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Numerical Solution of Stochastic Differential

Equations with Constant Diffusion Coefficients

By Chien-Cheng Chang

Abstract. We present Runge-Kutta methods of high accuracy for stochastic differential

equations with constant diffusion coefficients. We analyze L2 convergence of these methods

and present convergence proofs. For scalar equations a second-order method is derived, and

for systems a method of order one-and-one-half is derived. We further consider a variance

reduction technique based on Hermite expansions for evaluating expectations of functions of

sample solutions. Numerical examples in two dimensions are presented.

1. Introduction. Recently, the numerical solution of stochastic differential equa-

tions has attracted the attention of researchers in many fields, both in probability

theory and in its applications. Most of the methods that have been developed are of

Taylor series type, in which one needs to evaluate derivatives, and thus has

difficulties in applications to practical problems. Therefore, we are especially inter-

ested in methods of Runge-Kutta type, i.e., one-step methods which require no

approximation to the derivatives of the functions involved. In this paper we consider

the ¿/-dimensional stochastic differential equation

(1-1) dX = f(X) dt + vdVt,,       0 < / < T,

where v > 0 is a constant, f = f(x) is a sufficiently smooth function satisfying a

Lipschitz condition in x, and W, (t > 0) is a ¿-dimensional Wiener process (Brownian

motion). This equation can be interpreted either in the sense of Ito or in that of

Stratonovich [1]. Our results extend readily to the case where f depends also on the

time by introducing t as an additional dependent variable and imagining that the

associated component of the Wiener process is zero.

Equation (1-1) occurs in the study of several physical phenomena, e.g., in the

motion of a particle in the collision theory of chemical reactions [2], in blood clotting

[11], in stellar dynamics [3], signal modeling in communication systems [14], and the

stochastic behavior of fluid particles in turbulence theory [8].

We develop and analyze high-accuracy methods of constructing sample solutions

of (1-1), and we further consider a variance reduction technique for evaluating

expectations of functions of these sample solutions. Consider the partition of the

interval [0, T] given by

n = (o = /0,...,/„, t„+1 = t„ + h.tN=T).
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Let E denote expectation and || • || the two-norm in Rd space. We say that a random

variable Z is of order p in the L  sense if there is a constant C such that

(E\\Z\\")1/CI ^ Ch<>

for all sufficiently small h > 0, and that a numerical scheme has order p in the L

sense if X'"* - X(r„) is of order p in the L sense, where X(n) and X(f„) are,

respectively, the numerical and the exact solution of the stochastic differential

equation at time t„. In the present paper we adopt an L2-norm analysis because it

can best exhibit the nonanticipating property [1] of the solutions of stochastic

differential equations. Our main results are a second-order scheme for scalar

equations,

P("'= vyjO - ß2,

(T)    Q(") = X(") + ^/(X(")) + J'v/ri"/3,

X<"+«. x(,,) + vMVin) + |/í[/(Q(b) + $P<">) + /(Q<")-$P<"))];

and a scheme of order one-and-one-half for systems,

Q(«)=X('"-rUf(X(")),

(S) Q*(") = X(n) + i/if(X(")) + i^ß,

X(«+i) = x<"> + i;AW(B) + ^[f(Q(B)) + 2 • f(Q*(n))] •

Here, AW""» = W, +i - Wv and 6 are ß are defined in (3-4) and (5-3) as integrals of

increments of the Wiener process over the n th subinterval. Scheme (T) does not give

second-order accuracy when applied to systems [4]. The precise statements of the

conditions under which these orders of convergence are proved are contained in

Theorem 1 of Section 3 and Theorem 3 of Section 5, respectively.

Our analysis is based on Taylor expansion of the solution, followed by derivation

of an approximation formula whose Taylor expansion coincides to some order with

that of the solution. This is similar to the method used by Chorin [6] in the

approximation of Wiener integrals.

In practice, a stochastic scheme with high accuracy would still be less competitive

without a substantial reduction of statistical errors in evaluating expectations of

functions of sample solutions. We discuss, in Section 6, a variance reduction

technique, suggested by Chorin [5], based on Hermite polynomial expansions, and

its application to stochastic differential equations. To effect the reduction, we make

use of the nonanticipating property of the solutions and apply Chorin's technique to

the successive differences of the functions concerned at each time step. In Section 7

we give two two-dimensional numerical examples.

The difficulty in solving the stochastic differential equation (1-1) accurately arises

from the nondifferentiability of the Wiener process W,. To take a closer look at this

difficulty, we define the variable

Y(f) = X(t) - p%,       0</<7\

Equation (1-1) then reduces to an infinite set of ordinary differential equations,

(1-2) ^p-ffY + rW,),       0</<7\
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for almost every path of the Wiener process W,. The theory of ordinary differential

equations assures the existence of the solutions Y(i) of these equations, which are

only once differentiable as functions of t. However, since the error estimates of

high-order accuracy methods involve high-order derivatives of \(t), it is not clear

how one is able to obtain methods with high-order accuracy for solving (1-2) or

(1-1).
Historically, let us recall some numerical methods for solving the stochastic

differential equation (1-1). The most commonly used methods are splitting schemes

(see Chorin [7], [8], Franklin [12]). For these schemes, at each time step one

approximates for each sample path of the Wiener process the differential equation

(1-3) dX = f(X) dt

by a method for solving ordinary differential equations, and then one adds to the

approximate solution an independent increment of the Wiener process »>W,. The

simplest example of a splitting scheme is Euler's method which is given by

(E) X("+1) = X(") + /!i(X(")) + »'AW('').

Another example of a splitting scheme, based on the mid-point rule, is

(1-4) X<"+1) = X(n) + hf(X{"] + Uf(X(n))) + pAW<b).

These splitting schemes are only first-order accurate in the L2 sense, no matter how

accurately one solves the nonrandom part (1-3). This will be clear from the analysis

for the scheme (1-4) in Section 2. To obtain more accurate numerical schemes,

McShane [16] has extended the idea of Runge-Kutta methods for ordinary differen-

tial equations to stochastic differential equations. For (1-1), he proposed (see also

Fahrmeir [10])

q(») = x(n) + hf(Xin)) + j>AW<">,

X(«+i) = X(«) + „AW(») + ih[i(\C)) + f(Q<">)].

