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1| 11-02].—Daniel Shanks, Solved and Unsolved Problems in Number Theory, 3rd

ed„ Chelsea, New York, 1985, xiv + 304 pp., 23^ cm. Price $18.95.

This is the third edition of a book which has become something of a classic. The

first edition, reviewed in [1], is a most entertaining introductory text on number

theory, organized around a collection of problems, some famous and some not so

famous. The second edition, reviewed in [2], contains an additional chapter (Chapter

4), describing the considerable progress which had been made on a number of the

problems mentioned in the original edition. The style of this chapter is different

from that of the earlier volume in that most of the topics are given a rather brief

treatment and several references are provided. Thus, the number of references cited

in the second edition increased to 154 from the 34 cited in the first.

The volume under review is the same as the second edition except for the inclusion

of a second progress report in Chapter 4. The emphasis of this entire book is on

computational number theory, and some indication of the increase in activity in this

area of research can be obtained by noting that the second progress report is almost

twice as long as the first. Also, there are now 236 entries in the bibliography.

The organization of the material in the second progress report is somewhat

different from that of the first. While the latter is, for the most part, a simple

compendium of results, the former is really made up of two interesting essays. One

of these is about judging conjectures and the other discusses computing and

algorithms. The points made in these essays are driven home by the use of many

examples taken from recent computational and theoretical work in number theory.

Shanks feels that the word conjecture ought to be reserved for an abbreviation of

the following statement by a conjecturer.

"I think this proposition is true but know of no proof for it. I state this

seriously, not casually. I have studied the question and examined all the

numerical evidence and the heuristic argumentation that is known to me. It

is my judgement, based upon this evidence and my current knowledge of

the subject that, to a high degree of probability, this proposition is true. If I

thought that this evidence were insufficient to warrant this conclusion I

would not call this proposition a conjecture. If I were to bet on it I would

offer odds."
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After offering this definition he goes on to justify it by using several illustrative

examples and anecdotes. Indeed, he goes so far as to "deconjecture" his Conjecture

16, the famous Last "Theorem" of Fermât.

Included in the essay on computing and algorithms is a hilarious account of the

recent discovery of the five large Mersenne primes M = 2P - 1, where p = 21701,

23209, 44497, 86243, 132049. There must now be more to this saga, as Slowinski has

since found that M is prime for p = 216091. Other topics which receive mention

are: the Riemann Hypothesis, recent developments in primality testing, and class

group structure. It is true that this latter topic is quite advanced, but Shanks points

out simple pertinent facts about the class group and then uses cycle graphs to

describe it. This treatment is quite understandable to the beginning student.

This is a stimulating, provocative, and informative volume, which should (and

can) be read by anyone with an interest in number theory.

H. C. W.

1. Review 73, Math. Comp., v. 17,1963, p. 464.
2. Review 1, Math. Comp., v. 38, 1982, pp. 331-332.

2|11—01, 11—04|.—Kenneth H. Rosen, Elementary Number Theory and Its Applica-

tions, Addison-Wesley, Reading, Mass., 1984, xii + 452 pp., 24 cm. Price $29.95.

In an incautious moment, Gauss is supposed to have said that if mathematics is

the queen of the sciences, then the theory of numbers is, because of its supreme

uselessness, the queen of mathematics. Perhaps this reputation for uselessness has

contributed to the recent decline in enrollment in elementary number theory classes,

now that students demand immediate applications and subject matter which will

help them get a good job. At last, here is a text for a number theory course which

can satisfy their demands.

This volume covers such standard topics as factorization into primes, congruences,

primitive roots and quadratic residues. What sets it apart from other introductory

number theory texts is the large number of applications it contains.

After the Chinese Remainder Theorem is proved, its use in computer arithmetic

with large integers is described. Later, it is applied to threshold schemes. There is a

chapter on applications of congruences to calendar problems, round-robin tourna-

ments and computer hashing functions for data storage. After the existence of

primitive roots is established, the author discusses their use in generating pseudo-

random numbers and splicing telephone cables to minimize interference and cross-

talk.

Another chapter applies number theory to cryptology: The classical affine trans-

formation substitution ciphers and block ciphers are cryptanalyzed. Two modular

exponentiation ciphers, the Pohlig-Hellman scheme and the Rivest-Shamir-Adleman

public-key cryptosystem, are described. The discussion covers many aspects of these

ciphers from how to choose the primes to how to play poker by telephone. The

author explains knapsack ciphers and mentions their weakness.

