8 < log8£>. Also, since ö„',' < 1, we have u(OmTx > " > 1 and

Ô > 0. D

Thus, if i and t are large, the value of 8 would be small compared to Xx and Ar.

It follows that we would expect to have

k ~ t + s

by Levy's law.

We will also require

Theorem 5.3. // cm, bk, 0k, 0S, 0¡, #„',', u, have the meanings assigned to them in

Theorem 5.2, then bk + x = cm+1 and 6'k+x = 6ßX+x/u.

Proof. Since c„, = bk, we get

te-i/MC-i + &)M = [Qi-i/o.iPLi + /Ö)/a];
consequently,

ß«-i = ß*-i and P^X = PU imodQ':,_x).

Thus,

C-i = (C-. + ^d)/q:,-í =j+{pk-l + v^)/ßi., =j + *;_!.

where y g .2", and <f>^ = <i>'A. It follows that cm+1 = bk + l.

Now 0¿ + 1 = f^ = 0'k/<b'k = ö;/C; hence,

O'k+x = oso;o;;/coy = ofl;o::+x/u. a

6. The Algorithm. In order to describe our algorithm for the parallel generation of

((-l)kQk, Ak_x) pairs, we make use of certain sets ¡fk. If N is the number which we

wish to factor by using CFRAC, we may assume that N = ef1, where e is

square-free and e > 1. We put D0 = e; n = rf, g = r, a = 1, D = N, h = -f(r — 1)

and we get w = JO and &„ = [1, {b~}. If o, = (1), then ß0 = 0 and £() = 1. We use

the same notation as in Section 3.

We require two lemmas.

418 H. C. WILLIAMS AND M. C. WUNDERLICH

Lemma 6.1. //, in the continued fraction expansion of <bQ = <b, we have -1 < <bx < 0,

then

qk={(Pk+i + d)/Qk]

for all k ^ 1.

Proof. Since -1 < 4>x < 0, we have -1 <<j>k<0 for all k > 1. Also, cbk + x =

!/(</>*- 9*); hence,

0<(-l/**+i)-9*<l.
It follows that

qk = [-y**+i] = [-<K+i] = [(^+i + ¿)/ß*]- °

Lemma 6.2. If-1 < <j>x < 0 and 7; s pA (modß^), íAen

Pk+i = 90* "Ti, 9* = q + [id - Tk)/Qk],

where q = [(Tk + d)/Qk\.

Proof. Let Tk = Pk + mQk. We have q = [(Pk + d)/Qk] + m = qk + m and

<7ß* - rt = (qk + m)Qk - Pk - mQk = qkQk - Pk = P4+1.

By Lemma 6.1, we also have

qk = [to+i + ¿)/ß*] = 9 + [id- Tk)/Qk\. D

Thus, if we are given values for Qk, Tk, Ak (mod D), Ak_x <modö), where

Tk = Pk (modQk), we can compute Pk + X, qk by using Lemma 6.2. By using

the formulas in Section 2, we can also determine Pk = qkQk - Pk + X, Qk + X =

(D - P2k + X)/Qk, Qk-i = (D- P2k)/Qk, -Ak_2 = qkAk_x - Ak (modo). Let sk,

tk be integers such that sk = t\ = 1 and define the quadruples

®k = ((-l)*+lß*+i. Pk+v M* (modi)), skAk_x (mod/))),

rk = ((-l)*_1ß*_x, Pk, -tkAk_2 (modD), tkAk_x (mod/))).

Suppose iX= (X, Y, Z, W) is either <Wk or fk. We now describe

Algorithm 2. (Forward or Backward Single-Step Algorithm) Compute q =

[(Y + ¿)/|X|]andput

Y' = q\X\-Y, X' =(Y'2 - D)/X,

Z' = qZ+ W, W = Z,

if' = (X',Y',Z',W).

This algorithm is very useful because of

Theorem 6.1. Suppose that in the continued fraction expansion of <f>0 = <f> we have

-1 < cbx < 0. // 3C= <%k, then if' = <%k + x with sk + x = sk; if X= Vk, then 3C' =

rk_x withtk_x = -tk.

Proof. By the results given in Section 2, the theorem follows easily when 9C= ^¿k.

\\3C= rk, then q = [(Pk + d)/Qk_x] = qk_x by Lemma 6.1. Hence

y = Qk-iQk-i - Pk = pk-u

X' = (-l)k-\PLx - D)/Qk_x = (-l)*-2ß,_2,

Z' = -qk-itkAk-2 + hAk-i = -hiqk~iAk-2 - Ak_x) = -r^M^j) (modi»),

W"S-W_2(modZ>).