However, this scheme has the same order of accuracy as the splitting scheme

mentioned above. In fact, based on a one-step error analysis, Riimelin [23] has

shown that, if at each time step only the information AW''0 is used, then for a wide

class of Runge-Kutta methods one can have at best a first-order accuracy. In this

paper we do not discuss the Taylor series method, referring instead to Rao et al. [22],

Mil'shtein [18], [19], Platen [20] and Platen and Wagner [21] for its development. In

most of these references, the authors work on general Ito stochastic differential

equations. In principle, by using an analysis paralleling that of Section 2, we can

derive methods of Taylor series type with arbitrary order of accuracy for Eq. (1-1).

The paper is organized as follows. In Section 2 we analyze a splitting scheme

based on the mid-point rule. In Section 3 we derive the second-order Runge-Kutta

method (T); and in Section 4 we prove its convergence. In Section 5 we prove the

convergence of the method (S). Section 6 is devoted to the study of variance

reduction. Finally, we present numerical examples in Section 7.

2. Analysis of a Splitting Scheme Based on the Mid-Point Rule. For v = 0, the

scheme (1-4) is the Runge-Kutta method based on the mid-point rule for the

equation (1-1) with v = 0; it has second-order accuracy (see Gear [13]). However, in
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this section, we show that if v ¥= 0, the scheme (1-4) is not second-order in the L

sense for any p ^ 2 for the stochastic differential equation (1-1). Without loss of

generality, we may assume that  v = 1  and consider the stochastic differential

equation

(2-1) dX = f(X)dt + dW,,       0<t<T;

and the splitting scheme

(2-2) X<"+1) = X<"> + MV{n) + hf(X<n) + \hf(X{n))).

In analogy with the analysis for ordinary differential equations, we analyze the local

truncation error Dn of the above scheme, which is defined by the equation

(2-3) X(tn + 1) = X(t„) + AH/<"> + */(*(*„) + hhf(X(tn))) - D„.

For simplicity, we denote by bWt the increment W, — Wt, and we further define, for

each subinterval [tn, tn + l], the random variable

(2-4) Y(t) = X(t) - MVn       tn<t*tm+1 = t„ + h.

We note that 7(0 is defined only for r„ < t < tn + h and that

(2-5) Y(tn) = X(tn).

Substituting the definition in (2-4) into (2-1) and (2-3), we obtain

(2-6) ^ =f(Y + l\W,),       t„<t< tH+1 = t„ + h,

and in view of (2-5),

(2-7) -D„ = Y(,ll + l) - Y(t„) - hf{Y(tn) + hhf{Y(tn))).

For convenience of analysis we rewrite -Dn in integral form. Integrating Eq. (2-6)

from tn to tn + h and substituting into (2-7), we obtain

(2-8) -D„ = f" + h [f(Y(s) + AWS) -f(Y(tn) + W(Y(t„)))] ds.

With Dn in this form, further analysis can be made because of the differentiability of

the function /. In the subsequent discussion, we will analyze Dn in the L2 sense, for

the reason stated in the introduction. For this, we make the following assumption:

(2-9) ~ñ~¿f(x) are bounded'       0 < P- < 5.

As indicated in [23], this boundedness assumption is not a serious restriction, since

actual computation requires weaker conditions on /. In the following, 0(hp) will be

employed to denote a stochastic quantity of order p in the L2 sense. In this

connection, we can easily see that (i) (AWS)P is O(h0Sp), and (ii) (Y(s) - Y(tn))p is

0(hp); indeed,

Y(s)-Y(tn) = (s-t„)fx(Y(t„)) + 0(h1¡).

This suggests that we write the first integrand in (2-8) in the form

f(Y(s) + UVs)=f(Y(tn) + [Y(s)-Y(t„) + MVs]).
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Expanding the right-hand side in a Taylor series about Y(tn), and taking into

consideration (i) and (ii), we obtain

f(Y(s) + AWs)=f(Y(t„)) +fx(Y(t„)){Y(s) - Y(t„) + AWS)

(2-10) +yxx(Y(t„))(2(Y(s) - Y(tn))AWs + AWS2)

+ ifxxx(Y(t„))AW/ + 0(h2).

We further expand the second integrand in (2-8) in a Taylor series about Y(tn) and

obtain

(2-11)   /(y(0 + W(X('„)))=f(Y(tn)) + WÁY(t„))f(Y(t„)) + 0(h2).

Substituting (2-10) and (2-11) into Dn of (2-8), we can, after some cancellation, write

Dn in increasing powers of AWS:

-D„=fx(Y(t„))f'"+h AWJs + \fxx(Y(tn))f'" + " AW/ds - Rn,

or, in view of (2-5),

(2-12)    -Dn=fx(X(t„))f'" + h AWsds + yxx(X(t„))f'" + h AW/ds - R„,

where we keep in -Dn only the two terms of the expansion (2-11) of leading order in

AW¡, and group all the other terms in the remainder

-Ri,=fÁY(t„))f'" + h [(Y(s) - Y(tn) - W(Y(t„)))} ds

(2-13) +LÀY(t„))f'" + h (Y(s) - Y(tn))AWsds

+ lfxxx(Y(0)f'"+hW?ds + 0(h>).

We now want to show that the remainder -Rn is 0(h25). Recalling (i) and (ii), we

can see that the second and third terms in the right-hand side of (2-13) are 0(h25).

That the first term is 0(h25) follows from the following calculations:

f'" + "[Y(s)-Y(tn)-W(Y(t„))}ds
i„

= f'" + " f[f(Y(r) + AWr)-f(Y(t„))]drds

= /'"+" f[fx(Y(tn)AWr) + 0(h)]drds

= /v(nO)f" + " f AWrdrds+0(hy).
'„ '„

With this expression, (2-5) and (ii), -R„ can be written in terms of increments of Wt:

-Rn=fx1{X(t„))j,"+h f AWrdrds
'„ '„

(2-14) +f(X(tn))LAX(t„))fi'" + " (s - t„)AWsds

+ Uxxx(X(tJ)f'" + hAW/ds + 0(h^.
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For the sake of brevity, we introduce the random variables y, 8 and t by

h25y = f'"+h (s - tn)AWsds,    h2i8 = f'" + h f AWrdrds,

(2-15)
h25T= /        AW/ds,

',,

suppressing time-dependence for convenience. From these definitions it is clear that

the variables y,8, t are all of order zero in the L2 sense. Then the expression (2-14)

can be abbreviated as

(2-16) -Rn = h2i{f28+ffxxy + lfxxxr) + 0(h3),

where all the functions are evaluated at X(tn). Thus, together with (2-12), we see

that D2 is 0(h3), and therefore (2-2) is at best of order 1 in the L2 sense, and hence

in the L sense for p > 2, by Liapunov's inequality [9]. Indeed, Scheme (2-2) is a

first-order method, as can be shown [4]. The expressions of -Dn in (2-12) and -Rn in

in (2-14) are illuminating in the sense that, for each term therein, the integral part (of

increments of Wt) is independent of the preceding product of functions evaluated at

X(tn). This is a consequence of the nonanticipating property of the solutions of

stochastic differential equations [1].

