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How to Implement the Spectral Transformation*

By Bahrain Nour-Omid**, Beresford N. Parlett,

Thomas Ericsson**, and Paul S. Jensen

Abstract. The general, linear eigenvalue equations (H - XM)z = 0, where H and M are real

symmetric matrices with M positive semidefimte, must be transformed if the Lanczos

algorithm is to be used to compute eigenpairs (X,z). When the matrices are large and sparse

(but not diagonal) some factorization must be performed as part of the transformation step. If

we are interested in only a few eigenvalues a near a specified shift, then the spectral

transformation of Ericsson and Ruhe [1] proved itself much superior to traditional methods of

reduction.

The purpose of this note is to show that a small variant of the spectral transformation is

preferable in all respects. Perhaps the lack of symmetry in our formulation deterred previous

investigators from choosing it. It arises in the use of inverse iteration.

A second goal is to introduce a systematic modification of the computed Ritz vectors, which

improves the accuracy when M is ill-conditioned or singular.

We confine our attention to the simple Lanczos algorithm, although the first two sections

apply directly to the block algorithms as well.

1. Overview. This contribution is an addendum to the paper by Ericsson and Ruhe

[1] and also [7]. The value of the spectral transformation is reiterated in a later

section. Here we outline our implementation of this transformation.

The equation to be solved, for an eigenvalue À and eigenvector z, is

(1) (H - AM)z = 0,

H and M are real symmetric n X n matrices, and M is positive semidefinite. A

practical instance of (1) occurs in dynamic analysis of structures, where H and M are

the stiffness and mass matrices, respectively. We assume that a linear combination of

H and M is positive definite. It then follows that all eigenvalues X are real. In

addition, one has a real scalar a, distinct from any eigenvalue, and we seek a few

eigenvalues X close to a, together with their eigenvectors z. Ericsson and Ruhe

replace (1) by a standard eigenvalue equation

(2) [c(H-aM)"1CT-rl]y = 0,

where C is the Choleski factor of M; M = CTC and y = Cz. If M is singular then

so is C, but fortunately the eigenvector z can be recovered from y via z =

(H - oM)"'CTy. Of course, there is no intention to invert (H - oM) explicitly. The
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operator given to the Lanczos program is A = C(H - aM)  1CT. The spectrum of A

is related to the original spectrum by

and so it is the eigenvalues of A closest to + oo which must be computed.

In contrast to (2), we prefer to change (1) into

(4) [(H-aM)_1M- rl]z = 0.

Our operator B = (H - aM)_1M is not symmetric, but it is selfadjoint with respect

to the semi-inner product defined by M. At first sight it appears to be extravagant to

work with the M-inner product, but it is not. Our investigation suggests that there is

no trade-off. Reduction (4) is no worse than (2), and is sometimes better, with

respect to storage, arithmetic effort, and vectorizability. In fact, B occurs naturally in

the setting of Subspace Iteration methods, see [3]. It is only in the Lanczos context

that it has been overlooked.

Section 2 examines the important case of singular M. Sections 3 and 4 look in

detail at the two reductions. Section 5 extols the spectral transformation (3), but with

more arguments than were given in [1]. Section 6 shows that the tridiagonal T is not

quite the projection that we want. The notation follows Ericsson and Ruhe [1] and

Parlett [5]. Some familiarity with the simple Lanczos algorithm is assumed.

2. Singular M. This case is merely the extreme point of the set of problems in

which M becomes increasingly ill-conditioned. There is no sharp break in behavior

when M becomes singular and, in fact, the situation is easier to describe.

The main point is that there is no intrinsic mathematical difficulty here; no hidden

pathology. The troubles that beset certain algorithms arise simply from our yearning

for efficiency. We begin by describing the geometry of the situation because, to our

knowledge, such a description is not readily available. Next we turn to the Lanczos

algorithm and make four points:

(a) The starting vector must be put into the proper subspace.

(b) There is a simple recurrence that governs the angle separating the Lanczos

vectors from this subspace. Usually the recurrence is unstable, but the growth in

these angles is invisible when the usual M-inner product is used.

(c) The Lanczos vectors can be projected back into the proper subspace, when

necessary, but at substantial cost.

(d) There is an inexpensive modification to computed eigenvectors that purges

unwanted components in the null space of M.

