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On Invariant Polynomials and Their

Application in Field Theory

By Kurt Girstmair

Abstract. Certain polynomials invariant under a permutation group G (so called G-polynomi-

als) play an important role in several computational methods of Galois theory. Since their

practical value depends on the degree, it is important to know G-polynomials of smallest

possible degree. A reasonable technique to find such G-polynomials is presented, and for

certain classes of groups an explicit description is obtained. The list of G-polynomials given

by Stauduhar in vol. 27 of this journal is thereby enlarged and improved. As an application of

G-polynomials, three important resolvents of quintic and sextic algebraic equations are

computed and a parametric family of sextic equations with given Galois group is exhibited.

Introduction. Let K be a field and Xv..., Xm indeterminates. Let Sm be the

group of all permutations of 1,..., m, which acts on the polynomial ring

K[X1,..., Xm] by s ° X¡ = Xs(iy s e Sm, i = 1,...,m. Let G be a subgroup of Sm.

Several problems in field theory—e.g., the determination of the Galois group or the

computation of a Galois resolvent of a given algebraic equation—can be solved

explicitly, if one can do the following (see [7, p. 276], [16], [11], [2], [3] and references

in the last paper):

I. Find a polynomial P belonging to G (also called a G-polynomial), i.e., a

polynomial P in K[XX,..., Xm] whose stabilizer {s e S^ | í ° .P = P} is equal to G.

II. Let Z be an additional indeterminate and a,...,am the elementary symmetric

functions defined by (Z - XJ ■ ■ ■ (Z - Xm) = Zm + oxZm~x + ■ ■ ■ +am. Let R e

K[XV..., Xm][Z] be the polynomial of Z-degree [Sm:G] whose zeros in

K[XX,..., Xm] are the elements of {s ° P\s e Sm}. Find the unique polynomial

ä + g K[Xlt..., X„][Z] such that R = R + (0l,..., om, Z).

Suppose that Problems I and II have been solved for G Q Sm. If / = Zm +

axZm~x + • • • +am e K[Z] is a polynomial with coefficients in K and splitting

field K(f), then R+(al,..., am, Z) is a certain resolvent of /, i.e., its splitting field

is a subfield of K(f). The prime factor decomposition of R+(al,..., am, Z) in

K[Z], for example, gives insight into the relation between G and the Galois group

G(f)= Gal(K(f)/K) of /. By this method one can determine the group G(f) (loc.

cit.).

Up to now, actual solutions of Problem II exist only in very few cases: If G is the

alternating group Am, take R + = Z2 - D, where D is the discriminant of Zm +

XxZm~x + ■■■ +Xm. For subgroups G of Sm, m < 4, see [10, p. 72 ff]. If m = 5 and
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G is a maximal solvable transitive subgroup of S5, a polynomial R+ could be

derived from a general resolvent given by Cayley [1] in Uie way described in [18, p.

674].

Note that for A^ = Q one can evade the explicit computation of R+, because P

and a given / e Q[Z] can be supposed to have integral coefficients. They allow us

to obtain a numerical approximation of R+(a1,...,am,Z) e Z[Z], and thus

R+(al,...,am, Z) itself (see [16]). However, for several reasons it is desirable to

know R+ itself: The method becomes applicable to arbitrary fields K, the computa-

tion of R+(av...,am, Z) is considerably simplified, and sometimes R+ is useful in

the construction of parametric families of polynomials with a given Galois group (an

example for this is Proposition 6).

In Section 3 we consider three especially important groups G„, n e (20,72,120},

where the subscript denotes the order of the group. Let R* be the polynomial R +

corresponding to G„. We describe the computation of R* = jR+(0, X2,..., Xm, Z)

and give the result in Table 2. Since the coefficient ax of a given / can be easily

removed, there is no loss of generality in taking R* instead of R¿. Let us outline the

import of the polynomials R*.

The group G20 is the maximal solvable transitive subgroup of S5 mentioned above

(it is unique up to conjugation). Suppose that / = Z5 + a2Z3 + a3Z2 + a4Z + a5

e K[Z] is irreducible. If R%0(a2,-.-,a5,Z) has no multiple roots (for infinite

ground fields K this can always be attained, cf. [3]), then / is solvable if and only if

jR20(a2, ...,a5, Z) has a zero in K. One can decide the latter property in many

fields K, so we may say that R% decides the solvability of irreducible quintic

equations. The groups G72 and G120 are maximal transitive subgroups of S6. In [3] it

has been shown that Äf20 (whose Z-degree is 6), together with some discriminants,

allows us to find the Galois group of an irreducible sextic polynomial in most cases.

The remaining cases are settled by R^2 (of Z-degree 10).

In principle, it is easy to solve Problem I, if the group G in question is sufficiently

well known (cf. [7, p. 54], [16, Theorem 1]). But in many applications the G-poly-

nomial is a crucial point. Most of all, its degree strongly influences further

calculations and can make them impracticable. For example, the only G120-poly-

nomial known in the literature is of degree 10 (it goes back to the paper [14] of

Serret in 1850, cf. also [16]; in [18, p. 679] Weber wrongly claims the existence of

such a polynomial of degree 4). The computation of the corresponding polynomial

Äf20 requires the solution of a system of linear equations in 758 unknowns. This is

hard to do for a computer, chiefly for reasons of memory capacity. However, the

lowest possible degree of a G120-polynomial P is 6. Our polynomial Äf20 is based on

a sextic P; the number of unknowns is thereby reduced to 177, a problem we could

manage much better (the memory capacity needed amounts to 5% of the degree 10

case).

