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The Construction of Preconditioners

for Elliptic Problems by Substructuring. II

By J. H. Bramble*, J. E. Pasciak* and A. H. Schatz*

Abstract. We give a method for constructing preconditioners for the discrete systems

arising in the approximation of solutions of elliptic boundary value problems. These

preconditioners are based on domain decomposition techniques and lead to algorithms

which are well suited for parallel computing environments. The method presented in

this paper leads to a preconditioned system with condition number proportional to d/h

where d is the subdomain size and h is the mesh size. These techniques are applied

to singularly perturbed problems and problems in three dimensions. The results of

numerical experiments illustrating the performance of the method on problems in two

and three dimensions are given.

1. Introduction. The aim of this series of papers is to propose and analyze

methods for efficiently solving the equations resulting from finite element discretiza-

tions of second-order elliptic boundary value problems on general domains in R?

and R3. In particular we shall be concerned with constructing easily invertible and

"effective" preconditioners for the resulting system of discrete equations which can

be used in a preconditioned iterative algorithm to achieve a rapid solution method.

The methods to be presented are well suited to parallel computing architectures.

For N = 2 or N = 3, let fi be a bounded domain in RN with a piecewise smooth

boundary ôfi. As a model problem for a second-order uniformly elliptic equation

we shall consider the Dirichlet problem

(1.1)

where

Lu = f     in fi,

u = 0     on dfi,

d   (      dv
(1.2) Lv = _£ (^ J+av,

with ciij symmetric, uniformly positive definite and bounded above on fi. For ease

of exposition, we assume that either a e 0 or a is bounded above and below by
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positive constants. The generalized Dirichlet form is given by

P s~l s^ A\ P

(1.3) A{v,4¡)= Y]   /  aij-Z— ä— dx+ /  av<t> dx,
iT-, Jn      öxi öxj Jn

which is defined for all v and <f> in the Sobolev space H1 (fi) (the space of distribu-

tions with square-integrable first derivatives). The L2(fi) inner product is denoted

h= [ v
Jn

v,(f>)n =      v<j> dx.

The subspace /¿"¿(fi) is the completion of the smooth functions with support in fi

with respect to the norm in //^(fi). The weak formulation of the problem defined

by (1.1) is: Find u E H¿(Q) such that

(1.4) A(u,<p) = (f,<j>)n

for all <f> E Hq(Q). This leads immediately to the standard Galerkin approximation.

Let 5°(fi) be a finite-dimensional subspace of .//¿(fi). The Galerkin approximation

is defined as the solution of the following problem: Find U E S% (fi) such that

(1.5) A(tf,*) = (/,*)n

for all $ E S#(fi).
We shall also be interested in solving (1.5) when the form A of (1.3) corresponds

to the singularly perturbed operator

(1.6) Lv = v + sLv:

where L was defined by (1.2) and £ is a possibly small constant which in some

applications depends upon h. The A form corresponding to (1.6) is then given by

(P a o i p

Y^,  j  aii~Q~. q~. dx+     av(j)dx\ + {v,(J))q.

Singularly perturbed problems arise, for example, in time-stepping methods for the

numerical approximation of parabolic problems.

Now it is easy to see that if e is bounded away from zero, then any preconditioner

for (1.5) gives a preconditioner for (1.7). Furthermore, if e is of order h?, then the

quadratic form A(v, v) restricted to the subspace ^(fi) is equivalent to (v, v)q and

no preconditioner is necessary. We shall provide a preconditioner for (1.7) which

has conditioning properties similar to those of the preconditioner developed for

(1.5) independent of £.

As illustrated in Part 1 [3], the preconditioning problem can be reduced to the

problem of defining an appropriate form B on S°(fi) X S^(Q) satisfying the following

criterion. Firstly, the problem of finding W E S°(fi), given g, satisfying

(1.8) B{W,*) = (g,*h    for all $ e 5^(fi)

should be easier to obtain than the solution of (1.5). Secondly, the forms B and

A should be comparable in the sense that there are positive constants Ao and

Ai satisfying

(1.9) A0B(V, V) < A{V, V) < XiB{V, V)    for all V E S#(fi)

with Ai/Aq "not too large."
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It should be noted that it is generally not possible to develop an effective precon-

ditioner for (1.7) directly from a preconditioner for (1.5). If B is a preconditioner

for (1.5), then a natural choice of a preconditioner for (1.7) would be the form given

by

(1.10) sB{u,v) + {u,v)q.