2.1. The Geometric Picture. The pair (H, M) is assumed to be definite, so there is

no loss in generality in taking H itself to be positive definite. For any matrix X let

«(X) denote its null space and r(X) its range (or column space). Recall that

B = (H - aM^M. Clearly, «(B) = n(M) # {0). Now

(1) r(B) and «(B) are each invariant under B, i.e., B«(B) c «(B), Br(B) c r(B).

(2) u g r(B) sind z g «(B) implies that zTHu = 0; i.e., r(B) 1 H «(B).

Proof. Let 0 * z g «(B) and u (= Bx) g r(B). Then, by definition of B, Hu =

nMu + Mx. Premultiply by zT to find zTHu = ozTMu + zTMx = 0. Here, we use

the fact zTM = 0T.
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(3) R" = r(B) ® «(B). This follows from the fundamental theorem of linear

algebra; « = rank + nullity.

The oblique projection of R" in (3) is the relevant one for this problem. All the

eigenvectors belonging to finite eigenvalues are in r(B). This is the good subspace.

Note that r(B) is not invariant under M. r(B) is not orthogonal to «(M) (in the

Euclidean sense).

Example.

n(M) = «(B) = span(J),    r(M) = span( J),    r (B) = spanj j ).

«(B)

T rW

Figure 1

Geometric representation of the subspaces

The example confirms that the desired eigenvectors are not orthogonal to «(M) in

the Euclidean sense. In general, it is difficult to tell whether or not a vector is in

r(B). The next result yields a test.

Theorem. Hr(B) = r(M).

Proof. Let u ( = Bx) g r(B). From the proof of property (2) above one has

Hu = M(au + x) g r(M). Thus Hr(B) c r(M). Since H-oM is invertible,

dim(r(B)) = dim(r(M)) = rank(M). Finally, since H is invertible, dim(Hr(B)) =

dim(r(B)) = dim(r(M)).    Q.E.D.

When M is diagonal then «(M) is known and q G r(B) if Hq JL «(M). In other

words, Hq must have zeros in the appropriate elements. Unfortunately, the test is

not cheap.

2.2. The Starting Vector. It is not appropriate to start the Lanczos process from a

random vector in R". It should be confined to r(B). In exact arithmetic the whole

Krylov subspace spanned by q1; Bqt, B2qj,... will then be in r(B).

If qx £ r(B), then all computed Ritz vectors with significant components in qx will

contain unwanted components in «(B). The usual way to enforce qx g r(B) is to

apply B to a random vector in R". This increases the cost of the starting vector, but

this is negligible relative to the total computation. Unfortunately, roundoff error

drives later Lanczos vectors away from r(B).
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2.3. The Growth in Unwanted Components. Let {qi, q2><l3>- • •} be the computed

Lanczos vectors. Let z be any fixed vector in «(M) with ||z||H = 1. Let t¡ = zTHq,.

Since ||q;||H # ||q,||M = 1. me t, are not true cosines of the angles between q, and

«(M). However, |t,| is the length of the projection of q, onto z in the H-norm. Recall

that

Hj+ißj+i = Bq, - qjCtj - q^ßj A fy,

where fy is a roundoff quantity. Premultiply by zTH to find

TJ+lßj+1 = zTHBq, - Tjctj - rj^ßj + zTHf,.

By property (2) z ± H r(B) and so

rJ+1 = -(ajTj A ßn_x + zTHfj)/ßj+l.

There is nothing to stop the rrJ from growing steadily. However, ||q . + pz||M =

Illy II m = 1 for all p, and so this growth is not visible in the standard implementation

of the Lanczos algorithm.

2.4. Projection of Lanczos Vectors. The matrix that projects onto r(B) orthogonal

to «(M) in the H-norm is I - N(NTHN)_1NTH, where the columns of N form a

basis for «(B). NTHN is invertible since H is positive definite. It is possible to

compute N before beginning a Lanczos run. When M is diagonal then N is

composed of certain columns of the identity matrix.

At the end of each step of the Lanczos algorithm one has only to form

q,+1 = q,+1 - N(NTHN)"1NTHqy+1. The matrix GT = (NTHN)"1NTH may be

formed before the start of a Lanczos run. In this way, the extra cost is / dot products

and / vector combinations per step. When M is diagonal and / is small, this

arithmetic cost is modest. The extra storage is less acceptable. We do not use this

modification.

2.5. Purification of Computed Eigenvectors. A simple way to restore vectors to r(B)

is to apply B to them. However, one goal in using the Lanczos algorithm is to keep

down the number of applications of B to a level near the minimum.

To compute a converged Ritz vector y, the algorithm first finds the eigenvector s

of T/

TjS = s8,   y = Q,s,    ||s||=l.