Remark. In the above discussion we often encountered expressions of half-integral

order, due to the appearance of AWS to an odd power. Recalling the nonanticipating

property of the solutions of stochastic differential equations, we conclude that the

expectations of the leading terms in these expressions vanish. We will use this fact

repeatedly in the later development.

3. A Second-Order Runge-Kutta Method. We remarked in the introduction that a

splitting scheme can at best have first-order accuracy in the L2 sense. However, in

this section we will show that by interlacing the function / and the Wiener process,

it is possible to get Runge-Kutta methods of higher accuracy. As a preliminary step,

the analysis of the splitting scheme (2-2) with the local truncation error Dn in (2-12)

suggests that we consider the following Taylor series method:

Q(»)= X(") + i/î/(X(")),

(3-1) X(" + 1) = X(n) + AW(n) + /z/(Q(,,))

+/X(X<">) f"+h AW5ds + kfxx(X^)f" + h AW/ds.
Jt„ Jt„

The local truncation error of the scheme is given by Rn in (2-16), i.e., the exact

solution X = X(t) of Eq. (2-1) satisfies

X(t„ + l) = X(tn) + AW^ + hf(Q(tn))

(3"2) +/.WO) r" Wsds + \fxx(X(tn))f" + h AW/ds - R,„

where we define

(3-3) Q(tn) = x(t„) + W(x(t„)).

Since Rn is of order 2.5 in the L2, and thus in the Lx sense, we would expect that

Scheme (3-1) has order 1.5 in the L, sense due to the accumulation of the local

truncation errors. However, an L2 analysis shows that the scheme considered is in



STOCHASTIC DIFFERENTIAL EQUATIONS 529

fact a second-order method. Nevertheless, our analysis will not be made directly on

the scheme (3-1). This scheme is an intermediate step which leads to a more

satisfactory method of Runge-Kutta type. Before we go further, let us define, for the

sake of brevity, random variables ß and 0 by

(3-4) hlsß= AWsds,       h26= AW/ds,
J'n J'„

where, again, the time-dependence is suppressed. Clearly, ß and 6 are all of order

zero in the L2 sense, and (3-1) can be rewritten as

n(»)= X(H) + W(X(n)),

(3-5)
X(„ + D = X(„) + AW/(») + /,/(q(»)) + tf*ßfx(Xw) + 2-h26fxx(X(n)),

which has a more convenient form to develop into a Runge-Kutta method. First, we

add a term involving ß to Q(,,) so that the first derivative term in X("+1) will appear

implicitly. Observe that

hf(Q{n) + Jhß) = r¡/(Q<M)) + h15ßfx(X(n)) + \h2ß2fxx(X(n)) + 0(h25),

which leads us to consider the following scheme:

Q'(") = X(") + 4/2/(X,")) + Jhß,

X(»+D = X(») + AWr(») + hf(Q'(n)) + \h2(6 - ß2)fxx(X(n)).

Its local truncation error Vn is defined by

(3-7)    X(tm+1) = X(t„) + AW^ + hf{Q'(t„)) + \h2{0 - ß2)fxx(X(t„)) - Vn,

where

(3-8) Q'(t„) = Q(t„) + Jhß = X(tn) + W(X(t„)) + 4hß.

Here we have been careful to make the local truncation error Vn of Scheme (3-6)

have the same order (in the L2 sense) as Rn of Scheme (3-1) (or (3-5)). This can be

seen by analyzing Vn further. As a starting point for seeing that V„ and R „ are of the

same order, we carry out the Taylor expansion:

¥{QVn)) = ¥(ô(0 + Va/î)

(3-9) = hf(Q(t„)) + h"ßfx(Q(tm)) + \h2ß2fxx(Q(t,,))

+ ïh2Wfxxx(Q(tn)) + 0(hi).

Recall the definition of Q(t„) in (3-3). Each term on the right-hand side of the above

equation is then expanded in a Taylor series about X(tn), and this gives

hf(Q'(t„)) = hf(Q(t„)) + h1WÂX(tn))

(3-10) +ky'ßf{X(tn))fxx{X(tn)) + \h2ß2fxx{X(tn))

+ \h2Wfx(X(tn))A-0(tf).
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Substituting this result into (3-7), we obtain, after some cancellations,

X(tn+l) = X(t„) + AW^ + hf{Q(t„))

(3n) +hlißfx{x(tn)) + hh2efxx{x(tn))

+ ±h25ßf(X(t„))fxx(X(t„))

+ lh2-5ß'fxxx(X(t„))-V„ + 0(hi).

Recalling the definitions of ß and 6 in (3-4) and comparing this expression with

(3-2), we can relate Vn and R n by the equation

(3-12) -R„ = -V„ + h2S{Wfxx + i/*3/,J + O(h'),

where all the functions are evaluated at X(tn). Since Rn is of order 2.5 in the L2

sense, so is Vn. However, it is still not clear how one is able to derive a Runge-Kutta

method from the scheme (3-6), because it contains a second derivative of / with a

coefficient containing 6 - ß2. Fortunately, the Cauchy-Schwarz inequality yields the

interesting relationship

(3-13) lf'"+h AWsds\   <hf'"+h AWs2ds,

which implies that 6 - ß2 is nonnegative. Following this observation, (3-6) suggests

the following Runge-Kutta method:

p(»)= Jo-ß2,

(3-14)    Q'<"> = x<"» + W(X(,,)) + Jhß,

X(n+i) = X(») + älvuD + ih[f(Q'(n) + v^"P(")) +/(Q'<") - v^P"0)]'

with ß and 6 defined in (3-4). This scheme is obtained by a symmetry consideration

so that we need to evaluate only one intermediate value, i.e., Q'{n) at each time step.