If we put iA_ ! = -rA, we have the theorem when %= ~fk. D

CONTINUED FRACTION FACTORING ALGORITHM 419

Hence, we see that, depending upon whether we start with a quadruple of the

form Qik or Y~k, we can go forward or backward in the continued fraction expansion

of (¡> by repeated application of Algorithm 2.

We define

yk = (i-l)kQk, Tk, eAk (mod/)), tAk.x (modi»)),

where Tk = Pk (modQk) and e2 = 1. By using the formulas above we can determine

°Uk and irk. If we can generate 8192 = 16384/2 different widely-spaced <2r„ and Vn

quadruples and place each in one of the 16384 processors; by using Algorithm 2 we

can then generate quadruples °Un + x, ̂ _i, ^„ + 2> "K-2> etc., and fr°m these extract

pairs ((-l)*ß*, uAk_x (mod D)), where

u2A2_x= A2_x^ (-l)kQk(modD).

To ensure that we do not get duplication of the pairs ((-l)kQk, uAk_x (mod £>))

in the various processors, we must compute initial quadruples ¡fh , Sr°h ,..., Sfh

such that

A, > x/i6384 and hl + x - h, > 2x/16384,

where x is the number of quadratic residues of the type (-l)'ß, needed to factor N.

The problem of generating the 5"A 's is easily solved by making use of the

Large-Step Algorithm, which we will now develop. Given y¡ and Sr9 this algorithm

will rapidly find S?k where k ~ i + j. Notice also that any y, can be reached in

0(log2 /) operations by a combination of large-step and single-step iterations.

By Theorem 3.4, if gcd(L(ct/+1), L(aJ+x)) = 1 and c = a,+1a/ + 1, then

c= \q',p' + Jd]

where

(P,(modÔ,),
ß' = ß(-ß#- and P'= ' 3'\

\i»,.(modß7.),

0 < P' < Q'. Put M = (Q')'x (mod D). (We assume here, as is most likely, that

gcd(ß', D) = 1.)

We now expand <j> = (P' + {D)/Q' into a continued fraction until we find the

least m such that 0 < Q'm < {D. Since [Q'm, P'm + {D] = c'm+x - ai + xaj+l ~ ax is

reduced, we must have c'm + x = ak + x = [Qk, Pk + JO]; hence, Qk = Q'm, Pk = P'm

(mod«2A).

Now

(6-1) 8k + x = 0I + X0j+X0'm+X

and

(6.2) 6k + 2 = 0l + x0/ + x0:,+2

by Theorems 5.2 and 5.3. Further, by Theorem 2.1 and the definition of Gm in

Section 2, we have

0I + X = (-lYiA,_x - JDB,_X), 0I+X = i-l)J{Aj_x - jDBj_x),

9m+i = (-1)"(g;-i - {DB'm_x)/Q', 0'm + 1 = (-l)"' + \G'm - jDB'm)/Q\

Ok + x = (-l)k{Ak_x-/DBk_x).

420 H. C. WILLIAMS AND M. C. WUNDERLICH

Thus, from (6.1) and (6.2) we derive

Ak_lmi-l)k+,+J+mMA,_lAJ_&_l,

Ak = (-l)k + '+' + mMA,_xAl_lG:AmodD),

where

G'm-\ = PmB'm-\ + Q'mB'm-l = QmB'm ~ Pm-lB'm-li

Gm = P'm + lB'm + ßm + l5m-l-

By Theorem 2.4 we must have 4>„,_x > 0 (m > 1), and by Theorem 2.3 and

Corollary 2.3.1 we see that

*«-3 < ¡Q'/Jñ <2A{D (m> 3)

and

B'm_2<Q'/2{DBm_3<2{D (m>2);

thus, the ß"s up to B'm_2 do not get large and therefore need not be reduced modulo

D as they are calculated.

We now give our Large-Step Algorithm (LS) for going directly to Sfk, where

k ~ i + j, given S?, and Sr\. We denote this by yk = LS(y„ ST.).

Algorithm 3. Large-Step Algorithm (LS). We first assume that for our given y¡

and Sfj we have gcd(<2,, Qf) = 1. If gcd(Qi,Qi) + 1, we would compute 5^+1 by

Algorithm 1 and try again. If, as in our case, the same i/'i (i = 2jc/16384) is to be

used several times, it is best to find ; initially such that Q¡ does not have small prime

factors. In practice, of course, this happens relatively frequently; otherwise, the

CFRAC algorithm would execute much more rapidly than it does.

1. Compute Q'0 = Q,Q¡ and M such that

MQ'Q= 1 (mod/)).

Solve the linear Diophantine equation

XQ, - YQj = Pj - P,

and put P¿ = P, + XQ, (mod (?(,), where 0 < P¿ < Q'0.