Stauduhar [16] gives a useful list of G-polynomials of low degrees for most of the

transitive subgroups of Sm, m < 7, which he has partially collected from the

literature. The groups omitted are not of interest from his point of view. But like his

G120-polynomial, his G72-polynomial is not of lowest possible degree, and two other

polynomials (cf. the remark in Section 2) in his list do not belong to the group they

should (however, they fulfil their purpose within the scope of [16]). Most of his

G-polynomials seem to be ad hoc constructions.
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The above discussion will show that it is desirable to get some insight into the

constitution of G-polynomials. This problem is the subject of the largest part of the

present paper. It dates back to C. Jordan and contemporaries. Following their ideas,

we give a methodical framework for the treatment of this question (Section 1). We

thereby obtain a practicable algorithm to find the lowest possible degree of a

G-polynomial, as well as G-polynomials of this degree. A refined version of this

procedure has been used to establish Table 1 (Section 2), a supplement to the list of

[16]. Combined with recent theorems on permutation groups, our method yields an

explicit description of all types of G-polynomials (and the degrees they can take) for

the class of groups G c Sm such that each larger group is either Sm or Am (Section 2,

Theorem 1). Furthermore, the possible types of lowest degree are given for the

solvable transitive subgroups of Sm, m prime (Theorem 2).

1. Invariants, Essential Sets, and a Problem of Jordan. For the time being, it

suffices to assume that K is a commutative ring with identity 1 ( =£ 0). We continue

to use the notations of the Introduction. We write K[X] = K[XV..., Xm]. A

partition of (1,..., m} is a tuple T = (Tv..., Tr) of sets TJ c (1,..., m } such that

ÜrJmlTj** {l,...,m} and |T\j > ••• >\Tr\> 1 ("Ü" denotes the disjoint union,

"| |" the number of elements of the corresponding set). The tuple (|7\|,..., |7r|) is

called the type of T; more generally, a tuple t = (tlt ...,tr) of integers with

tx> • • • > tr > 1 and tx + • • • +tr = m is called a type for m. By 5" we denote the

set of all partitions of {1,...,m) and by ■T(t) the set of partitions of type

t = (tv...,tr).

Now fix a monomial Q = X"1 ■ ■ ■ X^m in K[X]. For k e N0 (= set of nonnega-

tive integers) we put T(k)= (ye {l,...,m}\itj = k). Starting with the largest set

T(k), we arrange all nonempty sets T{k), k e N0, descending with their cardinality;

whenever in this process we arrive at two or more sets T(k) of equal size, we order

them ascending with the size of k. We thereby obtain a partition T of {1,..., m)

uniquely determined by Q. (It will be seen later [Proposition 4 and corollary] why T

is arranged in this way.) For example, if m = 6 and Q = X^X^X^X^, T is

({2,3}, {4,5}, {6}, {1}). Moreover, the assignment Q -* T=* (Tv...,Tr) yields a

unique tuple / = (ilf..., ir) € N¿, which is defined by the property

<Hn *,)''••• (ru)''.

For the right side of this equation we write T'. Note that / is in the set IT =

{ft,...,ir) e N¿\ijall distinct, i¡ < í,+1 if |7}| = |7}+1|}. We obtain

Proposition 1. K[XV...,XJ= ere^(©,e/r^r').

As usual, © denotes the direct sum of ^-modules. Observe that the set IT only

depends on the type of T. We call IT the set of exponents for T.

In the sequel let G be a fixed subgroup of Sm. The group Sm acts in a natural way

on the set y of partitions of (1,...,m}; namely, for T = (Tlt...J,)e5" one

defines s o T■- (s(rx),..., s(Tr)), s e Sm. By 3~/G we denote the set of orbits

{G°T\T ej) ofGin 5", and by ^~//G a system of representatives of these orbits

(i.e., a subset ^UçiST which contains exactly one element from each orbit). We fix
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3T//G in what follows. Let T G ST and i g It. Then Na(.T') := E(7"'' | T' g G » 7")

is called the reduced norm of T' under G. It is an element of the G-invariant ring

GK[X] = {Öe K[X]\s°Q = Q for all 5 g G}. GK[X] contains all G-polynomi-

als, and Proposition 1 implies

Proposition2. GK[X] = ®Te^G(®le,TKNG(T%

Let * be a subset of ST//G. We consider P(<tí) = {Ire^I,e/rar,JVG(r')|for

each Te* there is an /' g It such that aTi * 0} ç GAT[ A"]. By Proposition 2,

ga:[*] = Ù(P(*)|*ç^7/G).

Thus we have divided °K[X] into a finite number of subsets, which we shall

investigate more closely. Consider the action of Sm on the subsets ty of y, defined

by iof={ior|ret}, seSm. Let Stab(^) be the stabilizer of ^ in Sm,

Stab(^) = {s g Sm I s » T g <2r for ail T g *}. Of particular interest are the stabi-

lizers Stab(G°r) of the orbits G°T of G (obviously, they contain G). For

*ç^" we define an exponent distribution (/r)re* as a family of nonempty

finite subsets JTQlT, Te<%. If <%<z3r//G and ?e?(t), we write P =

IretEje; 07-^(7'), with yr such that ar,#0 for all i & JT. The family

(JT)T£tn is called i/ie exponent distribution of P.

Proposition 3. Let °U be a subset of F//G, and let P g P{<%) have the above

shape. Put G{*%) = nre^Stab(G ° T). Then P belongs to a group H that contains

G (tí). H is equal to G(<%), provided there are no partitions T # T' in tí of the same

type with JT = JT, and aTi = aT> ¡ for all i g Jt. In particular, if K has infinitely

many elements, P(ti) always contains G(ti)-polynomials.

The proof is based on Propositions 1, 2 and is left to the reader. A set tí ç. 3T//G

will be called essential if G(t¿) = G. It follows from Proposition 3 that G-polynomi-

als in K[X] can be found only in sets P(ti) for essential ti's. If K is infinite, such

sets P(ti) actually contain G-polynomials; one can even prescribe their exponent

distribution. If * ç 3~//G is essential, every set "T with tí ç Vq S^/G is essential,

too. Therefore we get a good overview over all G-polynomials, if we can solve

Problem III. Determine all minimal essential sets tí ç 3~//G.

In his "Traité" C. Jordan proved the existence of essential sets consisting of one

partition (cf. Section 2). He raised several problems concerning G-polynomials. One

of them can be reformulated in the following way (cf. [7, p. 54]): Determine all sets

P({T}) with {T} ç 3T//G essential (such a P({T}) he calls "family of elementary

functions belonging to G"). This is an important special case of Problem III. It is

clear that one can solve Problem III for each individual permutation group G in

finitely many steps. In most cases, however, this is not an easy task. Theorem 1 will

give the solution for a large class of groups that admit a relatively simple answer.