HeTeQJ = (qx,q2,...,qJ).

The famous three-term recurrence can be expressed compactly in matrix form,

BQ, = QJTj A qJ+1ßJ+leJ + F,,

where F- = (fx,f 2,... ,f ,•) accounts for local roundoff error. On postmultiplying by s,

one finds

By = yO A qJ+xßJ+xs(J) + Fys = [y + qJ+x(ßJ+xs(J)/6)]6 + F,s.

Note that we have an approximation to By/8 without the expense of applying B.

It turns out that this same modification is proposed by the authors of [1]. However

their motivation was quite different. They wanted to improve the Ritz vector

approximations to the eigenvectors of (1). Ours is to obtain Ritz vectors in r(B).

In practice, the effect is quite striking. Both y and qy+1 may have large compo-

nents along «(M), which are almost parallel. Then a linear combination of y and

q -+1 almost removes the contamination. Notice that there is no analogous simple

expression for Bq .
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There is one further improvement to this modification. One replaces s by jT,s!

Thus one forms the (j + 1)-vector

1

^     0Uj)ßj+i
Then, y = Qy + 1w is the approximation to the wanted eigenvector.

In the table below we show the actual growth in the t 's and the values predicted

by the recurrence, in a typical Lanczos run. We also show the effect of the

modification, giving the size of the unwanted components in y and y.

Table 1

Unwanted components in the dominant Ritz vector y and in f¡, i = 1,..., 40.

Corresponding growth in the t estimate and the actual unwanted components in

the lanczos vectors q,.

Index

1

2

3
4

5

6

7

X

9
10

11

12

13

14

15

16

17

18
19

20

21

22

23
24

25

26

27

28

29

30

31
3 2

33

34

35
36

37

3«

39

40

3.600e-16

1.704e-15

6.180e-15

1.493e-14
1.909e-14

2.575e-14

2.920e-14

4.426e-14

5.993e-14

1.066e-13
1.570e-13

3.199e-13
5.790e-13

1.233e-12
2.978e-12

6.082e-12
1.487e-ll

2.846e-ll

5.618e-ll

1.417e-10
3.838e-10

1.081e-09

3.535e-09

9.715e-09
2.031e-08

6.921e-08
1.888e-07

7.584e-07

2.656e-06

9.846e-06

6.434e-05

2.773e-04
1.183e-03

7.386e-03

3.552e-02
2.992e-01
2.027e+00O
1.172e + 001

1.090e + 002
1.306e + 003

Unwanted Components in

3.334e-16

1.572e-15

5.672e-15

1.368e-14

1.749e-14

2.358e-14

2.671e-14

4.044e-14

5.476e-14

9.743e-14

1.434e-13

2.923e-13

5.291e-13

1 127e-12

2.721e-12

5.557e-12

1.359e-U

2.600e-ll

5.133e-ll

1.295e-10
3.507e-10

9.878e-10

3.230e-09

8.876e-09
1.856e-08

6.323e-08

1.725e-07

6.929e-07
2.427e-06

8.996e-06

5.879e-05

2.534e-04

1.081e-03

6.748e-03

3.245e-02

2.734e-01

1.852e+0O0
1.071e + 001

9.964e+001
1.193e + 003

y,

2.801e-17

3.002e-17

6.515e-17

4.860e-17

3.652e-17

6.627e-17

2.339e-16

5.984e-16

2.059e-16

3.127e-16

7.613e-16

1.939e-15

1.507e-13

8.510e-13

5.571e-09

4.190e-09

1.077e-06

6.278e-08

3.911e-08
7.926e-08

4.000e-07
2.534e-06

1.339e-04

1.516e-02

1.499e-02

2.505e-01

8.538e-01

6.893e+OO0
1.499e+001

4.546e + 0O0

1.026e + 001
3.579e + 001

3.707e + 000

6.485e+001

5.359e + 001
5.298e+000
3.097e+001
3.367e + 0O0

1.660e + 001
2.904e-01

2.785e-17

5.040e-17

4.318e-17

6.820e-17

3.607e-17

4.538e-17

2.561e-16

5.551e-16

2.208e-16

2.800e-16

7.300e-16

1.945e-15

1.507e-13

8.510e-13
5.571e-09

4.188e-09

1.074e-06

6.257e-08
3.827c-08

6.911C-08

1.652e-07

1.483e-07

7.981e-08

9.076e-08
1.740e-07

1.836e-07

3.055e-07

3.811e-07

2.272e-07

1.012e-07

4.450e-07

1.426e-07

2.537e-07

1.162c-07

1.257e-07

2.198e-07

1.359e-07

1.379e-07
7.653e-08

4.561e-08
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We recommend using this modification in all cases, whether M is the identity,

ill-conditioned, or singular. It should be noted that the vector y + qj+\ßj+is(j)/B

is not optimal in the sense of minimizing some residual. However, given the Ritz

vector y, and qj+l, then, in exact arithmetic, if qx £ r(B), y is the unique linear

combination in r(B).