Unfortunately, the problem corresponding to (1.8) using the form (1.10) cannot, in

general, be efficiently solved.

In this paper we shall develop a particularly simple method for defining pre-

conditioners by domain decomposition. As is typical with domain decomposition

techniques, the given domain fi is broken into a number of subdomains {fi¿}. Our

preconditioner is defined so that the calculation of the solution of (1.8) involves

solving in parallel related Galerkin equations on the subregions and some inter-

connecting equations. For the method to be developed, the number of unknowns

involved in the interconnecting equations will be at most equal to the number of

subdomains.

Other papers providing iterative methods involving domain decomposition for

the solution of elliptic problems have appeared in the literature [l]-[8]. The earliest

papers involved splitting the domain into subdomains without interior corner points

[1], [2], [4]-[6], [8]. These methods became inefficient when many long thin subdo-

mains were used. Consequently, it became natural to develop decomposition meth-

ods which use quasi-uniform subregions. In Part I, we defined and analyzed such

a method for two-dimensional problems. That method was shown to have a condi-

tion number for the preconditioned system which was bounded by c(l + \og(d/h))2

(here d and h correspond, respectively, to the diameter of the subregions and the

discretization size of the mesh).

The preconditioner defined and analyzed in this paper has the following advan-

tages over that defined in Part I. Firstly, it is somewhat simpler, both conceptually

and computationally. Secondly, it extends in a straightforward manner to three-

dimensional problems. Thirdly, it applies to singularly perturbed systems without

deterioration in the iterative convergence rates.

On the negative side, the preconditioner defined in this paper shows a somewhat

faster asymptotic growth of the condition number for the preconditioned system

than that of the Part I preconditioner. We will show that the condition number for

the new method is bounded by cd/h in contrast to the (1 + \og(d/h))2 growth for

the preconditioned system of Part I. This is a reasonable growth for many rather

large three-dimensional problems when d and h are judiciously chosen.

An important aspect of this paper involves the introduction of certain con-

stants or 'average values' associated with discrete functions on the subdomains

as part of the definition of the preconditioner B. A technique for computing

these average values is presented. A future part in this series of papers will pro-

vide a three-dimensional preconditioner employing this averaging technique with a

(1 + \og(d/h))2 condition number growth for the preconditioned system.

The outline of the remainder of the paper is as follows. In Section 2 we describe

the domain decomposition preconditioners and prove estimates for the growth of

the condition numbers for the preconditioned system. In Section 3 we show how to

compute the solution to (1.8). Numerical examples of the preconditioner applied

to problems in two and three dimensions are given in Section 4.
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We shall also let c and C, with or without subscript, denote generic positive

constants. These constants will always be independent of the mesh and subdomain

parameters h and d (see Section 2).

2. The Construction and Analysis of the Preconditioner. We will de-

scribe the preconditioner in this section and prove an estimate for the condition

number of the preconditioned system. We start by giving some hypothesis on the

domain and subdomain partitioning and the associated finite element subspaces.

For the sake of simplicity of exposition we shall proceed with the discussion only

for the special case of polyhedral domains and piecewise linear approximations.

Many generalities are possible and will be discussed in later papers.

More precisely we shall begin with the following assumptions with regard to fi.

(A.l) fi is a polyhedral domain in R2 or R3, which for each h, 0 < h < 1, a

parameter, has been given a triangulation üh of maximal size h. That is,

fih = U"!-! rj1, where each rj1 is a simplex which is contained in a ball of

radius h.

Any union of simplexes of fih will be called a mesh subdomain, and the vertices

of the simplexes in fih will be denoted by x¿ ordered in some fashion. We shall

partition the domain fi into a number of mesh subdomains {fifc}.

(A.2) We assume that the triangulation is quasi-uniform near the boundaries

of the subdomains, i.e., if rh 6 fi'1 is a simplex such that rh n dfifc ^ 0,

then Th contains a ball of radius ch where c is independent of h.

(A.3) The fifc are quasi-uniform of size d. This means there exists a positive

constant C\ which is independent of d and h such that each fifc contains

a ball of radius c\d and is contained in a ball of radius d. The number of

domains rid is proportional to d~N.

(A.4) Each fifc is uniformly star-shaped with respect to a point. This means

that for each fifc there is a point xk and a constant c2 > 0, independent

of d and h, such that (x — xk) • n(x) > c2d for all x E dfifc. Here, n(x)

denotes the outward unit normal to dfifc at x.

(A.5)  Let fifc be the scaled domain defined by

fifc = {x\dx E fifc}.