Proposition 4. Let T = (7\,..., Tr) be a partition of (1,..., m}. Among all

polynomials T\ i g IT, there is exactly one of smallest degree, namely yflU.—.»—t)j Us

degree isw(T) = \T2\ + 2\T3\ + •••+(/•- l)|Tr|.

The proof is omitted. We call i0(T) = (0,1,..., r — 1) e IT the minimal exponent

of T, and w(T) the weight of T. Both minimal exponent and weight depend only on

the type of T. For tí ç P we define the weight of tí as w(ti) = max{ w(T) | T g tí}
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if tí # 0, and w(0)= -oo. One obtains the important

Corollary. Let tic ^//G. Then deg(P) > w(tl) for all P g P(ti). The degree

w(ti) is taken by each polynomial in P(ti) whose exponent distribution is the family

(i0(T))T£ % of minimal exponents.

Let K be infinite. In view of Propositions 3, 4 and the corollary, all G-polynomi-

als of smallest possible degree can be formed if we know d = min( w(tí) \ tí ç ¿7//G,

tí essential) and all minimal essential sets of weight d (call them ■f~x,...,i/"k).ln the

sequel we describe the main features of an algorithm to find d and one set f^¡,

/g (1,..., k }. It may happen, however, that the (always existing) G-polynomials in

P^i) are not yet best possible for applications. By means of some modifications,

which are not difficult but tedious, the algorithm produces a subsystem of Vx,...,irk

that meets most practical requirements (for a short discussion, see explanations to

Table 1 and Section 3). Table 1 is based on this enlarged version.

Algorithm. Compute all types for the number m and order them in some way,

ascending with their weight. Let wx < w2 < ■ ■ • be the set of all weights occurring.

Construct in every step a group Gy and a set tij in the following way:

Put G0 = Sm, tiQ + 0. Stop if G = Sm; otherwise, put j = 1.

(*) Take all types / = (flt...,tr) of weight w(t) = Wj. Establish for these t a

system of representatives ST(t)//G of the orbits of G in 3~(t) (note that |^"(/)l =

m\/(tx\ ■ ■ • i,!)). Put F; = \J(3r(t)//G\w(t) = Wj). Compute G(ST¡) (notation of

Proposition 3), and put G} = G(3~f) n G,_x. If G, = Gj_x, put tij = ti^x, increase j

by 1 and go to (*); otherwise, minimize STj, i.e., replace ^ by a minimal subset ^'

of Fj with G(F¡) = G(3rj). If G,_! 2 G(5rj) put tij = 3~j, otherwise, put tij =

tij_x U 9~j and minimize tij. Stop when G■ = G; otherwise, increase j by 1 and go

to (*). The final set tij has the desired property.

2. Explicit Description of G-Polynomials for Certain Classes of Groups. We adopt

the notations above (K a commutative ring with 1 + 0). Let G Q Sm be a subgroup,

T g Sy/G. In [7, p. 54], Jordan has shown that {T} is essential if the type of T is

(1,..., 1). Moreover, he showed

Proposition 5. Let G be a k-fold transitive proper subgroup of Sm, T = (Tx,... ,Tr)

G 3~//G. Suppose that {T} is essential. Then \TX\ < m - (k + 1).

Indeed, it is easy to see that otherwise G°T= Sm°T, i.e., Stab(G ° T) = Sm. The

(m — 2)-fold transitivity of Am and the corollary of Proposition 4 yield

Corollary. A subset tí c 3r//Am is essential if and only if ti contains a T of type

(1,..., 1). In particular, the minimal degree d of an Am-polynomial is m(m - l)/2

(which is assumed by Y\j<k(Xj — Xk), the root of the discriminant of Zm + axZm~l

+ ■■■ +om).

In what follows we say that a subgroup of Sm is Am-maximal if it is + Sm, Am

and maximal in the set (G c Sm\G ¥= Sm, Am}. The >lm-maximal groups play an

important role in the computation of Galois groups, cf. [16]. For most of them,

Problem III is solved simply by the converse of Proposition 5, namely

Theorem 1. Let G c Sm be a k-fold, but not (k + \)-fold transitive Am-maximal

subgroup of Sm (k = 0, if G is intransitive).
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1. A subset ti ç. 3^/G is essential ifand only ifit contains a partition T = (Tx,...,Tr)

with

(a) |7\| < m - (k + 1), if G is none of the groups PTL(2,8) ( ç S9), PTL(2,32)

(QS33),

(b) 1^1 < m - (k + 2), or \TX\ = m - (k + 1) and \T2\ = 1, if G = iTL(2,8)
(m = 9,k = 3),

(c) \TX\ < m - (k + 2), or \TX\ = m - (k + 1) and \T2\ < 2, if G = PTL(2,32)
(m = 33, k = 3).

2. The smallest degree d of a G-polynomial is d = k + 1, except in the cases

AGL(l,5)QS5, d = A(k = 2),

\PGL(2,5)QS6, d = 6(k = 3),

|PrL(2,8)c S9, d = 6(k = 3),

[prL(2,32)çS33, d=5(k = 3).

Remark. The notation of groups in Theorem 1 is that of [8] (cf. also [6] and the

introductory remarks to Theorem 2). The groups AGL(1,5) and PGL(2,5) are the

groups G20 and G120 of [16] and the Introduction. All groups are uniquely de-

termined up to conjugation only. They are actually ylm-maximal, as one can see from

the table in [15] and Corollary 4.4 in [13]. It is very likely that each 6-fold transitive

subgroup of Sm contains Am (cf. [17], [5, p. 55]). Then the number d would be < 6,

for all y4m-maximal groups G.