We now state the main result of this section.

Theorem 1. Let f be a smooth function satisfying the condition stated in (2-9). Then

the above scheme is second-order in the L2 sense, provided that the initial condition is

imposed with second-order accuracy in the L2 sense.

Note that, in Scheme (3-14), if we replace ß by vß, 6 by v20 and P(n) by pP<">,

then we obtain the corresponding scheme (T) for solving Eq. (1-1). As v tends to

zero, this scheme reduces to the ordinary mid-point Runge-Kutta method, as we

would expect. Before we prove Theorem 1, we will analyze the local truncation error

Tn of Scheme (3-14), which is defined by the equation

(3 15)    x(tn + i) = ^n) + AW^

+ e*[/(ß'(Ü + ̂ P(n)) +/(ß'(0 - ^P('°)] - T„.

We start by considering the Taylor expansions

f{QV„) ± ïï?(n))

(3-16) =f(Q'(ti,))±JhP(")fx(QVi,))

+ W")zfxx(Q'(tn)) ± \h^2(?^ffxxx{Q'(tn)) + 0(h2).
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Recall the definition of Q'(tn). Further manipulation yields

\h[f{Q'(tn) + v^P*"') +f{Q'(t„) - ^P("')]

= */(ß'(0) + hh2{PwffxÁX{tn)) + \h2iß(^)2fxxx{X(tn)) + 0(h3).

Substituting the above result into (3-15), with P(n) defined in (3-14), we obtain

X(tn + l) = X(tn) + AW^ + hf{Q'(tn))

+ \h2(e - ß2)fxx(x(tn)) + \h™ß{^)2fxxx{x{t„)) -Tn+ o(h>).

By comparing this expression with (3-7) we can relate Tn and Vn by the equation

(3-17) -V„ = -T„ + 2h25(8 - ß2)fxxx + 0(h3).

As before, fxxx is evaluated at X(tn). Now we are ready to write down explicitly the

local truncation error Tn of Scheme (3-14), since we have the relationship (3-12)

between Rn and V„ and the relationship (3-17) between Vn and T„. The result is

(3.18)    -T„ = h2i{\(2y - ß)ffxx + 8f2 + ¿(t - 3ß9 + 2ß*)fxxx) + h3^,

where y, 8 and t are the random variables defined in (2-15), where T,[ is of order

zero and all the functions are evaluated at X(tn).

4. Convergence of the Second-Order Runge-Kutta Method (Scalar). In this section

we prove Theorem 1. Let us write down the numerical scheme considered,

(4-1)    X{" + 1) = X(n) + AWin) + kh[f(Q'{n) + v77P<"))+/(Q/(")- A"P(,,))],

and the exact equation with the local truncation error,

X(t„ + l) = X(tn) + AW{n)

(4"2) +**[/(ß'(U + ̂ P<">) +f{QV„) - ^P(n))] - T„.

Let e„ denote X(n) - X(tn). As in the theory of numerical solution of ordinary

differential equations, we subtract Eq. (4-2) from Eq. (4-1). This gives

(4-3) en+1 = e„ + \hvn + T„,

where we define

v„ - »».++ »«,-

and

o„,±=f(QV.) ± fi?iH)) -f(Q'(n) ± ^p<">).

To make an L2-norm analysis, we square both sides of (4-3) to get

(4-4) e2n + x = e2n + he„vn + \h2v2„ + 2eJn + hvj„ + T2.

We now estimate the expectations of each term on the right-hand side of the above

equation. By assumption, / satisfies a Lipschitz condition,

\f{x)-f(y)\^L\x-y\,       x,y<=R,

where L > 0 is a constant. Consider vn+ and v„_. Recalling the definition (3-8) of

Q'(tn) and applying the Lipschitz condition on /, we obtain

\vnJ^L\Q(tn)-Cj^\^L{\+{hL)\en\.
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Therefore, the second term on the right-hand side of (4-4) can be estimated as

(4-5)    \E(henv„)\^ hE\e„vn\^ hE{\en\ k,+ + »„,- I) < 2AL(l + 2hL)E{e2).

The estimation of the third term is similar, and we have

(4-6) E{\h2v2) < \h2E{v2) < h2L2{\ + \hL)2E(e2n).

Next comes the fourth term, where we need to take into account Tn given in (3-18),

thus T„':

(4-7) \E(2enT„)\=2h'\E{eX)\^ZihLE{e2n) + e^h^T,;2),

where we employ the inequality 2ab ^ a2 + b2 with a = (elhL)1/2en and b =

(£1/jL)~1/2/z27,„', and e{ is an appropriate positive number. A similar trick can also

be applied to the fifth term and yields

(4-8) \E(hv„Tn)\^\e2hL(l +\hL)2E[e2} + 0(hb),

where, again, e2 is an appropriate positive number. In this estimation we use the

obvious fact that T2 is 0(h5); actually one can show [4]

(4-9) E{Tf2) < E{G2)h5 + 0(hb),

where

C2 = —f2f2 + —-f4 + f2"     40' Jxx     20 Jx      30340Jxxx'

Finally we reach the stage of estimating the whole equation (4-4). By taking

expectations on both sides of (4-4) and collecting the results from (4-5)-(4-9), we

obtain

(4-10)    E(e2+l) < B(h)E(e2) +\e{G2) + U^E (r„'2)] A5 + 0(h6),

where

B(h) = 1 +(2 + £l + e2)hL+(2 + e2/2)h2L2 +(l + ie2)/t3L3 + \h4L4.

To have a common bound for all time steps, for fixed h0 < 1, we define A =

maxllhiih{iE(G2) and B = max,lh<hoE(Tn'2), and set M = A + {e^L^B. Then

the inequality (4-10) becomes

E(e2+i) < ei2+c)hLE{e2) + Mh5 + 0(hb),

where we choose e = ex + e2 so that B(h) < e(2+*)A£ This is a recursive relation

that we often encounter in the theory of numerical solution of ordinary differential

equations. An elementary calculation shows

(4-11) E{e2) < eQ^T£)LMkA + ei2+e)'"LE(eo) + °^5)-

The right-hand side of this inequality is of order 4, provided that the initial

condition is properly imposed. Suppose that E(e^) < C0h4, where C0 is a constant.