We assume that fifc has a Lipschitz continuous boundary with Lipschitz

constants which are independent of d.

Remark 2.1. Assumption (A.5) is a weak regularity hypothesis for the boundary

of fifc. It guarantees that a Poincaré inequality of the form

(2.1) \\V\\2nk<Cd2Dk(V,V)

holds for functions V with zero mean value on fifc with a constant C independent

of d and k. Here Dfc(-, •) denotes the Dirichlet inner product on fifc.

Remark 2.2. We note that Assumption (A.4) implies the inequality

(2.2) \u\lQk < cid'1 \\ufQk + dDk(u, u)}.

For each h, let Sh(fi) be the space of continuous piecewise linear functions defined

relative to the triangulation fi'1 and 5^(fi) be the subspace of S)i(fi) consisting of

those functions which vanish on dfi. S^(fifc) will denote the subspace of S°(fi) of

functions whose supports are contained in fifc (in particular, they vanish on dfifc
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and outside fifc). Let T denote Ufc^fifc an<f ̂ et Sh{T) denote the functions which

are restrictions to T of functions in £>°(fi).

We shall need some additional notation.  The L2(dfifc) inner product shall be

denoted

(v>w)ank = ¡
Jdi

vw ds
'anfc

with corresponding norm

Man* = (Man*,
where ds is an element of arc length or surface area of dfifc. The analogous discrete

inner product is given by

(v>w)dnk,h = hN~1   J2   v{xl)w{xi)
xi€dnk

with corresponding discrete norm

\v\ank,h = {^v)dok,h-

It follows from (A.2) that

(2-3) c\v\dnk<\v\ank,h<c\v\dnk

holds for functions v E S/¡(r). In addition, we have the following lemma.

LEMMA 2.1.   If v E 5°(fi) and vanishes at all interior nodes o/fifc then .

(2-4) ciM^,h < Hnfc < Ci^an*,/,

and

(2-5) ci/T1 \v\lQk<h < Dk{v, v) < Ci/r1 |w|ant,fc •

We next construct the bilinear form B corresponding to our preconditioner. We

first introduce another form A(-, •) on 5°(fi). If A is given by (1.3), we define

Äk{v,4>)= Y]   /    a\j-^- —- dx + /    akV(j)dx.
~Z1 Jnk      axi axj Jnk

Alternatively, if A is given by (1.7) then we define

N

dx.(2.6, Mv^^Ei^tM^L^^L^
We then define

(2.7) Ä{U,V) = YMU,V).
k

Here ak = 0 if a = 0 or ak > c > 0. Furthermore bk > c > 0. These functions

are piecewise smooth (possibly discontinuous) for each k. Finally, akAx) for i,j —

1,..., N is a piecewise smooth (possibly discontinuous) uniformly positive definite

matrix. The reason for the form of A was discussed in Part I ([3], Section 4).

Basically, it allows for greater flexibility in the definition of the preconditioner and,

for example, the use of constant coefficient fast solvers (even when L has variable

coefficients).
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We note that

(2.8) C0Ä{U, U) < A{U, U) < CiÄ{U, U)    for all U E S£(fi)

holds. Thus, the problem of finding a preconditioner for A is the same as finding

one for A.

We next decompose functions in 5°(fi) as follows: Write W = Wp + Wh where

Wp E ¿>°(fii) © • ■ • © S£(fi„J and WP restricted to fifc satisfies

Äk(WP, $) = Äk(W, $)    for all $ E S°(Qk)

for each k. Notice that Wp is determined on fifc by the values of W on fifc and

that

(2.9) Ak{WH,$)=0    for all $ G S£(iîfc).

Thus on each fifc, W is decomposed into a function Wp which vanishes on dfifc and

a function Wh which satisfies the above homogeneous equation and has the same

boundary values as W on dfifc. We shall refer to such a function Wh as "discrete

Afc-harmonic". The subspace of discrete Àfc-harmonic functions shall be denoted

by //(fifc).

We note that the above decomposition is orthogonal in the A inner product and

hence

(2.10) Ä{W,W) = Ä(Wp,Wp) + Ä{Wh:Wh).

We shall define the preconditioning form B by replacing the A(Wh,Wh) term in

(2.10).
Note that a discrete Afc-harmonic function is completely determined by its values

on the boundary. Accordingly, the form A(Wh,Wh) can be replaced by a form

which only involves the boundary values. The particular choice of the boundary

form will depend on whether we are considering (1.3) or the singularly perturbed

case (1.7).