When qx g r(B), and assuming the Lanczos algorithm has been run in exact

arithmetic, other choices are possible, since all linear combinations of the Lanczos

vectors lie in the right space. In Section 6 we examine how to construct the best of

these other approximations. When roundoff is present, this "best" approximation

will not in general lie in r(B). That is why we recommend the use of y.

3. The Algorithms. The advantages of working with the matrix of (4) are twofold.

First, the Choleski factors of M are not needed. When M is diagonal the computa-

tional advantages are small, but for a more general case such as a consistent mass

matrix in the dynamic analysis of structures, where M has the same zero structure as

H, substantial saving in both cost and storage can be achieved. Second, the

computed eigenvectors are those of (1) and there is no need to recover the

eigenvectors of (1) from those of (2). When the mass matrix is either singular or

nondiagonal, which is the majority of cases, then this post transformation of the

eigenvectors can increase the overall cost of the analysis by as much as 25%.

In a typical step, /', the generalized Lanczos process computes in order, oij, ßJ+l,

andq -+1, to satisfy

(l7+i»«Ai"0'    (Aj+i**j-i)m~°>    K + iL = 1'
and

<lj+ißj+i = (H - oM)_1Mq7. - Hjaj - q^ßj,

where (u, v)M = uTMv. In exact arithmetic, M-orthogonality is preserved against all

the previous Lanczos vectors; that is, (q,,q7)M = 0 for i 4j — 1. However, in

practice some reorthogonalizations must be performed to maintain semiorthogonal-

ity (see [5]). In matrix form, the above relations read

(5) (H - CM)"LMQ7 - Q,T, = qJ+1ßJ+leJ

and

QJMQ, = I,,
where Q  = [qi,q2>•••><!,•]» and T' *s a tfidiagonal matrix with elements a, and

off-diagonal elements /?,;

«i     ft
ft       «2       ft

ft •

• • ft,
ft,        «m.

Algorithm for a Lanczos Run. Pick a shift a sind factor (H-oM)= LDLT.

Choose a starting vector r0 (in r(B)), set q0 = 0 and form px = Mr0 and ßx =

(Piro)172-

T   =
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For j = 1,2,..., lanmax do

(a) if so indicated then M-orthogonalize r.j and qy_t against a computed Ritz

vector or previous Lanczos vectors, reset p. = Mtj_x and ßj = (pjr,_,)1/2,

and compute any converged Ritz vectors.

(b)qJ^rJ_x/ßJ

(c)pj<-p/ßj
(d) solve (H - oM)ry = py

(d*j*-*j-ij-ißj
(f) put q ._! out to secondary store

(g) etj «- r/p,

(h) Tj <- tj - qjctj

(i)formpy+1 = Mr/

(j)ft+i *-rJPj+i
(k) update certain eigenvalues of T- and their corresponding error bounds. Exit

if satisfied. See [6] for more details on this.

Although it appears from the above implementation that we require only four

vectors, r , q , q „x and p, reorthogonalization forces us to use two additional

vectors; one to hold each old Lanczos vector that is brought back, and the other for

Pj_x if we reorthogonalize q7 at the same time as r.. See [4] for more details.

Below we compare the above unsymmetric transformation Lanczos algorithm

(UTLA) to the one obtained when applying the Lanczos algorithm to the trans-

formed problem of [1] (STLA). The current algorithm, STLA, by Ericsson and Ruhe,

does not use the transformation described in the 1980 paper, but is essentially

equivalent to UTLA.

In our comparison, we concentrate on the use of these algorithms for the solution

of two different types of eigenproblem that commonly occur in practice. Operation

counts and storage requirements for each algorithm are included in tables below.