In another chapter, the author describes probable prime tests and Euler and

strong pseudoprimes. He shows that a Carmichael number must have at least three
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prime factors. He proves Pratt's theorem that every prime number has a succinct

certificate of primality. He mentions the efficient primality test of Adleman, Pomer-

ance, and Rumely. He describes Fermat's difference of squares factorization method.

Draim factorization and Euler's factorization method appear in exercises. He proves

Lagrange's theorem that an infinite simple continued fraction is periodic if and only

if its value is a quadratic surd. However, he does not mention the continued fraction

factoring algorithm or any other one of subexponential order. The book concludes

with Pythagorean triples and the algorithmic solution of Pell's equation.

Five tables in an appendix give the least prime factor of each odd number below

10000, values of some arithmetic functions, the least primitive root for each prime

below 1000, indices for primes below 100 and continued fractions for nonsquares

below 100.

It is unfortunate that the book is marred by a number of typographical errors.

Here are some that I noticed: On the copyright page, it should say that the cover

refers to Problem 33 of Section 1.2. Problem 16 on page 180 is false. Two pairs of

numbers are omitted from the ciphertext in the middle of page 199. On page 245,

p = 487 is not the least prime for which there is a primitive root which is not also a

primitive root modulo p2. It is the least prime p so that 10 is a primitive root

modulo p but not modulo p2. The rows of the factor table on pages 412-418 are in

the wrong order, probably the result of last minute reformatting.

In spite of these and a few other flaws, this volume is an excellent text for a course

in elementary number theory with applications.

S. S. Wagstaff, Jr.

Department of Computer Sciences

Purdue University

West Lafayette, Indiana 47907

3|11A41, 11A51, 11N05, 11Y11, 11Y051.—Hans Riesel, Prime Numbers and Com-

puter Methods for Factorization, Birkhäuser, Boston, 1985, xvi + 464 pp., 23 cm.

Price $44.95.

This clearly written volume brings the reader from elementary facts in number

theory to the level of current research in the areas mentioned in the title. Chapter 1

begins with the definition of prime number. Then the author describes the sieve of

Eratosthenes and formulas for computing the exact number tr(x) of primes below x,

such as those of Meissel, Lehmer, and Mapes. He mentions the recent improvement

of these formulas by Lagarias, Miller, and Odlyzko.

Chapters 2 and 3 deal with the distribution of primes in the large and locally,

respectively. The author compares the accuracy of several approximations to tr(x),

such as jc/lnx, lix and Riemann's formula. He discusses the frequency of ap-

pearance of twin primes and other constellations. He mentions the inconsistency of

the prime A:-tuples conjecture with the triangle inequality tr(x + y) < tr(x) + ir(y),

which was once conjectured to hold for all x, y > 2. He compares the distribution of

primes in the two series 4« + 1 and 4« -I- 3 and discusses the growth rate of the

maximal gaps between consecutive primes.
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Chapter 4 concerns tests for primality and compositeness. It begins with probable

prime tests and Carmichael numbers. Next, the Lucas-Lehmer test and its improve-

ments due to Proth, Pocklington and Lehmer are discussed. The author gives the

flavor of the new Adleman-Pomerance-Rumely primality test and its simplification

by Cohen and Lenstra.

Chapter 5 on factorization is the longest chapter in the book. It begins with trial

division and the GCD method of finding small factors. Then the following factoring

algorithms are described: Fermat's difference of squares method and Lehman's

improvement of it, Legendre's idea of finding a nontrivial solution to the congruence

x2 = y2 (mod N), Euler's method of expressing N = a2 + Db2 in two different

ways with the same D, Gauss' use of quadratic residues to restrict possible divisors

of N, Legendre's use of the continued fraction expansion of JÑ to produce small

quadratic residues of N, Pollard's p — 1 and p + 1 methods, Pollard's p or Monte

Carlo method and Brent's improvement of it, Shanks' square forms method, Morri-

son and Brillhart's continued fraction method and the quadratic sieve method. The

author describes the distribution of sizes of prime factors of a typical integer. The

factoring algorithms of Schroeppel, Dixon, and Schnorr and Lenstra are mentioned.

The chapter closes with a thought-provoking argument that it may be possible to

factor integers in polynomial time.

The brief Chapter 6 discusses the Rivest-Shamir-Adleman public-key cryptosys-

tem and its safety.

Nine appendices discuss abstract algebra, elementary number theory, quadratic

fields, continued fractions, cyclotomic polynomials, Aurifeuillian factorizations,

multiple-precision integer arithmetic on computers, and Stieltjes integration. The

book concludes with 34 tables. Most of them list factors of numbers of the form

a" ± b" for various a and b up to 10. There is also a short table of primes, a list of

primes between 10" and 10" + 1000 for 5 < « < 15, a table of tr(x) for various

x < 4 • 1016, a table of quadratic residues, and tables of coefficients of Gauss' and

Lucas' formulas for cyclotomic polynomials.