Remark 2.3. It seems reasonable to consider replacing the A(WH,WH) by the

identity (or a weighted identity) on the subdomain boundary. This works rea-

sonably well if A is given by (1.3), d is not too large, and the coefficients of A

are smooth. The replacement forms to be described work better in more general

situations.

We first consider the case when A is given by (1.3). To understand the motivation

for the form to be defined, it is instructive to consider the case when a — 0. We

would like to replace the form Ak (restricted to discrete harmonic functions) and

define the replacement for A(Wh, Wh) by summation. Note that if ak = 0 then Ak

is indefinite, and so its replacement should also be indefinite. Let ak be a constant

which will be chosen later; then

(2.11) Äk(WH,WH) = Äk(WH - ak,WH - ak) < Äk(W,W),

where W E S/i(fi)|nt is defined by the function which equals Wh - ak on dVtk and

vanishes on all interior nodes of fifc. Now

(2.12) Äk(W,W)<cäkDk(W,W),

where äk is (for example) the smallest eigenvalue of the matrix {a*,-(a;)}f--=1 for

some point x E fifc. It follows from (2.5), (2.11), and (2.12) that

(2.13) Äk(WH,WH) < cdkh-x \WH - Ofclan, h ■
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To make the right-hand side of (2.13) correspond to an indefinite form, we choose

ak to be the discrete mean value of Wh on dQk, i.e.,

V-M/an*,*

We replace A(Wh,Wh) with

(2.14) Q(Wh,Wh) = h-lJ2^k \WH - WH\2mkfh .
k

For more general A given by (1.3) with ak ^ 0 we use

Q(wH,wH) = Y,Qk(WH,wH)
k

(2.15)
= ¿2 h~l {(~ak + ákh2) \WH - (WH)k\lnkh + äkhdN(W„)l}.

k

Finally, when A is given by (1.7) we use

Q(wH,wH) = Y,Qk(WH,wH)
k

(2.16) = J2h~XW~ak + {h + eâk)h2) \WH - {WH)k\2açlkih
k *-

+ (bk + eäk)hdN(WH)l

The constants bk and ak are defined as the average values of bk and ak over fifc. As

before, it suffices to take àfc to be the minimal eigenvalue of the matrix {akj(x)}

for some point a; € fifc.

We have the following theorem.

THEOREM  1.   Let A be given by (1.3) or (1.7), respectively.  Let B be defined
on S°(fi) x S°(fi) by

(2.17) B(W,W) = Ä(Wp,Wp) + Q(WH,WH),

where Q is given by (2.15) or (2.16) respectively.  We then have

(2.18) ^B{W,W) < A{W,W) <CB(W,W)   for allW E S£(fi),

with c and C independent of h and d.

Proof. By (2.7), (2.8) and (2.10) it suffices to prove that

ch
(2.19) -rQk{V,V)<Ak{V,V)<CQk(V,V)    for all V E H(Ük).

d

We shall first prove the theorem when A is given by (1.3) and ak = 0. In this case,

(2.19) reduces to

(2.20) C^\V-Vk\lnkh<Äk(V,V)<^\V-Vk\2mkfi for all K G//(fifc).

The second inequality is just (2.13).
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To prove the first inequality, let ßk denote the mean value of V on fifc. By (2.3)

and the definition of Vk, we have

\v-vk\2dnkJi<\v-ßk\lnk^<c\v-ßk\lQk.

Applying (2.2), (2.1) and (2.3) gives

\v - vk\2dQkh < cid-1 \\v - ßk\\2Qk + dDk(v -ßk,v- ßk))

< CdDk(V -ßk,V- ßk) = CdDk(V,V).

Then, by the ellipticity assumptions on the coefficients defining Ak and A, we have

(2.21) äk\V-Vk\2dnkh<CdÄk(V,V).

Thus we have shown that the theorem holds for the case ak = 0.

We next prove the theorem for the remaining cases. When a ^ 0 and A given by

(1.3), we set bk = 0 and e = 1. Hence (2.16) defines Q in either case. We first prove

the second inequality of (2.19). Let Vk denote the discrete Afc-harmonic extension

of Vfc. Note that in general, Vk is nonconstant even though Vk is constant on dfifc.

Evidently,

(2.22) Äk(V,V) < 2(Äk(V -Vk,V- Vk) + Äk(Vk,Vk)).

By the harmonicity of Vk,

(2.23) Äk(Vk,Vk) < Äk(Vk,Vk) < c(bk + eäk) \\Vk\\i   < C(bk + sä^d"??.