Proof of Theorem 1. The proof of assertion 1 is based on some results which have

been used to prove Theorem 4 in [3]. We note that tí <z ST//G is essential if and

only if there is a T = (Tlt..., Tr) e <& such that G » T is not the whole set T(t),

where t = (/,,..., tr) is the type of T. The necessity of this condition is clear, since

Stab(y(i)) - Sm. The sufficiency follows from Am°T= Sm°T = 5^(1) for tx > 2,

resp. \Am ° T\ = \Am\ > \G\ = \G » T\ for tx = 1, and the v4m-maximality of G.

Now let TeJ be of type / = (tx, ...,tr) with tx < m - (k + 1). Suppose that

G°T = 3~(t). We distinguish two cases:

(i) tx > w/2. Since m — tx < tx, (tx, m — tx) is a type for m and, by assumption,

G acts transitively on if(tx, m — tx). A theorem of Livingstone, Wagner, and

Kantor [8, Theorem 1] implies that G is (m - i,)-fold transitive or m = 9, G =

^^(2,8), m = 33, G = .P 17,(2,32). Since m- tl>k + l, only the latter two

cases are possible.

(ii) tx < w/2. There is a subset M ç (1,...,r) such that /2:= L(tj\j g M)

fulfils m/3 < t2 < m/2. This is elementary (cf. Lemma 4 in [3]). Since G is

transitive on 3T(m - t'2, t2), Theorem 1 in [8] yields k > m/3. However, ^m-maxi-

mal groups with k > m/3 can occur only for m < 12 (this follows, e.g., from

Lemmas 1, 2 in [3] and the table in [15]), namely: ^ÍGL(1,5), PGL(2,5), PGL(2,1)

(Q Sg); the holomorph of the group (Z/2Z)3 (c Sg), PIT(2,8), and the Mathieu

groups Mn (ç Sxx), MX2 (c Sx2).

Thus we have proved assertion 1 up to the exceptional groups in (i) and (ii), which

require separate considerations. In most cases one can work with divisibility proper-

ties, as we exemplify for the group PGL(2,5). By (ii) we have to treat the types

(2,2,2), (2,2,1,1), (2,1,1,1,1), and (1,1,1,1,1,1). It suffices to show that G cannot
be transitive on ^(2,2,2). If this were not true, 1^(2,2,2)1 = 6!/(2!)3 = 90 would
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divide \G\ = 120, a contradiction. Observe also that PrL(2,8) (resp. ?rL(2,32)) is

a regular permutation group on 3^(5,2,1,1) (resp. ^"(29,3,1)).

As to assertion 2, consider the types t = (tx,...,tr) with tx < m - (k + 1).

Among them, (m - (k + 1), k + 1) has smallest weight and is unique with this

property, except when k + 1 > m - (k + 1), i.e., k > m/2 - 1. This can happen

only for m = 5,6. The exceptional cases are easy.   D

Let j? be a prime number and F^ the field with p elements. Consider AGL(1, p) =

{lab | a G F, \ (0), b G Fp }, the group of maps lab :Fp -* ¥p: c -* ac + b. A transi-

tive solvable subgroup G ç Sp is isomorphic to a subgroup of AGL(\, p). In

particular, \G\ divides p(p - 1). Using theorems of P. M. Neumann [12], [13], we

give a rather complete description of minimal essential sets of smallest weight for

these groups G.

Theorem 2. Let G be a transitive solvable subgroup of Sp, p prime. Let 3*//G =

\J(3r(t)//G\t a type for p) be a system of representatives of 3~/G and d =

min(w(ti) | ti Q Sy/G, tí essential).

1. Let \G\ be even. The minimal essential sets of weight d are all subsets tie

^(ty/Gwith \ti\ = 1, where

(a) d = 2 andt = (p - 2,2) // \G\ < p(p - 1),

(b) d = 3 andt = (p - 3,3) // \G\ = p(p - 1) andp > 1,

(c) d = 4 and t = (2,2,1) if \G\ = p(p - \) andp = 5,

(d)d= -oo ifp = 2,3.
2. // G is odd, d is equal to 3. There exist the following categories of essential sets of

weight 3:

(a) All subsets tiçST(p-2,\, \)//G with \ti\ = 1.

(b) Ifp > 1, the set F(p - 3,3)//G.
(c) Ifp >land\G\<p(p- l)/2, certain sets {T,T') with T&3r(p-2,2)//G,

ref(f-3,3)//G,
Every minimal essential set is contained in a set (a), (b) or (c).

Remark. If \G\ is odd and p >1, there are always nonempty subsets ti ç

3r( p — 3,3)//G that are not essential. If, in addition, p = 1 mod 3, there always

exist minimal essential sets of category 2(c). Both assertions become clear from the

proof. Recall that a good knowledge of all minimal essential sets of weight d can be

of advantage in applications (cf. Section 3).

Proof of Theorem 2. We identify Sp with the symmetric group of Fp in such a way

that G ç ^GL(1, p) = [lab \a G F^X {0}, b G F^}. The types of weight < 3 are:

(p) of weight 0, (p - 1,1) of weight 1, (p - 2,2) of weight 2, and (p - 3,3) and

( p — 2,1,1) of weight 3.

If T is a partition of weight < 1, G ° T = Sp ° T. Thus d is < 1 only if G = Sp.

This is case 1(d). Let T g 3~(p - 2,2) and H c S be a group containing G. If H is

no? solvable, it is doubly transitive (by a theorem of Burnside), hence H°T =

3T(p - 2,2). For solvable H, \H°T\ = \H\ if \H\ is odd, and \H°T\ = \H\/2,
otherwise. Therefore, if \G\ is even and < p(p - 1), we have always \H°T\> \G° T\

for H D G, H * G. Hence 1(a) follows.

Next let \G\ = p(p - 1), i.e., G = AGL(\, p). The case 1(c) being contained in

Theorem 1, we may assume p >1. Because of the transitivity of G on 3^(p - 2,2)

and 3T(p — 1,1,1), d must be > 3, and a minimal essential set of weight 3 is in
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&(p - 3,3) (if there is any). Let T G T(p - 3,3). Every group H 2 G, H # G, is

triply transitive, by [12]; thus H ° T = 3r( p - 3,3). On the other hand, G°T'#

3^(p - 3,3), for otherwise, \-T(p - 3,3)| would divide p(p - 1). This proves 1(b).