(i) Diagonal but singular M. In this case M1/2 can be computed at a cost of only «

square roots, which is negligible compared to the total cost (in Table 2 we assume a

square root is simply one operation). Then the cost of running Lanczos is (2b + l)n

operations per step for UTLA, and (2b + lr)n for STLA. b is the average

half-bandwidth of the factored H, and r = rank(M)/«. Typically, \ < r < 1. How-

ever, STLA must recover the eigenvectors of Eq. (1) and is therefore more expensive

than UTLA by this amount. An alternative implementation of STLA that trades

space for time keeps the vectors, (H - aM)_1CTq, computed as part of the matrix-

vector multiplication with the matrix of (2), in secondary store. A linear combination

of these vectors can then be formed to obtain the eigenvectors of (1) directly, thus

avoiding any further operations with the factored matrix. However, the need for

secondary storage is doubled as compared with UTLA.

(ii) Sparse positive definite M. In many applications, M has the same zero

structure as H. In this case two factorizations are performed by STLA. This doubles

the cost of the initial step. We should mention that if a series of shifts is performed,

then M need not be factored again. The cost of each step of STLA is more than that

for UTLA by an amount which is precisely the fill-in resulting from the Choleski

factorization of M. The storage space for STLA is also more, because the factors of
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Table 2

Operation counts for the case of a singular diagonal M.

STLA UTLA

Initial cost (\b2 + 2)n {\b2 + 2)«

One step of Simple Lanczos (lr+ 2b)n (1 + 2b)n

j Reorthogonalizations 2jrn (2j + \)n

Computing an eigenvector that

converged at step j
(j + 2b+\)n I"

M must be kept. There is also a further cost in STLA when transforming the

eigenvectors back to those of Eq. (1).

The FORTRAN implementation of the two versions of the Lanczos algorithm

mentioned above are about the same length. UTLA requires no post transformation

of the computed eigenvectors that STLA must perform. On the other hand, the inner

loop of a Lanczos step and the reorthogonalization step are slightly longer in UTLA

because of the M-inner product.

Table 3

Operation counts for the case of a positive definite, sparse M.

Here mn is the cost of applying M to an n-vector.

STLA UTLA

Initial cost (b2 + l)n (\b2 + m + \)n

One step of Simple Lanczos (5 + Ab)n (1 + m + 2b)n

j Reorthogonalizations 27» (2j + m)n

Computing an eigenvector that

converged at step j
(j + 2b+ l)n I"

Table 4

Storage demands of the two methods for the cases under consideration.

Here mn is the cost of applying M to an n-vector.

Case

Diagonal M

Consistent M

STLA

(b + 6r)n

(5 + 2ft)/!

UTLA

(b + T)n

(6 + m + b)n

4. Accuracy. We turn now to the accuracy of the eigenvalues computed by means

of a spectral transformation.

In [1] it is pointed out that for those Xi very close to a the situation is most

satisfactory. Their results show

X,- [a A
1

< yM7)|.
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where 8i is an eigenvalue of T- and s,(y) is the bottom element of the normalized

eigenvector of Ty corresponding to 8¡. Suppose that \XX — a\< |a|/100. Then, after a

few steps, ||T,.|| = |0f>| > 100/|a|, and

Ai ■■{" A —-
8^

ßj+i i   / ... i |q|
<  0tj) lsiW^lioo-

Normally, ßJ+x 4 ||T}||/10. Indeed, /?■ « ||T7||/100 is typical. In these circumstances,

the relative error in (a + 1/8XU)) is four orders of magnitude less than ^(y)!. This is

a bonus arising from the fact that l/8[j) is a small correction to a.

Unfortunately, the term 8~2 on the right of the error bound works against us

when determining eigenvalues much smaller than a. In these circumstances, say

|X9| <|o 1/100,

there must be two decimal digits of cancellation in the final formation of a A 1/09O).

Whatever the relative accuracy of 89, two digits will be lost in this way. Moreover,

|09| will be small relative to ||T.||, and so it appears to be more difficult to attain high

relative accuracy in 8g. However, appearances are deceptive here. When a is very

close to an eigenvalue then T, will be a graded matrix (the first few rows of T,- will be

much larger in norm than the rest). With graded matrices it is possible to compute

eigenvalues to high relative accuracy. It is necessary that the criterion for acceptance

of small eigenvalues be proportional to the magnitude of that eigenvalue and not

||T-||. Unfortunately, some codes always use ||T-||.

It is important to consider these aspects of the algorithm, because when factoriza-

tion of H - a M is expensive relative to a Lanczos step then it is efficient to prolong

Lanczos runs. Long runs will produce eigenvalues quite far from a. Our remarks

show that the only severe degradation in accuracy would arise in computing

eigenvalues less than 10 "2 from a shift a exceeding 102. Shifts should be selected to

avoid such bizarre configurations.