The author gives PASCAL programs for some of the algorithms he describes. For

example, the book contains programs for the sieve of Eratosthenes, for computing

w(x) with Lehmer's formula, for strong probable primality tests, for Pollard's p

factoring algorithm and for multiple-precision integer arithmetic.

This volume is the first modern text on factorization and prime testing. It must be

welcomed by novices in the field. These subjects have a long history and are

advancing swiftly at present, partly in response to the RSA cryptosystem, which

requires large primes and whose security depends on the difficulty of factoring

integers. This book went to press in February, 1985, and gives a fair description of

the state of the art of these subjects at that time. In the same month, H. W. Lenstra,

Jr., announced his discovery of the elliptic curve factoring algorithm. Naturally, the

book does not mention this beautiful and powerful method, but the reader should be

cognizant of it.

S. S. Wagstaff, Jr.

Department of Computer Sciences

Purdue University

West Lafayette, Indiana 47907
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4|20-00, 20C30, 20D06, 20D08].—J. H. Conway, R. T. Curtis, S. P. Norton,

R. A. Parker & R. A. Wilson, Atlas of Finite Groups—Maximal Subgroups and

Ordinary Characters for Simple Groups, Clarendon Press, Oxford, 1985, xxxiii +

252 pp., 42 cm. Price $45.00.

This is indeed an atlas in which a "map", frequently of just one page, is devoted

to each of 93 of the finite simple groups, starting with A5, the smallest simple group,

of order 60, and ending with the exceptional group Eg(2), whose order requires 75

digits, and including all 26 of the sporadic simple groups. The main item on each

map that is for the most part not readily available elsewhere is a complete character

table of the group in question, but also included are: the order of the group, its

Schur multiplier, its automorphism group, its principal occurrences in mathematics

and in nature, its conjugacy classes and how they behave when powers are taken and

how they, as well as the characters, relate to those of its Schur covering group and

automorphism group, a presentation in terms of generators and relations, and a list

of its maximal subgroups.

The atlas per se is preceded by a long introduction, describing the set of all finite

simple groups according to the recently completed classification and containing

instructions for the use of the atlas, and it is followed by other fragments of

information including a bibliography which is especially extensive for the sporadic

groups. By putting much thought into not only the choice of their material, but also

its arrangement, the authors have been able to present a great deal of concrete

information about a representative collection of the finite simple groups. For this

they are to be congratulated.

R. Steinberg

Department of Mathematics

University of California at Los Angeles

Los Angeles, California 90024

5|10-04, 10A25, 10A15, 10H08, 68C05].—Eric Bach, Analytic Methods in the

Analysis and Design of Number-Theoretic Algorithms, An ACM Distinguished

Dissertation 1984, The MIT Press, Cambridge, Mass., 1985, 48 pp., 23^ cm. Price

$ 15.00.

Suppose N is an odd natural number and N - 1 = 2km where m is odd. Given

an integer b, we say N is a "strong probable prime to the base 6" if either

(i) bm = 1 mod N or

(ii) b2'm = -1 mod N for some i e (0,1,..., k - 1).

If N is actually prime, it is an elementary consequence of Fermat's Little Theorem

that N is a strong probable prime to every base b coprime to N. However, it also

can occur that a composite integer N passes the test for some b. An example with

b + 1 is N = 65, b = 8. Nevertheless, the terminology "strong probable prime" is

justified on both empirical and theoretical grounds: Examples with N composite for

a fixed base b ¥= 1 are rare (see [11]).
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In particular, it is known from [10] that for a fixed b + 1, the number of

composite strong probable primes to the base b that are at most x grows much more

slowly than the number of primes that are at most x. In addition, for a fixed odd

composite N, the number of bases b in {1,2,..., N — 1} for which N is a strong

probable prime is always smaller than A//4 (see [7], [12]) and is both usually and on

average much smaller (see [4]). Thus, Rabin has proposed the following random test

for compositeness: Given an odd composite number N, the expected number of

random choices of numbers b until one is found for which N is not a strong

probable prime to the base b (and so N has been proved composite) is bounded.

Such a number b is called a " witness" for N.

To test if N is a strong probable prime to the base b where ¿» e {1,2,..., N — 1}

takes only 0((logN)3) bit operations if the naive multiplication algorithm is used.

Thus, Rabin's test has expected running time 0((log N)3) to prove A' composite if it

really is. A similar random compositeness test was also proposed in [14].