By the harmonicity of V - Vk,

(2.24) Äk(V-Vk,V-Vk)<Äk(W,W),

where W is the function which equals V — Vk on dQk and vanishes on the in-

terior nodes of fifc. The assumptions on the coefficients of the operator and the

preconditioner and Lemma 2.1 give

Äk(W, W) < c{(bk + e~ak) \\W\\lk + säkDk(W, W)}

(2-25) <rl(™* ■ 'T   ■ - -Xl"    *""a
^C\{-f + ibk + £äk)h)\V-Vk^*

Combining (2.22) through (2.25) proves the second inequality of (2.19).

We finally prove the first inequality of (2.19). Noting that (2.21) is also valid in

the present case, it suffices to show that

(2.26) h(bk + eäk)(h\V -Vk\lQkh + dNV2\ <CdÄk(V,V)

for all V E //(fifc). By the arithmetic-geometric mean inequality,

(2.27) h\V-Vk\lnkik<2h(\V\l0kih + \Vk\lttkth).

Using (2.4), it follows trivially that

(2.28) h\V\2dn^h<C\\V\\lk<       f _    Äk(V,V).
(bk+eak)

Since d is larger than h, a straightforward computation using (A.3) gives

h\ñ\*<d\Vk\lnk<h<CdNV?.
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Hence it remains to bound dNVk. By the definition of Vk and the Schwarz inequal-

ity,

dNV2 < cdN(h/d)2N~2

<CdhN-1J2v{xi)2 = Cd\V\lnkth,
i

where the sum over i is taken over the set of nodes x¿ on dfifc. Hence by (2.4),

(2-29) dNV2<cí\\V\\2ük.

Combining (2.28) and (2.29) proves (2.26) and hence completes the proof of the

theorem.    D

Remark 2.4. The coefficients c and C appearing in the theorem depend on the

local (with respect to the subdomains) behavior of the operator and preconditioner.

Accordingly, the preconditioner will work well even in situations where there are

large jumps in the coefficients defining L as long as these jumps only occur across

the subdomain boundaries.

Remark 2.5. There is a fair amount of freedom in weighting the boundary form.

For example, the Q form in the case a = 0 could have been defined by

Q(Wh,Wh) = r1^^ \W» - «fclan^fc ■
k

Then the condition number for the preconditioned system would remain unchanged

as long as h < 7 < d. The forms (2.15) and (2.16) could be similarly weighted.

3. The Solution of the Preconditioning Problem. In this section we

describe an efficient algorithm for solving (1.8). In general, when B is of the form

(2.17), we solve first for Wp, then for the values of Wh on T, and finally extend

WH to all of fi.

We now give the details of a three-step algorithm for the solution of (1.8). As

already mentioned, the problem of finding the solution W to (1.8) reduces to that

of computing Wp and Wh- The first step is to compute Wp. By taking <ï> G 5°(fifc)

in (1.8) and using (2.9), we note that

(3.1) Äk{Wp,*) = {g,$)    for all $ G 5^(fifc).

Equation (3.1) shows that Wp can be determined by solving independent discrete

Dirichlet problems on the subregions. The second step involves the computation of

the values of Wh on T. These values are determined as the solution of the following

problem:

(3.2) Q(Wu,9) = {g,ßfo-Ä{Wp,9)    for all 9 G Sh(T).

Here 6 denotes any extension of 9 in 5°(fi) and we note that by (3.1), the right-

hand side of (3.2) is independent of the extension chosen. The development of an

algorithm for solving (3.2) is an important part of this section and will be considered

shortly. The third step is to compute the discrete Ak -harmonic extension of the

boundary values of Wh computed in the previous step. This is done as follows: Let

Wh be any extension of the boundary values of Wh in i>°(fi), e.g., the extension
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which is zero at all of the nodes not on T. Then Wh — Y + Wh, where Y vanishes

on T and is the solution of

(3.3) Ak(Y,*) = -Âk{WH,*)    for all $ G S°h(Ük),

for k = 1,..., rid- Equation (3.3), as in (3.1), requires independent discrete Dirichlet

solves on the subdomains.