Now suppose that \G\ is odd. Let G' be the group generated by G and

'-i,o e ^4GL(1, />) (G' is the unique subgroup of AGL(l, p) of order 2|G|). For

T G 3r( p - 2,2) the arguments in the proof of 1(a) yield

(SD     if \G\=p(p- l)/2,
(*) Stab(G°r) =     '        '   '    n^      J/

\G'    ii\G\<p(p-l)/2.

Therefore d ^ 3. For T G ,T(/> - 2,1,1) and i/ 2 G we obtain |i/°r| = |i/| if H

is solvable, and \H°T\= p(p - 1), otherwise. This implies 2(a).

In the sequel, let /> > 7. Let «, t), w be distinct elements of F^ and Tuvw =

(F \{u,v,w), [u,v,w}) &3r(p — 3,3). By G(u,v,w) we denote the stabilizer of

Tuvw in AGL(\,p), lt., G(u,v,w) ={se AGL(l, p)\s °TU0W = Tuvw). Some calcu-

lations show that

(.3    if p = lmod3and w c {(u + v ± f^3(u - t;))/2},

\G(u,v,w)\= ¡j    if wG {(u + v)/2,2u-v,2v-u),

11    otherwise,

where v^ is in F,. Let \G\ < p(p - l)/2. By (*), Stab(G°T)= G' for each

T g 3-(p - 2,2); moreover, |G'° Tuvw\ > \G ° Tuvw\ if and only if \G(u, v,w)\ * 2.

Hence a subset ti<z3r(p-2,2)//G L)3r(p - 3,3)//G with at least one element

in ^(p — 2,2)//G is essential if and only if it containsa Tuvw with \G(u,v,w)\ =£ 2.

This shows 2(c).

Finally, we exhibit an essential subset of 3r( p — 3,3)//G. If H 2 G and H is not

solvable, it has at most 1 + p(p — 1)/(2|G|) orbits on ^(p - 3,3). This follows

easily from Theorem 5.2, (ii) in [13]. Thus there is a TH g 5"(¿? - 3,3)//G with

(**) ]HoTH\ > 2\G\\f(p - 3,3)\/(2\G\+p(p - 1)) > \G\(p - 2)/6.

Let p > 1 and G0 = H(Stab(G °TH)\H^G, H not solvable). If G0 is not solvable,

G0 stabilizes G°TC , so G0°TCo = G °TG . Therefore, \G0°TGo\ < |G|, a contradic-

tion to (**). We obtain G Q G0 Q AGL(1, p). Now choose Tuvw g

3^(p — 3,3)//G such that \G(u,v,w)\ = 1. Then G is the largest subgroup of

AGL(\, p) that stabilizes G ° TU[;M„ which shows that {TH \ H 2 G, //not solvable)

U{ru[m,} is essential.

We mention briefly the result for p = 1. If |G| = 7, \3r(A,3)//G\ = 5, and each

minimal essential subset of 3~(4,3)//G has two elements; there are exactly six such

sets. If \G\ = 21, |^"(4,3)//G| = 3. The minimal essential subsets ti ç ^"(4,3)//G

are those with two elements. This completes the proof of the theorem.   D

Next we consider the transitive groups G £ Sm for m < 7. They are the subject of

several tables ([16], [15], [11]). With the exception of most subgroups of S6, all of

them are covered by Theorems 1 or 2. So we know the essential sets of smallest

weight explicitly, and it is easy to establish the corresponding G-polynomials. As an

example, take G = G20 = ^GL(1,5) ç S5, with generators (12345), (1243). This

group is doubly transitive, and by Theorem 1 the minimal essential sets of smallest

weight d = 4 have the shape {T), Te 3T(2,2,1). Each T g 3TÇL,2,1) is stabilized

by at most 1 or 2 elements of G, hence \G°T\ = 20 or 10. The latter case holds for
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T = ({1,4}, {2,3}, (5)); we obtain the G-polynomial

NG(r°^) = xx2(x2x5 + x3x4) + x2(xxx3 + x4x5) + x2(xxx5 + X2X4)

fX24(XxX2 + x3x5) + xj(xxx4 + X2X3).

This polynomial has been found by Serret [14] in 1850. We have used it to compute

R% (Section 3).

For reasons discussed in the Introduction, we give a new table for m — 6. Since it

is a supplement to [16, Table 1], we adopt the notation of the article cited. This

means that the groups in our list are equal to those of [16] in the strict set-theoretical

sense. This is important, because conjugate groups lead to permuted G-polynomials.

Generators of the groups can be found in [16].

Table 1

Essential sets and G-polynomials for groups of degree six

Nr. imp. G-polynomial

('i:i PGL(2,5) {12|35|46}

1 5
2 4
3 6

12   5    +    2   6    +    2   3    +    3   5
3    4/       \4    5/       \5    6/       \4    6

S, X S, (1234|56) 12 + 23 + 31 + 45 + 56 + 64

PSL(2.5) {123|456} 124 + 126 + 134 + 135 + 156
+ 235 + 236 + 245 + 346 + 456

S2\S, {1234|56} 12 + 34 + 56

gL (S, \S2)nA6 {14|25|3|6}
123      123      123      456      456      456

465 + 546 + 654 + 123 + 231 + 312

= S, X S3 {14|25|36}

1 4 1    5 1    6
2 5    +    2   6    +    2   4

3 6/      \3    4/      \3    5j

= S4 ¡135|2|4|6} [153] + [246] + [136] + [254]
+ [145]+ [263]+ [164]+ [235]

(13|25|46)
14 15
2 6    +    2   4

3 5/      \3    6

1 3
2 5
4   6

1 6
2 3
4    5J

s AA X S2 {123|456} 125 + 126 + 134 + 234 + 356 + 456

{1235|4|6}
132 + 352 + 512 + 142 + 462 + 612

+ 242 + 452 + 522 + 232 + 362 + 622

(S2\S})nAt {135|246} 136 + 235 + 246 + 145

A,XS2 {1234|5|6} 122 + 232 + 312 + 452 + 562 642

G\2 dihedral AX {2346|15} 15 + 53 + 34 + 42 + 26 + 61

12. Oh
{135|246,
123|456}

aP(G¡t) + bP(Gl)

= S, A,D
E,F

{1234|5|6,
1246|35}

aP(Gis) + b(U + 26 + 35)

cyclic AX {2346|1|5} 152 + 532 + 342 + 422 + 262 + 612

A = {{123},{456}},«= {{12},{34},{56}},C- { {14}, {25}, {36} },

D= {{14},{26},{35}},£={{16},{25},{34}},F= {{15},{24},{36}}.
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Explanations to Table 1.1. In Column 3 " \ " denotes the wreath-product of groups

(cf. [6, p. 94]). Column 4 gives the imprimitive systems of the group; e.g., group nr.