Substituting this into the above equation and taking square roots, we complete the

proof with [E(e2)]1/2 < Ch2, where

1/2

C=  sup ( ,„ M w (e(2+*TL - 1) + C0g(2+erL) + 0(h))    .   D
/,</I„l(2 + e)L j
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Remark. There are two reasons for introducing the two positive numbers el and

e2: to keep track of the "interaction" between Tn and en (see (4-7)) or v„ (see (4-8)),

and to balance the error contributions from the initial error and local truncation

errors (see (4-11)) in the hope that the constant C can be minimized with suitable

choice of e, though we have not done so.

5. Runge-Kutta Methods of Order One-and-One-Half (Scalar & System). There

are two main difficulties with Scheme (3-14): the first is that we do not have an

efficient way to sample systematically the Gaussian variables ß, AW(n) and the

non-Gaussian random variable 6 (see [15]), and the second is that it will not be a

second-order method when applied to a system.

To sample only Gaussian random variables, one must be content with schemes

with less accuracy. In this section we provide such schemes, of order 1.5 in the L2

sense. The main advantage with the schemes is that they will maintain the order of

accuracy when extended to a system of stochastic differential equations. We consider

the scheme (S) and prove the following theorem.

Theorem 2. Suppose that f has bounded partial derivatives up to fifth order. The

scheme (S) is of order one-and-one-half in the L2 sense, provided that the initial

condition is imposed with accuracy of order one-and-one-half.

Proof. First, we consider the scalar case. There is no substantial difference

between this proof and that of Theorem 1. We need only to check whether the

technique used in the latter can be applied to this case. The key point is to examine

the local truncation error of Scheme (S) for the scalar case, which is defined by the

equation

(5-1)    X(tn+l) = X(t„) + AW^ + hh\f{Q(t„)) + 2 -/(ß*(Ü)] - T*,

where we define

ß*(ü = x(t„) + W(x(t„)) + li/hß.
To make an error analysis, we carry out the following Taylor expansion:

hf{Q*(tn)) = hf{Q(t„) + lilhß)

= hf(Q(tn)) + \h^ßfx{X(t„)) + ¡h2ß2fxx(X(t„)) + 0(h2i)

= hf{Q(tn)) + ifx(X(tn))j'" + h AWsds + ¡h2ß2fxx(X(t„)) + 0(h2i).

Replacing f(Q*(t„)) in (5-1) by the above expression, we obtain

X(tn+1) = X(tn) + AW^ + hf(Q(tn))

+fx(X(t„))f^h AWsds + \h2ß2fxx{X(tn)) - T* + 0(h2¡).

Comparing the above expression with (3-2) and recalling the definition of 6 and that

RI: is of order 2.5, we arrive at

Tn* = kh2Ux(tn)){e-\ß2) + o(h2i).

One major fact about T* is that its expectation is of order 3. The reason is that (i)

the expectations of those terms of 2.5 are zero, and (ii) E[(ß2)] = \ and E(6) = \,

which make the leading terms in T* cancel each other after taking expectations.
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With this fact in mind, the rest of the proof proceeds exactly as in the proof of

Theorem 1. Note that (T*)2 is of order 4. The result is

E{e") < èô ■ e(2(ÍTe)~L   ^ + e(2+e)TL£(eo) + °^>

where D2 = max,, h^h E[fxx(X(tn))], and e > 0 is defined in a similar way as in

Theorem 1.    D

System Case. Via an elaboration, one can show that for the system case the

corresponding local truncation error for the scheme (S), in component form, is

(5-2) T,r = \h2f!jk(X(t„)){0Jk - \ßJßk) + 0(h25),

where a subscript with a comma denotes differentiation, the summation convention

is assumed, and the random variables ß = {ßJ} and 6jk are defined as follows,

(5-3) hl5ßJ= f'"+h AWJds,       h26jk =  l'" + h AW/AWskds,

in analogy with the definitions of ß and 0 in (3-4). Since the components of a

Wiener process are independent, E(T*') is of order 3, due to the nonanticipating

property. This is the key to the proof of Theorem 2 for both scalar equations and

systems. Some work shows that the error is bounded by (see [4])

1 p(2fd+c)TL _ -i

E lleJI2   < -^ ■ —P--d2(d+\)D2h3
(5-4) y '      240       (2]fd +E)L

+ e^+l)TLE{\\e0\\2) + O(h4),

where D2 = max„Ä^ h E[T.¡ j k(ffjk(X(t„)))2]. This completes the proof of Theorem

2.    D

From the expression (5-4) we see that, if the initial error is sufficiently small, then

for h ~ 0.01, Scheme (S) is practically of order 2 in the L2 sense. We conclude this

section by indicating that the general idea in designing a scheme of order one-and-

one-half, like Scheme (S), is to consider the family

q(«) = X<">+ |M(X(n)) + rWA ß,

(5-5) Q*e» = x<">+ 2-hf(Xin)) + l/hß,

X<«+D= x<"> + AW(n) + h[af(Qin)) + bi(Q*(n))],

where a, b, k, I are parameters to be determined. In a similar way as we did in the

proof of Theorem 2, we find that the exact solution of the stochastic differential

equation (1-1) satisfies

X(tn + l) = X(tn) + AW^ + h(a + b)i(Q(t„))

+ h(a-k + b-l)ßJfj(X(t„))

+ \h(a-k2 + b- l2)ßJßktJk(X{t„)) - T*("> + 0(h25).

Now we make a choice so that a Taylor expansion ofX(t„+l) matches the right-hand

side up to order 1.5 and find

(5-6) a + b = 1,        a ■ k + b ■ I = 1.
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Then the local truncation errors T„* of the schemes in (5-5), in component form, are

T,r = kh2fjk{X(tn)){6Jk -(a -k2 + b- l2)ßJßk) + 0(h2i).

However, as follows from the proof of Theorem 2 (or 1), we may wish to minimize

the contribution of the local truncation error T*'. One way to achieve this is to

choose the parameters so that the expectations of the leading terms of T* are zero

(e.g., in (5-2)). This leads to

(5-7) a- k2 + b- l2= I

The case corresponding to Scheme (S) is a = \, b = f, k = 0, / = §, which is

clearly a solution of Eqs. (5-6) and (5-7), but this choice is not essential.