We now develop an algorithm for solving (3.2), that is, computing the values of

Wh on T. For notational convenience we set V = Wn\r- Then (3.2) reduces to

(3.4) h'1 ]T {(säk+h2(bk+eäk)) (V - Vk,x)dnkM + (bk+säk)hd2VkXk} = F(x)

k

for all x S Sh(T), where F is a known linear functional on S/,(r). We shall see that

the problem of computing the solution V of (3.4) is straightforward if the values of

Vit are known. Indeed, V satisfies

(3.5) h'1 Y (eäk + h2(bk + eäk)) {V, X)ank,h = G(x),
k

where the linear functional G in (3.5) depends upon F and the average values Vk.

Note that if we use the usual nodal basis for functions in Sh(T), then the matrix

corresponding to Problem (3.5) is diagonal and hence its solution can be trivially

computed. Thus to solve (3.2), we need only demonstrate a technique for computing

the average values Vk.

We shall define another function V E Sh (r) which has the same average values

as the solution V of (3.4). Obviously, the average values of V can then be computed

by calculating the average values of V. Let 5°(r) denote the collection of functions

in Sfc(r) which have zero average value on every dfifc. Clearly, (V — V) E S°(T).

To make the system of equations determining V of minimal size, we choose V in

an orthogonal complement of S^(T). Specifically, let S^(T) be defined by

Sjt(T) = {9E Sh(T) | Q(9,oj) = 0 for all u G Sfe°(r)},

and define V to be the unique function in S^(T) satisfying

(3.6) Q{V,9) = F(9)    forall0eS¿-(r).

Note that V is the orthogonal projection of V into S^(T) and hence V has the same

average values as V. In what follows, we shall derive a basis for S^(T). This basis

will consist of functions with local (with respect to d) support, and hence V can be

computed as the solution to a sparse, positive definite and symmetric "stiffness"

matrix corresponding to (3.6). The number of unknowns in this system will always

be less than or equal to n^.

Before proceeding, we shall introduce some additional notation. Let vk =

h-1{ehk + h2(bk + sak)) and define

Qo(W,W) = J2^\W-W\lnk,k-
it

Note that Q and Qo only differ by terms involving the average values squared.

Hence,

(3.7) Sjt(T) = {9E Sh(T) | Qo(0,w) = 0 for all w G S°h(T)}.
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We will first define functions (f>k G S^(T), for k = 1,... , ry. Consider a fixed

subregion with boundary dUk. The function (¡>k is defined to be zero on all of the

nodes on T/dflk, its values on dflk are to be determined. Let W be in 5/j(r); then

(3.8) Qo(w,4>k) =X^te)¿*te) + X¡'c*A
i 3

where

(3.9) ll = hN~1 Yl
{j|i,edii,ndnfc}

and

(3.10) Kkti■ = -hN-lVj       Y       ¿"M-
xted(~ikndcij

The sum over i in (3.8) is taken over the nodes x¿ on dfifc and the sum over j in

(3.8) is taken over the subregions fi^ with dflj n dfifc ^ 0. We define the nodal

values of 4>k on dfifc by

(3.11) Mxí) = —•

With the above choice for <j>k, it is evident that the first sum in (3.8) equals vkNkWk,

where Nk is defined to be the number of nodes on dVlk. Hence (3.8) becomes

(3.12) Q0(W, d>k) = ukNkWk + Y KhjWj.
j

By (3.7) and (3.12), <f>kES^(T).
We will next show that

(3.13) Sfc(T)=    span    0fc.
fc=l,...,nd

It suffices to show that if

(3.14) OeS^r)    and   Qo{9,<t>k)=0

for k = 1,... ,rid, then 9 — 0. Consider the matrix M defined by the right-hand

side of (3.12), i.e.,

jyli^j — Ci^jl^iJyi ~r r^¿,j,

where 6i¿ is the Kronecker Delta Function. Let 9 satisfy (3.14) and 9 be the vector

with components 8k. Then by (3.12), (3.14) and the definition of M,

(3.15) M9 = 0.

To show that (3.13) holds, it suffices to show that M is invertible. Indeed, if M is

invertible, then (3.15) implies that 9 is also in 5^(r), i.e., 0 = 0.

We will see that M is symmetric and positive definite and hence invertible.

Indeed, the quantity 7¿ in (3.9) depends upon the point i¿ but not the subregion

fifc. Consequently, Kjtk = Kkj, i.e., M is symmetric. Furthermore, this system is

sparse with positive diagonal entries and nonpositive off-diagonal entries. Also,

YKk<3 = ~ÑkVk,

3
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where Nk is defined to be the number of nodes on ôfifc which do not lie on öfi.