11 permutes the sets in A and C. Column 5 contains the smallest degree d of a

polynomial belonging to the group, and Column 6 gives minimal essential sets of

weight d. The notation of these sets has been reduced. So {1351246, 1231456}

stands for the set consisting of the partitions ({1,3,5}, (2,4,6}) and ({1,2,3},

{4,5,6}). Column 7 gives the G-polynomials derived from the essential sets in

Column 6. Most essential sets consist of only one element T; then the corresponding

G-polynomial is simply NG(T'o(T)). Only for groups nr. 12, 13 has the set the shape

[T, T'), and the G-polynomial is aNG(T'^T)) + bN^T"*^), with a,b<= K\ {0}

distinct; the reduced norms coincide with the polynomials belonging to the groups in

brackets. All polynomials are written in an abbreviated way. Instead of X¡ we write

V, so that if + kl2 + •■■ denotes the polynomial X¡X2 + XkXf + ■■■ . The

expression ,        .
i '   r

j   s

\k   tj
(groups nr. 1, 6, 7) is defined as i2r2(js + kt) +j2s2(ir + kt) + k2t2(ir + js). The

symbol § (nr. 5) stands for i3r2(js + kt) +fs2(ir + kt) + k2t2(ir + js). Finally,

[ijk] = ij2k3 +jk2i3 + «Va (nr- 7)-

2. The sets of Column 6 have been selected according to the following principles:

Two minimal essential sets of weight d are considered equivalent if the types

occurring in them are the same. We take only one representative from each

equivalence class, in such a way that the number of monomials in the corresponding

G-polynomial is the smallest possible. However, an equivalence class is omitted

altogether if there is another one whose types form a strict subset of the types of the

class in question. This is the case only for groups nr. 12 and 14. Up to these

reductions, our list of minimal essential sets of smallest weight is intended to be

complete.

Remark. The polynomials of [16, Table 1] professedly belonging to G\2 and G¡,

actually are G48-polynomials, where the groups G4g are defined by their imprimitive

systems C (in case of G\2) and D (in case of G\).

3. Computation of Resolvents for Degrees Five and Six. Let the notations of

the Introduction hold, in particular, let K be a field. The polynomial R g

K[Xx,..., Xm, Z] connected with the group G has the shape R = T\(Z - s ° P), s

running through a system of representatives of S„JG, the left cosets modulo G (cf.

Introduction). The coefficients b¡ of R = Z' + bxZl~l + • • • +b, are symmetric in

Xx,..., Xm, so R + = Z' + bx+Z'~l + • • • +bf g K[X, Z] exists with R =

R+(ov...,om,Z). The coefficients 6,+ = Lc<g...HmXp ■■■ X%" can be determined

by interpolation, as described, e.g., in [4]. For each i = 1,..., / this method leads to

a system of linear equations in the unknowns c(n'\..„ . The number of unknowns

depends on the knowledge of finite sets M, ç N™ such that each exponent

(nx,...,nm) with nonvanishing c%\..„ is in M¡. In order to get a feasible proce-

dure, one has to make Mi small. A first step is to work with R* =

R+(0, X2,..., Xm, Z) instead of R+. In the case of R20, for example, the set M6

(computed by the method below) has 173 elements, whereas the respective set for

R^0 has cardinality 35. The degrees of b¡ in each set of variables [Xx,...,Xk),
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k < m, determine a system of linear inequalities for the tuples in M¡. The full system

(which seems not to be generally known, though one or two inequalities are given in

several algebra books) is due to [9]. It is very advantageous, since the sets M¡ thereby

found are, as a rule, rather close to the sets of actually occurring exponents. For

instance, in the case of Rf20 one gets \M¡\ = 2, 9, 23, 51, 99, 177, / = 1,..., 6, and 2,

9, 23, 45, 86,146 actual exponents in b*,..., ¿*, respectively. In the last analysis, the

size of M, depends on the types constituting the G-polynomial P, because they

determine the various degrees of b¡. It is advisable to select candidates for P

according to the principles described in the explanations to Table 1. Sometimes the

very best P can be found only by trial.

Table 2 contains the polynomials R* for the groups G = Gn, n = 20, 72, 120.

They have been computed by a mod /»-version of the method just described. The

underlying G„-polynomials are those of Section 2. The information given for each

coefficient bf consists of the list of exponents (nx,...,nm) (written without com-

mas, since all ny are <; 9) and the list of numerical coefficients c%\..„ , in the

respective order. The R* are defined over arbitrary fields K. Obviously, it is tedious

to copy the whole polynomial RX2Q, say, from Table 2 by hand. However, polynomi-

als in K[Z] of interest often have two or more vanishing coefficients, and then only

a small part of R* is needed, which can be found very quickly.

We give an illustration both of this fact and the import of R[*20. Let f = Z6 + aZ

+ b g K[Z]. By Table 2, R[a, b] := Rx+20(0,0,0,0, a, b, Z) has the shape

R[a, b] = Z6 + 18Z>Z5 - 135¿>2Z4 - 3240b3Z3

+ (93312¿>5 + 3125a6)Z - 186624Z»6 + 40625a66.

This polynomial can be written as

R[a,b] = (Z- 3bf(Z- \2b)(Z + Ubf + 55a6(Z + 136);

we obtain an analogue of a theorem of Weber on solvable quintic trinomials [18, p.