6. Variance Reduction Using Hermite Polynomials. In this section we consider a

variance-reduction technique for evaluating expectations of functions of solutions of

stochastic differential equations. Intrinsically, the numerical evaluation of expecta-

tions involves a sampling process, i.e., Monte-Carlo computation. Being a finite

process, Monte-Carlo computation creates statistical errors due to imperfect sam-

pling. The errors depend heavily on how one choose the estimators.

Our goal is thus to construct estimators with a small variance. We start by

considering Chorin's variance reduction technique for evaluating functionals of

Gaussian random variables. This technique exploits specific properties of the Hermite

polynomials. Then we show how to implement Chorin's technique for functions of

solutions of stochastic differential equations.

Chorin's Estimator. Consider a random function g(£) = g(£\ ..., £rf), where

4 = (I1,..., £rf) is an /^-valued Gaussian random variable with distribution N(0, Id).

The expectation of g(£) is

E[g(i)\ = E[g(e,...,$")] = (2*yd/2f g(u)e-'i«iiV2¿U)

where u = (w1,..., ud), du = du1 ■ • • dud, and we recall that ||u|| is the 2-norm of u

in the RJ space. The Gaussian random variable £ can be readily sampled (see

Section 7). The usual Monte-Carlo estimator for £[g(ij)] is given by

y-i ./=i

where {£*} are drawn from the Gaussian distribution with mean 0 and variance 1.

The standard deviation of this estimator, which yields the order of magnitude of the

error, is

(6-1) N-^2{E[g2U)}-[Eg(i)]2)l/2,

which is proportional to N~l/2, thus may not be acceptable for reasonable size N.

Hence, an estimator of £[g(ij)] with smaller standard deviation is needed to achieve

more accuracy in Monte-Carlo computation.

Chorin [5] proposed a method to obtain an estimator for obtaining E[g(£)] with a

substantial reduction in standard deviation. The idea is to use a finite Hermite series

for the goal function g to design an estimator of control variate type for £[g(£)].
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The set of Hermite polynomials

Í-D"    ,     d"
H (z) = ±-±2-ez /2—e~z /2 « = 12

"{  '       fi\ dz" '

form a family of orthonormal functions in the space L2(R) of square integrable

functions defined on R with respect to the weight e'z~/2/ ]¡2tt . That is,

(2t,)-1/2/ H„(z)Hm(z)e-^2dz = 8nm.

In general, let m = (ml,...,md) with mJ nonnegative integers, and set |m| = ml

+ ■ • ■ +md. We define the product polynomials

Hm = H(ml.m» = //„,(«') ■■■ Hm„(ud).

Then the family of functions

(6-2) Hm(u) ■ e-IN2/2)       0 < |m| < oo,

forms a complete orthonormal set in the space L2(Rd) of all square integrable

functions defined on Rd with respect to the weight (27r)"'y/2e"ll"ll"/2. For a more

detailed analysis of the family of Hermite polynomials Hm, see Chorin [8], Maltz

and Hitzl [17]. Assuming that the function g(u)e-l|u" /2 is square integrable, we can

expand it in terms of the orthonormal functions in (6-2):

^(u)e-||u||V2=Eam//m(u)e-||u||V2)

m

i.e.,

S(") = E amHm(u),
m

where we have

(6-3) am = E[Hm(i)g(i)} = i»""72/ Hju)g(u)e-^2/2du

because of the orthonormality

E[HaU)Hm(i)} = £[//„,.AH)Hmi.m,(4)] = Ôn,m = 5„,m,.„^.

We also notice that (i) a0 = E[g(£)] and (ii) E[Hm(i)} = 0 if m * 0. Therefore,

(6-4) E[g(Í)] = b0 + EÍgU)-    E   bmHm(i)\
1 |m|<|p| I

for any set of numbers ( bm} and p. In actual computation, we will take {bm} to be

{am}. The success of Chorin's variance reduction lies in the fact that this identity

does not imply that the Monte-Carlo estimators on both sides will have the same

standard deviations. Chorin's idea is to make a first sampling to determine the

coefficients bm in (6-4) according to the formula (6-3), then a second sampling to

simulate the Gaussian variables that appear in the argument of g and the

polynomials Hm = Hm\     m,i on the right-hand side of (6-4). Specifically, we have

(6-5) a*m = 1 £ {Hm(ij)g(kj))
y-i
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and

(6-6) *S + ¿E{*(i)-    E   a*mHmm),
j   K ImKlPl '

where £■ = {£!} and £■ = {|j} are two sets of independent samples drawn from the

Gaussian distribution with mean 0 and variance 1. The formulas (6-5) and (6-6) are

called Chorin's estimator for E[g((/)}. In order to see the standard deviation of

Chorin's estimator, let us define the remainder

(6-7) rp(u) = g(u)-    E   amHm(u).

Maltz and Hitzl [17] have shown that Chorin's estimator has the following standard

deviation:

/ \1/2

(6-8) N-^lEWrj' + N-1   ¿Z   a2)     ,
\ |mK|p|       /

where o2 is the variance of a* in (6-5) with N = 1, i.e., the single sample variance

for the Monte-Carlo estimate of am. Note that für ||2 and a¿ are complementary in

the sense that as |p| increases the former goes up while the latter goes down. For each

TV, an optimum p could be determined. See Maltz and Hitzl [17] for a detailed

discussion.

Partial Variance Reduction. Let <j> be a sufficiently smooth function. We imple-

ment Chorin's variance reduction technique to evaluate the expectation E[<f>(Xln))]

where X("> is a numerical solution of the ¿/-dimensional version of (2-1). Replace

AW*"' by ïfha("); then the methods that we consider in this paper have the form

(6-9) x("+1>= X(n) + v/Äa(B) + A¥(n).