Consequently, the matrix M is irreducibly diagonally dominant and hence positive

definite; cf. [9].
In general, the functions 0i,..., <pnd may not be linearly independent. For exam-

ple, in the case of the unit square with the checkerboard subdivision, the function

Y   4>k-    Y.    ^=°-
red squares black squares

In this case it is easy to check that {</>i,..., <pnd-i} is linearly independent and hence

forms a basis for S^(T). Bases for more complicated domains and subdivisions are

also straightforward to derive.

For completeness, we restate the algorithm developed in this section for comput-

ing the solution W of (1.8).

Algorithm DD2.

(1) Compute Wp by solving (3.1). This involves Dirichlet solves on the subdo-

mains which can be done independently and in parallel.

(2) Compute the values of Wh on T. First we compute the function V by solving

(3.6) using the finite element basis {(j>k) described above. The average values

of V are computed by calculating the average values of V. The values of

Wh on T are then computed by solving the trivial equation (3.5).

(3) Extend the boundary values of Wh by solving (3.3). As in Step 1, this

involves Dirichlet solves on the subdomains which can be done independently

and/or in parallel.

(4) Set W = Wp + Wh-

Remark 3.1. When bk = ak = 0, the matrix M can be directly used to compute

the average values of V. Indeed, if V denotes the vector of average values of V,

then by (3.12) and the definition of M,

(3.16) Q(V,4>k) = (MV)k=F(<f>k),

and hence the average values of V are given by

F{4>i) \

F{<t>nd)j

Remark 3.2. The method for computing the average values of V described in

Remark 3.1 may not work well when either bk or äk are nonzero. In the general

case, a matrix M satisfying (3.16) can be derived using similar techniques. In such

cases, M may no longer be symmetric or diagonally dominant. Consequently, it

may be difficult to obtain good numerical solutions for (3.16) when low-order terms

are present. Note, however, that the algorithm described earlier for computing

the average values by solving (3.6) always leads to numerically stable, sparse and

symmetric positive definite systems.

4. Numerical Experiments. In this section we shall present some results

of numerical experiments which illustrate the convergence properties of the pre-

conditioned conjugate gradient algorithm using DD2 as a preconditioner. Two-

dimensional examples where L is given by (1.2) will be considered first. These

examples are taken from [3], so that a direct comparison between the precondi-

tioners DD1 and DD2 can be made.  Next, two-dimensional singularly perturbed

V = M~
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problems of the form (1.5), (1.7) will be studied. Finally, a model three-dimensional

problem will be considered.

To avoid making this section too bng, we shall not attempt to illustrate the full

power and flexibility of the algorithm. Accordingly, other numerical examples on

which we have tested the algorithm will not be included. These examples include

applications to problems with discontinuous coefficients, problems with smoothly

varying coefficients, and problems on domains with irregular geometry (see Exam-

ples 2, 3, 4, and 5 of Part I).

We shall define a number of parameters which will be introduced to study the

convergence properties of the proposed preconditioning algorithm. The condition

number of the preconditioned system is denoted by K. The integer n is defined to

be the number of iterations required to reduce the A-norm (defined by A(-, -)1/2)

of the error En = U — Un by a factor of .0001. Here, U is a randomly generated

solution of (1.5), normalized so that — 1 < U < 1, and Un is the approximation

to U obtained using n steps of a conjugate gradient algorithm preconditioned by

DD2. It is well known that the A-norm of the iteration error satisfies the bound

A{E3,E3)<Ap2iA{E0,E0),

where

(Art -V^-l

We shall sometimes compare p with the average observed reduction po defined by

(A{En,En)\1/2n= (A{En,En)Y

P0     \A(E0,E0)J

Example 1. The first set of numerical experiments is applied to the standard

model problem given by

(4.2) Lu = f    on fi        and       u = 0    on <9fi,

where L is taken to be the Laplace operator —A and fi is the unit square. There

are many techniques available for solving this problem. However, this problem is

interesting in that it illustrates many of the convergence properties of the proposed

preconditioner. The square is partitioned into m2 equal subsquares and hence

d = l/m.

The first table gives some indication of a typical run on an iteration-by-iteration

basis. Here we break the square into sixteen subsquares and hence d = 1/4 and

set h — 1/32. Table 4.1 gives the normalized error reduction as a function of the

number of preconditioned steps in the A-norm and the maximum norm. Note that

it takes 14 iterations to reduce the A-norm error by .0001. For this example, the

average error reduction over 14 steps in the A-norm (resp. maximum norm) was

.52 (resp. .60).