676], namely

Proposition 6. Let K be a field of characteristic > 5, / = Z6 + aZ + b g K[Z]

irreducible, a # 0. Consider the Galois group G(f) as a subgroup of S6, according to

its action on the roots off. Then G(f) is contained in a group PGL(2,5)(= S5) if and

only if there exist u, v G K such that

(,) a - -(« - 3vf(u - I2v)(u + 12i;)3/(55(« + \3v)),

b = av.

Proof. Suppose that G(f) ç PGL(2,5). Then R[a, b] has a zero in K (cf. [16],

[2]), say x. Put x = au, b = av, u,v g K. R[a, b](x) = 0 implies u *= -1 - 13f,

and (*) follows as in [18]. Conversely, let a, b be defined by (*), a # 0, and /

irreducible. Then au is a root of R[a,b\ One must show that R[a, b] has no

multiple zero v in any extension of K. Suppose v exists. Since

0 = ^¡§^(J0 - 6(y - 3b)(y + 12b)\y2 - 6by - 36b2) + 5V,

we can ehrninate 55a6 in the equation R[a, b](y) = 0, and obtain

0 = S(y - 3b)(y + I2b)2g(y),

with g = Z3 + 9¿>Z2 - 108¿>2Z - 648¿>3. Obviously, g(y) = 0, and reduction of

dR[a,b]/dZ modulo g yields 0 = -66¿>5 + 55a6. This means a = 6V/55,  b =

66u6/55, and / has the (double) root -6i>/5 in K, a contradiction.   D



792 KURT GIRSTMAIR

Remarks. 1. For K = Q the polynomials / defined by (*) in general have

G(/) = PGL(2,5).
2. The author has computed some other polynomials R* for subgroups of S5 and

S6, among them one belonging to the intransitive group S3 Q S5. This R* yields a

Galois resolvent (i.e., the minimal polynomial of a generator of the splitting field of

/) for each / with G(f) = AGL(1,5). It should be noted that also for degrees higher

than six such computations are feasible, at least when two or more variables X¡ in

R + are specialized to zero.

3. All polynomials R* given in Table 2 have been tested in various relevant

numerical examples. In particular, the (a priori known) Galois groups of several

polynomials in Q[Z] have been verified in this way. Therefore, the author is

convinced of the accuracy of Table 2.

'20 r + b,z

Table 2

Resolvents belonging to groups of degree six

5 b6e KiX,,, ,x5, z:

(OOOIO)

-8

(00101) (00020) (02010) (01200)

-50 40 -6      2

(01002) (00111) (02101) (00030) (02020) (01210) (00400)

-125 400 15    -160      40     -21       2

(01012) (00202) (00121) (02111) (01301) (00040) (02030)
(01220) (04020) (00410) (03210) (02400)

500
76

625
9

-1400
-8

90
-6

-50

1
400 -136

(00004) (01103) (01022) (00212) (03012) (02202) (05002)
(00131) (02121) (01311) (04111) (00501) (03301) (00050)
(02040) (01230) (04030) (00420) (03220) (02410) (01600)

3125    -625
2400    -260

256    -76

500  -2750
-105   -117
-32     -3

-525

58
51

325     108
31    -512

-19       2

(00014) (02004) (01113) (01032) (00222) (03022) (02212)
(05012) (01402) (04202) (07002) (00141) (02131) (01321)
(04121) (00511) (03311) (06111) (02501) (05301) (00060)
(02050) (01240) (04040) (00430) (03230) (06030) (02420)
(05220) (01610) (00800)

-9375
-99

196
-192

1

3125
-125
-124

-16
-13

-1250
-150

12
48

1

-2000
-27

18
17

3250
-1600

-12
-128

1200
-160

-4
-4

-725

590
256

65
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Table 2 ( continued )

2. R*2   =   Z10 ♦ b*Z9 + ... + b*06 K tX...... X6, Zl

b*. (010000)
1 ■

b : (000100) (020000)

-6       6

b : (000001) (010100) (002000) (030000)

-66     -26       3       4

b.: (010001) (001010) (000200) (020100) (012000) (040000)

-324       36        1      -42        9        1

b- (000101) (020001) (000020) (011010) (010200) (002100) (030100)
5 (022000)

-114     -642      123      120       18      -12      -30

9

b,: (000002) (010101) (002001) (030001) (010020) (001110) (021010)
b  (000300) (020200) (012100) (040100) (004000) (032000)

129 -482 138 -640 521     -138      148
24 49 -40 -8 3        3

b7: (010002) (001011) (000201) (020101) (012001) (040001) (000120)
(020020) (011110) (003010) (031010) (010300) (002200) (0302C0)
(022100) (014000)

384 342 -80     -752 366 -320 -94
898 -470 36      80 80 2 48
-44 6

(000102) (020002) (000021) (011011) (C10201) (002101) (030101)
(022001) (050001) (010120) (002020) (030020) (001210) (021110)
(013010) (041010) (000400) (020300) (012200) (040200) (004100)
(032100) (024000)

120 384 66 852 -240 -6     -512
324 -64 -246 51 7S8 -24     -588

84 16 16 88 IB 16       -6
-16 3

b : (000003) (010102) (002002) (030002) (010021) (001111) (021011)
9' (000301) (020201) (012101) (040101) (004001) (032001) (001030)

(000220) (020120) (012020) (040020) (011210) (003110) (031110)
(023010) (010400) (002300) (030300) (022200) (014100) (006000)

-64      256 48 128      112      -24      704
-32     -224 -8 -128      -12      96       14

8     -216 86 352      -40        6     -320
64       32 -8 32       32      -14        1
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Table 2 ( continued )

(conti nued)

(010003) (000202) (020102) (012002) (000121) (020021) (011111)
(031011) (010301) (002201) (030201) (014001) (000040) (011030)
(010220) (002120) (030120) (022020) (050020) (021210) (013110)
(041110) (033010) (020400) (012300) (004200) (032200) (024100)
(016000)

-64

192
8

-64

1

16
-32

2
16

128
-8

-64

16

48
-64

36
-8

-8
-12

64
1

48
1

-16

16

-16

12
4

-8

M20 b,z- . + b6 e K [X1 ,..., X6> Z1

(000001) (010100)