It has long been a goal of computational number theorists to use the Fermât

congruence and its generalizations such as the one above as a test to prove primality.

In his thesis, Miller [6] proved the remarkable result that if N is odd and composite,

then there is a witness b for N that satisfies

(1) 1 < b < c(\ogN)2

for some explicit c > 0, provided the Extended Riemann Hypothesis (ERH) is true.

Thus, by not choosing b at random, but rather exhausting the interval (1, c(logN)2),

one has an ERH-conditional primality test for N with running time 0((logA/)5). In

particular, the ERH implies that the prime recognition problem is in the complexity

class P.

Miller's proof was based on a result of Ankeny [2] which in slightly more general

form (due to Montgomery [8]) states that if G is a proper subgroup of the

multiplicative group of integers mod N, then some b in the range (1) is not in G.

The main result in the monograph under review is that we may choose c = 2 in (1)

for the Ankeny-Montgomery theorem and thus also for Miller's primality test. This

represents a considerable improvement on an earlier result of Oesterlé [9] who had

shown we can take c = 70 in (1). Bach's proof assumes a working knowledge of

some standard techniques of analytic number theory. It is written in an engaging,

conversational style and is most pleasant to read.

The fastest unconditional primality test is the APR test (see [1]) which has running

time 0((logN)cXogXogXogN) for some c > 0. A practical variant of this test due to

Cohen & Lenstra [3] can establish primality of numbers in the 200 decimal digit

range in only a few minutes on a good mainframe computer. In this range, the Miller

test, even with Bach's constant c = 2, should take longer. Thus a proof of the ERH

will not automatically speed up primality testing in the feasible range.

A very recent development in primality testing is a new test of Goldwasser &

Kilian [5] that can be proved to run in expected polynomial time for almost all

primes and is conjectured to do so for all primes. Although it is a random algorithm

and the expected running time is a bit uncertain, when the algorithm halts with a

proof that N is prime, this proof is valid and unconditional. The test is not based on

the Fermât congruence, but rather the arithmetic of elliptic curves and in particular
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the (nonpractical) algorithm of Schoof [13] for computing the order of the group of

points on an elliptic curve over a finite field.

The second half of the book is devoted to the provocative problem of giving a

polynomial time algorithm for selecting an integer in the interval (Ay2, N] with the

uniform distribution and also producing the prime factorization of the selected

integer. By first choosing an integer and then factoring it, we have a method that is

usually too time-consuming, owing to the current intractability of factoring. Bach

solves this problem by choosing the factorization first. That is, assuming primality

testing as a primitive operation, primes are randomly chosen, with respect to a

particular distribution such that their product lies in the interval (A/2, N]. The

problem that must be solved is to choose the primes in such a manner that the

products are uniformly distributed in ( A/2, A ]. This is roughly done as follows.

Consider a random analog of Achilles and the tortoise, where you start with the unit

interval and at each stage, instead of taking half of what's left, you take a fraction of

what's left, where the fraction is chosen in [0,1] with the uniform distribution. Bach

chooses the primes for his random number similarly. The first prime p is chosen so

that log p/log N is roughly uniformly distributed in [0,1]. The next prime q is

chosen so that log¿¡r/log(A//?) is roughly uniformly distributed in [0,1], etc. That

this ends up giving uniformly distributed integers in (A/2, A] seems remarkable.

Carl Pomerance

Department of Mathematics

University of Georgia

Athens, Georgia 30602
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6|12C20].—J. B. Muskat & K. S. Williams, Cyclotomy of Order Twelve Over

GF(p2), p2 = 1 (mod 12), One page of text and nine pages of tables, deposited in

the UMT file, 1986.

Let e > 2 and / > 1 be integers and let p be an odd prime such that e divides

p1 — 1. We set q = p1 and define the positive integer / by q = ef + 1. The finite

field with q elements is denoted by GF(q). We fix once and for all a generator y of

the multiplicative group GF(q)* = GF(q) - (0). Further we set g = yx+p+ '" +f ,

so that g is a primitive root modulo p. For a e GF(q)* the index of a with respect

to y is the unique integer « such that a = y" (0 ^ « < q - 2) and is denoted by

indya.

The number of solutions a e GF(q) + = GF(q)* - (1} of the pair of congruences

(indY(a - 1) = h (mode),

| ind^a = k (mode),

is denoted by (h,k)e, where h and k are integers such that 0 < /i < e - 1,

0 < k < e - 1. The numbers (h,k)e are called the cyclotomic numbers of order e

over GF(q) and they depend on p. I, e, and y. The cyclotomic numbers have the

following properties:

(1.2) (h,k)e=(e-h,k-h)e,

.1 %\ ¡u M       /(*•*)« if/¡seven,

[     ' {h'   }^\(k + \e,h + ke)e    if/is odd,

(1.4) (h,k)e = (ph,pk)e.