14 J. H. BRAMBLE, J. E. PASCIAK, AND A. H. SCHATZ

TABLE   4.1

Step by Step Iterative Convergence for Example 1.

Iteration

1

2

3

4

5

6
7

8

9
10
11

12

13
14

A-error

8.0 x

4.0 x

1.4 x

5.7 x
2.3 x

1.1 x

5.4 x

2.3 x
1.8 x

1.2 x

6.8 x
3.5 x

1.9 x

9.3 x

10-1

lu"1

10-1

lu"2

lu"2

io-2
IO"3

nr3
IO-3

IO"3

IO"4

IO"4

10~4

IO"5

Max-error

1

1

6.7 x

3.5 x

1.7 x

9.5 x
4.5 x

3.5 x
2.6 x

1.5 x

6.9 x

2.9 x
1.6 x

7.7 x

0
4

IO"1

io-1
io-1
io-2
io-2
io-2
IO"2

io-2
io-3
IO"3

IO"3

IO-4

The next two tables show that, in practice, the condition number of the precon-

ditioned systems exhibit the growth rates predicted by the theory. In Table 4.2,

we fix d = 1/4 and vary h. As predicted by Theorem 1, K grows like d/h. For

Table 4.3, we fix d/h = 4 and vary h. In this case, the condition number for the

precondition system remains bounded independent of h. Tables 4.2 and 4.3 also

give the observed average reduction po and n, the number of iterations required to

reduce the A-norm error by a factor of .0001. The number of subregions m is also

included in Table 4.3.

Table 4.2

Iterative Convergence Results for Example 1 when d— 1/4.

1/8
1/16
1/32

1/64

1/128

K

3.4
7.2
14

30

61

15d
8fi

3.8
7.5
15

30
60

Po

.21

.39

.52

.60

.68

7

10

14

19
24

Table 4.3

Iterative Convergence Results for Example 1 when d/h = 4.

1/8
1/16

1/32
1/64

K

6.6
7.2

7.5

7.6

(>o

.20

.40

.42

.42

6
10
11

11

m

4

16

64
256

Example 2. The next example illustrates the algorithm applied to singularly

perturbed problems. We again consider the unit square with the same subdomain
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subdivisions as in Example 1. For this problem, the form A is given by

(4.3) A{v,<f>) = eD{v,<l>) + (v,<l>).

Table 4.4 gives iterative convergence results when h = 1/32, d = 1/4, e = hp, and

p varies between 0 and 2. This range of e is typically that which occurs when time-

stepping procedures are applied to parabolic problems and e is essentially the size

of the time step. Table 4.4 shows that the condition numbers for the preconditioned

systems, as p varies, remain bounded by the condition number corresponding to

the case p = 0. Similar results were obtained when h and d were varied.

TABLE 4.4

Iterative Convergence Results for Example 2 as p Varies.

K Po

0

0.5
1.0
1.5

2

15.1

14.7

12.4
9.7
6.6

.51

.51

.49

.45

.33

14

14

14

12

9

Example 3. For our final example we consider a model three-dimensional prob-

lem. Here we set fi to be the unit cube and define the subregions by breaking fi

into 27 subcubes of equal size. We let L be an elliptic operator of the form

(4.4) Lu = —V • pVu   in fi,

where p is a piecewise constant function on fi and constant on the subdomains.

Figure 4.1 gives the values of p, as a function of the x, y, z coordinates of the center

of the subregions. These values were chosen to exhibit relatively large jumps across

subregions, but are otherwise arbitrary. Table 4.5 gives iterative convergence re-

sults for the conjugate gradient method preconditioned by DD2 applied to the finite

element equations corresponding to (4.4). Note that even though the coefficients

of the operator have large jumps, the condition number K of the preconditioned

system remains relatively small. In fact, the results reported do not differ signifi-

cantly from results (not presented) for the case p = 1. This is in agreement with

Remark 2.4.

p--z p--\ /A = 10 p'-8 /A=3 /A=l La=883 M = 3 /A = 33

p--\ /i =0.1 /A =10 /A = 889
=22

/A=0.3 p-S /¿ = 8.8 p--Z

/a = 1000 p--\ At =10 p = 47 /A =10 /a=0.88 /A=I0I Ai = 3 p. = 55

0< Z <l/3 1/3 < Z< 2/3 2/3 <Z<|

Figure 4.1
Coefficients for Example 3.
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TABLE  4.5

Iterative Convergence Results for Example 3.

h K po n

1/6 6.8 .39 11
1/12 17.4 .55 16
1/24 38 .64 21
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