18       2

(000002) (010101) (002001) (030001) (010020) (001110) (021010)
(000300) (020200)

-135
-8

114
1

-54 -8 -50 30

(000003) (010102) (002002) (030002) (010021) (001111) (021011)
(000301) (020201) (012101) (040101) (004001) (032001) (001030)
(000220) (020120) (012020) (040020) (011210) (003110) (031110)
(010400) (002300)

-3240
-304

50
-16

1440
232

-120

2

-1350
-198

15

-304
-16

2

-900

27
66

990
2

-9

126
-125

(010103) (002003) (030003) (010022) (001112) (021012) (000302)
(020202) (012102) (040102) (004002) (032002) (060002) (001031)
(000221) (020121) (012021) (040021) (011211) (003111) (031111)
(023011) (051011) (010401) (002301) (030301) (022201) (050201)
(014101) (042101) (020040) (011130) (031030) (010320) (002220)
(030220) (022120) (050120) (042020) (001410) (021310) (013210)
(000600) (020500) (012400)

-4536

4320
450
-54

27
-70

16

-1944
-4752
-3480

-8

2
45
-8

-1224
-688

1485
-688

625
2
2

1350
972
218
234

-875

1

3240
234

2484
168
-50

-120

756
16

-891
-144

250
28

-1224
-1125

84
-8

225
-9
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R.2„   (continued)

Table 2 ( continued )

(000005)
(000303)
(001032)
(031112)
(050202)
(020041 )
(022121)
(041211)
(020501)
(030140)
(005030)
(004220)
(010700)

(010104)
(020203)
(000222)
(023012)
(014102)
(011131)
(014021)
(005111)
(012401)
(022040)
(033030)
(032220)
(002600)

(002004)
(012103)
(020122)
(051012)
(042102)
(003031)
(042021)
(033111)
(004301)
(050040)
(061030)
(024120)

(030004)
(040103)
(012022)
(010402)
(070102)
(031031)
(070021)
(061111)
(000060)
(001330)
(000520)
(011510)

(010023)
(004003)
(040022)
(002302)
(034002)
(010321)
(001411)
(025011)
(011050)
(021230)
(020420)
(003410)

(001113)
(032003)
(011212)
(030302)
(062002)
(002221)
(021311)
(053011)
(010240)
(013130)
(012320)
(031410)

(021013)
(060003)
(003112)
(022202)
(000141)
(030221)
(013211)
(000601)
(002140)
(041130)
(040320)
(023310)

93312
16416
40500
-6144

-416

12750
4014

192
-416

850
108

-162

32

-B5536

604B
37800

2052
324

-10950
-918

162
312
325

31
32
-8

163296
-43416
-40320

104
312

2025
-32

-150
-54

58
2

-9

16416
-4224

4590
-4224

32
-2770

-8
-8

3125
-350

56
-264

48600
1 1664

7192
864
-54

-560

552
27

-625
-1340

352
66

-174960

864
39096

4032
-8

-270

608
2

750
-180

574
-8

33696
-96

-10044
-2376

-22500
-2144

-756
-96

375
-112

8
2

b • (000006)
5' (000304)

(001033)
(031113)
(050203)
(011132)
(050122)
(041212)
(012402)
(0B0202)
(030141)
(005031)
(004221)
(044021)
(015211)
(050501)
(041050)
(024040)
(051230)
(030520)
(021610)

(010105)
(020204)
(000223)
(023013)
(042103)
(003032)
(014022)
(005112)
(040402)
(072102)
(022041)
(033031)
(032221)
(072021)
(043211)
(042401)
(000440)
(052040)
(015130)
(022420)
(013510)

(002005)
(012104)
(020123)
(051013)
(070103)
(031032)
(042022)
(033112)
(004302)
(064002)
(050041)
(061031)
(060221)
(011511)
(035111)
(034301)
(020340)
(080040)
(043130)
(050420)

'(005410)

(030005)
(040104)
(012023)
(010403)
(034003)
(010322)
(070022)
(061112)
(032302)
(000061)
(001331)
(000521)
(024121)
(003411)
(010701)
(010160)
(012240)
(011430)
(007030)
(014320)
(020300)

(010024)
(004004)
(040023)
(002303)
(062003)
(002222)
(001412)
(053012)
(060302)
(011051)
(021231)
(020421)
(052121)
(031411)
(002601)
(002060)
(040240)
(003330)
(035030)
(042320)
(012700)

(001114)
(032004)
(011213)
(030303)
(000142)
(030222)
(021312)
(000602)
(024202)
(010241)
(013131)
(012321)
(080121)
(023311)
(030601)
(001250)
(032140)
(031330)
(010620)
(006220)
(004600)

(021014)
(060004)
(003113)
(022203)
(020042)
(022122)
(013212)
(020502)
(052202)
(002141)
(041131)
(040321)
(016021)
(051311)
(022501)
(021150)
(060140)
(023230)
(002520)
(034220)
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Table 2 ( continued )

-186624
-27376

432000
-68976

-3072

72900
3032

-1312

2520
16

5550
54

-486

36
-54
-32

-125
-150

-36

152
-144

248832
-93744

529200
17496

2520
29700
-3564

1944
1296

-8

225
923

2262
2

-80

16
625
-12

198
370

72

1026432
-178848
-249480

-2544
-96

-11360

222
324

-432

1
954
108

-160
-144

9
-2

250
1

25
B

-9

-29376

19296
-165240

19296
—432

-22080
-232

336
-752

40625
11700
-2472
-1215

36
-96

3125
-125
-200

-27
-210

16

-129600

46656
48408
-9936

24
-29160

6336
-84
-32

-20625
-12020

1096
-106
-480

24
3125

375
50
-4
-6
-8

-1477440
-9936

139104
6912

-292500
-7992

14784
144
108

-7750

1935
1962

-8

336
-32

-3125

525
-700

56
27

1

536544
144

-7776
-864

70125
22572

-12204
-3072

8
-10125

-3616
-168

162
176

8
625

38
-185

-14

1
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