2. By using Algorithm 1 with A'_2, A'_x initialized to 1, 0, respectively (this will

actually compute the ßA's for A = 0,1,2,3,...), develop the continued fraction

expansion of </>'0 = (P¿ + JD)/Q'0 until an m is determined such that

0 < Q'm < d.

3. Put Qk = Q'm, Tk = P'm,

Fk_x = MA^Aj.^A'^ + Q'mA'm_2) (mod/)),

Fk = MA^A^iPUiA^ + Q'm+xA'm_x) (mod/)).

If Fk2_x = Qk (modi»), put (-1)* = 1; otherwise, put (~\)k = -1. Put ifk =

((-l)kQk,Tk,Fk,Fk_x).

CONTINUED FRACTION FACTORING ALGORITHM 421

Examples. We give an example of the Large-Step Algorithm with D = 103. Of

course, no one would consider using this procedure to factor the prime number 103,

but we will discuss the simple continued fraction expansion of vl03 as an illustra-

tive example. By referring to Table 1, we see that £f2 = {13,8,71,61}, S?3 =

{6,5,100,71}.
We will apply the LS algorithm to y2 and y3 so that at the beginning of Step 1,

; = 2 and j = 3.

Step 1. Ô„ = 78,

P¿ = 47,

M = (QoV1(modD) = 70.
Step 2. The reduction in Step 2 requires four iterations of the simple continued

fraction process before Q satisfies the required relationship. These are

given in Table 2 below.

Table 2

i p; q: g, k k
-2 1

-1 - -27 — — 0

0 47 78 0 57 1

1 -47 -27 1 -10 1

2 20 11 2 8 3

3 2 9 13 4

4 7 6

Step 3. We have m = 3, Qk = 9, Tk = 2,

P'mA'm-i + ßiX-2 = 2 • 3 + 9 • 1 = 15,

Pm+iA'm + Q'm+iA'm-i = 7 • 4 + 6 • 3 = 46,
Fk_x = 100, Fk = 32, (-l)k = 1. Notice that we cannot evaluate k by using the LS

Algorithm. However, if we compare our results with those in Table 1, we see that

k = 8.

7. Some Remarks Concerning Implementation of the LS Algorithm. The LS

Algorithm was implemented in extended precision using the Hanson package from

Sandia Corporation. When it was executed on the VAX 11-780, which serves as the

host to the MPP, it ran very slowly. To prepare the data required for a 60-digit N,

nearly 2.5 hours of VAX time would be needed. This is excessive, since we estimate

that only 20 minutes of MPP time would be needed to factor N. Better results were

obtained by running the data preparation segment on a CDC 7600 where .52 hours

were required for a 60-digit N. Much, if not most, of this time is due to the lack of

assembly-coded routines in the Hanson Package. Had an assembler language pro-

gram been used on the CDC, we estimate that less than 10 minutes would be needed

to produce the required data. Another way to correct this mismatch would be to

perform the entire LS operation on the MPP in parallel on 16384 items at once. We

will explain in the remaining portion of this paper how this could be performed on a

slightly expanded version of an MPP and give a speculative estimate of its running

time.

422 H C WILLIAMS AND M. C. WUNDERLICH

The algorithm below assumes that if different quadruples y of the simple

continued fraction expansion are stored in each of the 16834 processors and a

"constant" quadruple y, of the sequence is stored in the MPP as a scalar, then the

LS Algorithm can be used to multiply the scalar term with each of the y quadruples

in the processors simultaneously producing translated y quadruples in each

processor. This operation would be difficult to do in the present MPP configuration

because of the small amount of storage in each processor. However, with a larger

version of an MPP it would be relatively easy to implement. Furthermore, we

assume that if M = {è0, bx, b2.Z>16383} is a sequence of mask bits, one for each

processor, the parallel multiplication described above can be performed under the

mask M. This means that the multiplication operation takes place only in those

processors having the corresponding mask bit bi = 1.

Algorithm 4. Generate 16,384 widely-spaced y quadruples in parallel.

Step 1. Preprocessing. Use the Single-Step and Large-Step Algorithm together to

generate y„, where v is sufficiently large that the number of (Q, A) pairs

needed does not exceed 16384i'. Place a copy of y, in each processor.

Also, let M0, Mx,..., Mx3 be 14 masks defined as follows: Let / be the

sequence of integers {0,1,2,..., 16383}. Let M0 be the sequence of least

significant bits of /, Mx the sequence of second least significant bits of /,

and so on, until we define Mx3 as the sequence of most significant bits of /.