5. The Case for Spectral Transformation. The case is not self-evident. If M is

diagonal and positive definite then the operator M"1/2HM^1/2 (or HM"1) is

readily available without the need to factor H - o M (or solve a system of equations).

In a number of applications, H - a M cannot be factored entirely within primary

store of the computer, and expensive transfer operations may dominate the process.

If the factorization takes as long as n Lanczos steps then we might ask whether the

spectral transformation approach is really warranted.

The answer is no. One of the original attractions of the Lanczos algorithm was

that it gave a way to find the small eigenvalues of a matrix without any factorization

at all. The price paid for this feature is that more Lanczos steps will be required than

with the inverted operator.

The trade-off is affected by «, and this is the point we wish to emphasize. The rate

of convergence (more precisely, the rate of emergence) of an eigenvalue does not

depend solely on its separation 8 from its neighbors, but on the ratio of 8 to the

total spread of all the eigenvalues, S/spread. Moreover, ô/spread only governs the

rate in the early stages of the algorithm. When the number of steps j exceeds n/3

then these estimates become too weak to be useful.
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For the majority of applications using M~1/2HM~1/2, the ratio 5/spread de-

creases faster than 1/n (more like l/«2). For large enough « it will be necessary to

take essentially « (actually > « ) Lanczos steps to find the smallest few eigenvalues.

If reorthogonalization is used, the cost of each of the later steps is 0(n2). If no

reorthogonalization is used, 2« or 3« Lanczos steps will be needed.

On the other hand, the inverted operator with a good choice of a permits 20 or 30

eigenvalues to be computed in 40 or 60 steps almost independent of «. Conse-

quently, factorization of H - a M should be avoided only if it costs more than n/2

matrix-vector products of the form HM ~ *q. See [7] for more details.

6. Projection of H. From the relations governing the Lanczos process described in

Section 4, one can deduce that T- is the projection of M(H - oM)"'M on the space

spanned by the columns of Q7; that is, T. = QjM(H - aM)_1MQy. However, it

seems more natural to seek approximations to the eigenvalues of the original

problem (with shift a) by using the projection of H - a M onto this space. That is,

one would consider Wy = Qj(H - aM)«Q,. Indeed, the Rayleigh-Ritz approxima-

tions are different. To establish the relation between W- and T-, we need some extra

notation. Let

W,+1

W,      w,

w/     "j+l

We premultiply the Lanczos equation (5) by Qj(H - a M). Note the M-orthogonal-

ity of the Lanczos vectors to obtain

(6) WJTJ = lj-ßJ+1y(jeJ.

Similarly, premultiply Eq. (5) by q^+1(H - aM) and again use the M-orthogonality

property to find

Tñ= -ßj + i"j+iej-

The eigenvalues of W- are the Ritz value approximations to (Xl, — a), i' = 1,..., j

from spanQy. But it is just as convenient to determine the eigenvalues of W/1.

From (6),

V = TÂh + w7)>    pj = /W(! - ßj^>j)
(7) = T, + p,T,w,e7

= T, + w;
Here,

(8) /i,

T

fif\l»j+l

1  - ßj+l*J*J

Equation (7) shows that Wy is the inverse of a tridiagonal matrix that differs from Ty

only in the last diagonal entry.

To evaluate juy, equate the {j + 1, j + 1) elements on each side of

v'+i\ j+i + ■uJ/ + ie/ + ie/+ij = v+i

to find

(9) ßj + i^j A uJ+1(aj+x A y.J+l) = 1.



HOW TO IMPLEMENT THE SPECTRAL TRANSFORMATION 673

Now eliminate to from (8) and (9) to find

ßf+i
f»y+i- -«7+1- —•

n
Next we examine how well the eigenpairs, (8,s), of T, approximate those of W_1.

The norm of the residual vectors is easily computed,

KW/1 - 8)S\\ = ||T,s - 8s A WJ*\ = \fLjsU) \.
Clearly, those Ritz vectors that have stabilized in the Lanczos process are least

affected by the change of projection. Except for the occurrence of large ¡i, it is not

clear that, in practice, it is worth computing these modifications.

The starting value px is obtained directly from ux = q|(H - aM)q... That is,

px = 1/coj - ax. When the starting vector for the Lanczos algorithm is r =

(H - oMJ-'Mu then o>x = rTMu//32.
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