It is a central problem in the theory of cyclotomy to obtain explicit formulae for

these numbers. This has been done for a number of values of e < 24 and / > 1. The

determination of the cyclotomic numbers of order twelve over GF(p), where p = 1

(mod 12), was carried out by Whiteman in [5] (the case e = 12, / = 1). Whiteman

gives the cyclotomic numbers of order twelve over GF(p) as linear combinations of

p, 1, a, b, x, and y, where

(1.5) p = a2 + b2 = x2 + 3y2,    a = 1 (mod 4),    xsl(mod6).

Using the method described in [3] and the evaluation of the Eisenstein sums

p-i
(1.6) Ee(ßm) =   £   ßmmdl{l + cy^W) ( ß = exp(2m/e))

<■=()

of order e ovei GF(p2), when e = 12, given by Berndt and Evans [2], the authors

have determined the cyclotomic numbers of order twelve over GF(p2). Analogous to

the results of Whiteman, we found that the cyclotomic numbers of order twelve over

GF(p2) can be expressed as linear combinations of p2, p, 1, a2 - b2, 2ab,

x2 - 3y2, 2xy, where

(1.7) p2 = (a2 - b2)2 +(2abf = (x2 - 3y2f + 3(2xyf.

The complete set of tables is given in the UMT file as well as in [4].
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A summary of the results is as follows.

Since p2 = 1 (mod 12) we have p = 1, 5, 7, or 11 (mod 12). In the case p = 11

(mod 12) the phenomenon of uniform cyclotomy occurs (see [1, Definition 1]) and

there are just three different cyclotomic numbers [1, Theorem 1], namely

( 144(0,0)x2 = p2 + 110p - 35,

(2.1) /l44(0,/)12 = 144(i,0)12 = 144(/,/)12=/72-10^-ll,       / # 0,

(l44(/,;)12 = />2 + 2/> + l,       0*i*j*0.

Here / and j denote integers with 0 < i, j < 11.

For p = 1 (mod 12) it is only necessary to evaluate thirty-one of the e2 = 144

cyclotomic numbers, as the others can be deduced from them using (1.2) and (1.3). It

is shown [4] that the thirty-one cyclotomic numbers 144(z, j)X2 are integral linear

combinations of p2, 1, a2 - b2, 2ab, x2 - 3y2, 2xy, where the integers a, b, x, y

are defined by

(2.2) EX2(ß3) = a + bi,    EX2(ß2) = x+ yifî,    ß = exp(27ri/12),

and satisfy

(2.3) p = a2 + b2,    a = (-1)A (mod4),    p = 12k + 1,

(2.4) p = x2 + 3y2,       x = l(mod3).

There are six sets of formulae depending upon indg2 (mod 3) and which of a or b is

divisible by 3.

For p s 5 (mod 12) it is only necessary to evaluate twenty of the e2 = 144

cyclotomic numbers, as the others can be deduced from them using (1.2), (1.3), and

(1.4). It is shown [4] that each of the twenty numbers 144(/, j)x2 can be expressed as

an integral linear combination of p2, p, 1, a2 - b2, 2ab, where the integers a, b are

defined by

(2.5) Ex2(ß3) = a + bi,        ß = exp(2tri/12),

and satisfy

(2.6) p = a2 + b2,    a = (-l)k + 1(mod4),    p = 12k + 5.

There are two sets of formulae depending on whether a = b (mod 3) or a = -b

(mod 3).

For p = 1 (mod 12) it is only necessary to evaluate twenty-two of the e2 = 144

cyclotomic numbers as the others can be deduced from them using (1.2), (1.3), and

(1.4). It is shown [4] that each of the twenty-two numbers 144(/, j)x2 can be

expressed as a linear combination of p2, p, 1, x2 - 3y2, 2xy, where the integers x,

y are defined by

(2.7) £12(£2) = x+W3

and satisfy

(2.8) p = x2 + 3y2,       *=■-l(mod3).

There are three sets of formulae depending upon the value of ind^ 2 (mod 3).

These formulae can be used to obtain new residuacity criteria. For example, the

following theorem is proved in [4].
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Theorem. Let p = 5 (mod 12) be a prime. Let y be a generator of GF( p2)*. Set

g = yx+p so that g is a primitive root (mod p). Then, with a and b as defined in (2.5),

we have

(29) indí-3)^/1    (mod4)    lia = -b(mod3),

['} m g[    '     \3   (mod4)    ifas6(mod3).
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