Thus, we have

M0= {0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,...},

Mx = {0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,0,0,1,1,...},

M2= {0,0,0,0,1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0,...},

M3 = {0,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,0,0,0,0,...},

and eventually MX3 consists of a string of 8,192 zeros followed by 8,192

ones.

Step 2. Set i <- 0 and repeat Step 3 fourteen times.

Step 3.Replace Ó? by LS(y„ S"„). Under the mask M¡, apply the LS Algorithm

on y^ and the y in each processor and then set i «- i + 1.

Proof of Algorithm. Let 9~x = y, and ^ = LS(^_ x, STX). It follows by induction

on i that after Step 3 has been executed i times, the MPP will contain 214"'

collections of the 2' data items $~x, 3~2, ST3,..., 3~2,. u

Running Time Estimate. A careful cycle count of Algorithm 2, which generates the

next term of a continued fraction expansion on the MPP, comes to .016 seconds per

iteration for a 70-digit number. This includes all I/O times required for swapping

back and forth between the auxiliary staging memory and the main memory. By

Corollary 4.2.1, we see that no more than about 75 iterations of the continued

fraction process would be needed to perform the reduction step (Step (2)) of the LS

Algorithm when N is a sixty-digit number. In fact, the average number of these

iterations seems empirically to be about 30. We can assume that the array time for a

reduction iteration will take about as much time as an ordinary continued fraction

iteration since, although the values of P and Q are large, the values of A are

CONTINUED FRACTION FACTORING ALGORITHM 423

correspondingly small. Assuming that 40 steps will be the maximum required for the

longest example in a set of 16,384, and further assuming that reduction consumes

one-half the total time for the LS Algorithm to execute (this is very conservative—it

probably consumes as much as .9), we arrive at the following running time analysis.

Running time for executing the LS Algorithm 14 times equals

40 X 0.16 X 2 X 14 = 17.9 seconds.

Thus, after using the LS Algorithm about twenty times to obtain ifv such that v is

in the neighborhood of 106 (a few seconds on the CDC 7600), an additional 20

seconds on the MPP would produce 16,384 distinct paris (Q, A) which are spaced

about 1,000,000 units apart. This represents a considerable improvement over the

times required on the CDC 7600.

Department of Computer Science

University of Manitoba

Winnipeg, Manitoba, Canada R3T 2N2

Department of Mathematics

Northern Illinois University

DeKalb, Illinois 60115

1. G. Chrystal, Textbook of Algebra, Part 2, 2nd ed. reprinted, Dover, New York, 1969, pp. 423-490.

2. H. Cohn, A Second Course in Number Theory. Wiley, New York, 1962.

3. J. A. Davis & D. B. Holdridge, "Factorization using the quadratic sieve algorithm," Advances in

Cryptology, Proceedings of Crypto 83, Plenum Press. New York, 1984. pp. 103-113.

4. L. E. DICKSON, History of the Theory of Numbers. Vol. II, reprinted. Chelsea, New York. 1952.

5. E. L. Ince, "Cycles of reduced ideals in quadratic fields," Mathematical Tables. Vol. IV, British

Association for the Advancement of Science, London. 1934.

6. H. W. Lenstra, Jr., "On the calculation of regulators and class number of quadratic fields," London

Math. Soe. Lecture Note Ser., v. 56, 1982, pp. 123-150.

7. Paul Levy, "Sur le développement en fraction continue d'un nombre choisi au hasard," Compositio

Math., v. 3,1936, pp. 286-303.
8. M. A. Morrison & J. Brillhart, "A method of factoring and the factorization of F7," Math.

Comp., v. 29, 1975, pp. 183-205.
9. Oskar Perron. Die Lehre von den Kettenbrüchen. Bd. I, 3rd ed.. B. Ci. Teubner. Stuttgart. 1954.

10. C. Pomerance, "Analysis and comparison of some integer factoring algorithms," Computational

Methods in Number Theory (H. W. Lenstra. Jr. and R. Tijdeman, eds.). Math. Centrum Tracts, Number

154, Part I, Amsterdam, 1983, pp. 89-139.
U.C. Pomerance & S. S. Wagstafe. Jr., Implementation of the Continued Fraction Integer Factoring

Algorithm. Proc. 12th Winnipeg Conf. on Numerical Methods of Computing. Congress. Numer.. v. 37.

1983, pp. 99-118.
12. R. G. Schooe, "Quadratic fields and factorization," Computational Methods in Number Theory

(H. W. Lenstra, Jr. and R. Tijdeman, eds.). Math. Centrum Tracts. Number 155. Part II. Amsterdam.

1983, pp. 235-286.
13. D. Shanks, The Infrastructure of a Real Quadratic Field and its Applications, Proc. 1972 Number

Theory Conference, Boulder, Colorado. 1972, pp. 217-224.