We note that ß(n) is included in ^<n) except in Euler's method, so that X'"', thus

<f>(X(">), is a function of the n pairs of Äd-valued Gaussian random variables ot(*\

ß(*\ 0 < k < n, since we implement the scheme (6-9) n + 1 times. That is, 4>(X('")

is a function of 2 • (« + 1) • d (scalar) Gaussian random variables. Therefore, it

would be too expensive, even if the variance technique considered in the previous

section were applied only once to all these Gaussian variables to evaluate the

expectation [<i>(X(n))]. Instead, we wish to do only partial variance reduction, i.e., to

determine an expression for E[<b(X(n+1))] with certain distinguished Gaussian

variables, and apply Chorin's variance reduction technique to them only. First, we

observe that

<i>(X(" + 1)) = <p(X(n) + vW"' + /î¥(">)

= <Í»(X<0) + v^[a<0> + • ■ • +«<">] + /z[*<°> + • • • +*<"']),

from which we see that the accumulating random variable ot(0) + • • • +ct(n) plays a

major role in determining $(X(" + 1)), while the individual a(k\ 0 < k < n, play only

a minor role. Hence, the obvious strategy is to apply Chorin's estimator to evaluate

E[<p(Xin))] at each time step with respect to ot(0) + ••■ +a(n) only. The main

drawbacks with this strategy are (i) that variance reduction is only done with respect

to (a(0) + • • • +a(n)) and (ii) that there is no connection between two successive

evaluations  E[<¡>(Xin))] and  E[<b(X(n+1))]. To improve this variance reduction
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technique and 'link' {£[<i>(X('")]}, we write

<Hx("+1)) = [^(x("+1»)-<i.(x("))]

+ • • • + [<í>(x^+1)) - <í.(x(A))] + • • • +«í>(x(ü)).

For each piece <J>(X(A + 1)) - (¡>(Xik)), we carry out the Taylor expansion of r>(Xa + 1))

about X<*>:

<p(Xik + 1)) - <p(X<k)) = tj(XW)[Jhaw + h*w]j

+ {h$JI(X(k>)ct(k»awl + 0(h15),

where a(k) = {a(k)l} is the random variable sampled at the kth time step. Moving

the first term on the right-hand side to the left and denoting the resultant expression

by <ï>(/i), we have

$<*> = cp(X(k + l)) - <{>(X<k)) - ifh<¡> ,(X<*>)a(*»

(6-11) = A^(X(*>)*(*W + U^7(X(A»)«(A)y«a)/ + 0(hl 5).

Note the independence between a(k) and X(A). Taking expectations on both sides of

the first equality in (6-11) and summing the results over k from 0 to n, we have

(6-12) £[</>(X(" + 1))] =£[$<">]+ ••• + £[<D(0)] + £[<í>(X(ü>)],

which is equivalent to

(6-13) £[<i>(X("+1»)] = £[<f>(X(">)] + £[$<"»].

Thus we obtain a recursive relation between E[<¡>(X(n))] and £[<i>(X("+1))]. From

the second equality of (6-11) we see that for each fixed k, a(k) plays a leading role in

determining $(/°. By a similar argument, following (6-10), one can easily see that

a(0) + ... +a(A:_1) plays a major role in determining <f>y(X(A)) and <bJk(X(k)).

Hence we have the following

Strategy (S): We evaluate the expectation E[(j>(X("))] by applying Chorin's

estimator (6-5, 6) to evaluate E[<b°']] in (6-13) with respect to a'"1 and

(a<0) + ... +a('Oy y^ (normalized N(0, Id)), where $<n> is computed according to

the first equality in (6-11), and adding the result to the estimate of £[^(X("')]

obtained from the previous time step.

To see how the standard deviation, at each time step, of the estimate in Strategy

(S) will accumulate, and whether this accumulation will destroy the accuracy of the

variance reduction, we need the following lemma.

Lemma. Let z,, z2,..., z„ be n random variables; then their variances and the

variance of their sum satisfy the inequality az+ ...+ z < [a, + • • • +o, ]2. Hence, by

the Cauchy-Schwarz inequality, we have o2 + ... +. < n[o2 + ■ ■ ■ +o2].

From the second equality in (6-11) we may write $(A) = hG(k) for each fixed k,

where G(A) is of order zero. Then from (6-8) we see that the standard deviation

SD(A) of Chorin's estimator for each £[<&{k)] is of order

i  r       2     1 11/2
(6-14) />-SD<*> = /f-^  £|kp||   +j,   L   o2
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for some p, where r is defined similar to (6-7), with g = G(A), and where we

suppress the dependence of rm on k. Let the maximum of (6-14) over k be SD</C||)

for some k0; then by the lemma we have the bound n ■ hSDiko) = tn • SD(A,>) for the

estimate in Strategy (S). Hence we have

Theorem 3. The standard deviation of the estimator in Strategy (S) for evaluating

E[<j>(X(n))] with N samplings is of the form (6-8), which is proportional to tn at the nth

step, i.e., the piecewise application of Chorin's variance reduction technique to each

summand in (6-12), produces a standard deviation as in (6-8).

7. Numerical Implementation. In order to compare their accuracy, we implement

the schemes (E) and (S) given in the introduction. We present two two-dimensional

examples: one is a linear equation, and the other is nonlinear. Recall that we

assumed boundedness on f and its first few partial derivatives in Theorems 1 and 2.

However, it is clear that these theorems still hold if f satisfies a Lipschitz condition

and all the expectations appearing in the proofs are uniformly bounded in the L2

sense. Our first test equation satisfies this less restricted condition, while it is also

interesting to observe the numerical results for the second test equation.

As in (6-9), for each time step, we set AW = {ha.. To simulate the Gaussian

random variables a and ß in Euler's method and Scheme (S), we write

« = i       ß=H+^T,,

where £ and n are two independent /^-valued Gaussian variables with distribution

/V(0, Ij). These expressions give the correct correlation between a and ß. Then £ and

T| are sampled according to the Box-Muller formula

£' = cos(277i/)[-21og(f;')]1/2,       ,,< = sin(27ru')[-21og(i/)]1/2,

where u and v are two independent /^-valued uniform distributions over [0, \]d. For

different time steps, we sample independent pairs {u, v}.

Our first computational example is the 2 X 2 system of linear equations

dXl = -X2dt + dW1,       dX2 = -X1 dt + dW/

with zero initial data ^(0) = X2(0) = 0. Adding these equations together, we find

upon integration

X\t) + X2(t) =  [' e-l'-»d(W} + W2)

which, for each fixed t, is a Gaussian random variable with mean 0 and variance

1 - exp(-2r). In this example, we evaluate numerically

£[cos(A"(/) + X2(t))} = exp(Kl - e~2')).

The second computational example is the 2 X 2 system of nonlinear equations

dXx = \e~fX, + x2)dt + dW1,       dX2 = \e-iX' + x2)dt + dW;

with the zero initial data ^'(0) = A'2(0) = 0. By a calculation we obtain

e(X'(l) + X2(')) = e(W;+W,2)l-i   +    /"'e-(»í+»>?)áy|.
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In this example, we evaluate numerically

,(Xl(t) + X2(t))
2e'- 1.

For each scheme we compute the expectations in two ways: (i) the usual Monte-Carlo

estimator, and (ii) Chorin's estimator in Strategy (S) of Section 6. The errors depend

on the time stepsize Ai and the number of simulations, N, for which we use 10000.

Tables 7.1-7.3

Numerical results for E[cos(Xl(t) + X2(t))], errors/standard

deviations are in exponential form.

Table 7.1

Example 1:   t = 0.2    N 10,000 Exact Value = 0.8480

A t Euler's Method Scheme (S)

0.2000 -2.85-2/2.33-3 -2.92-2/2.16-4 2.77-3/1.96-3 2.31-3/1.67-4

0.1000 -1.50-2/2.14-3 -1.36-2/5.15-4 -7.32-4/1.97-3 5.26-4/3.86-4

0.0500 -8.46-3/2.09-3 -6.66-3/2.21-4 -1.70-3/2.01-3 3.28-5/1.89-4

0.0250 -3.87-3/2.05-3 -3.07-3/1.73-4 -5.74-4/2.01-3 1.83-4/1.80-4

0.0125 6.15-4/2.00-3 •1.56-3/2.25-4 2.22-3/1.98-3 4.46-5/2.64-4

Table 7.2

Example 1:   t = 0.4    N 10,000 Exact Value = 0.7593

A t Euler's method Scheme (S)

0.2000 -4.14-2/3.39-3 -3.88-2/1.55-3 6.83-4/1.18-2 2.88-3/2.24-3

0.1000 -2.10-2/3.22-3 -1.87-2/7.56-4 -1.85-3/2.96-3 3.05-4/1.17-3

0.0500 -9.16-3/3.14-3 -8.52-3/5.00-4 -6.40-5/3.04-3 4.80-4/5.48-4

0.0250 -7.54-4/3.03-3 -4.52-3/7.08-4 3.67-3/2.98-3 -6.60-5/7.07-4

0.0125 5.67-4/3.01-3 -2.22-3/7.62-4 2.71-3/2.98-3 -2.87-5/7.58-4

Table 7.3

Example 1:   t = 0.8    N = 10,000   Exact value = 0.6710

A t Euler's Method Scheme (S)

0.2000 -4.40-2/4.28-3 -4.20-2/2.29-3 1.96-2/3.88-3 1.80-2/1.79-3
0.1000 ■1.79-2/4.13-3 -1.88-2/1.07-3 2.29-3/3.94-4 1.25-3/1.21-3
0.0500 -4.57-3/3.91-3 -1.08-2/1.92-3 5.26-3/3.86-4 -9.18-4/1.89-3
0.0250 -1.00-3/3.91-3 -5.24-3/2.44-3 3.69-3/3.87-3 -3.57-4/2.11-3
0.0125 1.57-3/3.87-3 -2.36-3/2.20-3 3.94-3/3.85-3 5.74-5/2.18-3
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Tables 7.4-7.6

Numerical results for £[exp(.¥'(/) + X2(t))], errors/standard

deviations are in exponential form.

Table 7.4

Example 2:   t = 0.2    N = 10,000    T = 1.4428

A t Euler's method Scheme (S)

0.2000 1.68-1/1.30-2 1.58-1/3.24-4 -3.13-3/1.00-2 -1.08-2/9.49-4
0.1000 7.72-3/1.13-2 6.96-2/1.19-3 3.14-3/1.01-2 -3.63-3/8.35-4
0.0500 3.97-2/1.07-2 3.29-2/9.63-4 5.37-3/1.02-2 -1.18-3/2.20-4
0.0250 2.12-2/1.04-2 1.62-2/1.17-3 4.77-3/1.01-2 -2.38-4/1.12-3
0.0125 1.73-2/1.03-2 7.91-3/1.22-3 9.17-3/1.02-2 3.14-4/1.20-3

Table 7.5

Example 2:   t = 0.4    N = 10,000    T = 1.9836

A t Euler's method Scheme (S)

0.2000 3.52-1/2.76-2 3.34-1/7.51-3 -7.94-3/2.18-2 -2.23-2/5.84-3
0.1000 1.67-1/2.44-2 1.45-1/3.90-3 1.17-2/1.96-2 -7.97-3/3.32-3
0.0500 7.80-2/2.26-2 6.99-2/4.71-3 6.79-3/2.16-2 -1.41-3/4.44-3
0.0250 5.12-2/2.25-2 3.39-2/4.85-3 1.66-2/2.20-2 -1.06-3/4.72-3
0.0125 6.97-3/2.21-2 1.61-2/4.79-3 9.46-3/2.19-2 -8.97-4/4.73-3

Table 7.6

Example 2:   t = 0.8    N = 10,000    T = 3.4511

At Euler's method Scheme (S)

0.2000 8.16-1/6.34-2 7.45-1/2.65-2 4.90-3/6.70-2 -5.24-2/2.12-2
0.1000 3.46-2/6.76-2 3.37-1/2.66-2 -1.04-3/6.33-2 1.17-2/2.41-2
0.0500 1.98-1/6.92-2 1.62-1/2.65-2 3.61-2/6.61-2 -4.15-3/2.47-2
0.0250 5.12-2/6.88-2 7.38-2/2.53-2 -2.54-2/6.74-2 -4.86-3/2.47-2
0.0125 -6.27-3/6.11-2 3.28-2/2.53-2 -4.37-2/6.44-2 2.01-3/2.50-2

The situation is shown in Tables 7.1-7.6. In each table, we list the results at time 0.2,

0.4, and 0.8. For each scheme, in the first subcolumn we list the errors plus the

standard deviations of the computed values obtained by using the usual Monte-Carlo

estimator, and in the second column errors are listed for Chorin's estimator. We see

that Chorin's estimator shows Euler's method to be precisely a first-order method.

For Scheme (S), Chorin's estimator shows that they are roughly second-order

methods. This is not surprising, because we are evaluating expectations of functions,

which should not exhibit the ' half part of the order of the accuracy of the scheme,

due to the nonanticipating property of the solutions.
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