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Sinc-Nyström Method for Numerical Solution of

One-Dimensional Cauchy Singular Integral Equation

Given on a Smooth Arc in the Complex Plane*

By Bernard Bialecki**and Frank Stenger

Abstract. We develop a numerical method based on Sine functions to obtain an ap-

proximate solution of a one-dimensional Cauchy singular integral equation (CSIE) over

an arbitrary, smooth, open arc L of finite length in the complex plane. At the outset, we

reduce the CSIE to a Fredholm integral equation of the second kind via a regularization

procedure. We then obtain an approximate solution to the Fredholm integral equation

by means of Nyström's method based on a Sine quadrature rule. We approximate the

matrix and right-hand side of the resulting linear system by an efficient method of com-

puting the Cauchy principal value integrals. The error of an Af-point approximation

converges to zero at the rate 0(e~cN ), as N —> oo, provided that the coefficients

of the CSIE are analytic in a region D containing the arc L and satisfy a Lipschitz

condition in D.

1. Introduction. In this paper we consider an application of the Sine function

method to the approximate solution of a Cauchy singular integral equation taken

over a smooth, open arc L of finite length in the complex plane. The equation to

be solved on L has the form

(1.1) aw + bSw + K\w = f\,

where for t E L,

1    f w(t) dr
(1.2) Sw(t) = - I ^

7"   Jh     TL ~t

(1.3) Kxw(t) = j  ki(t,T)w(r)dT.

The integral appearing in (1.2) is a Cauchy principal value integral defined by

(1.4) / Ï&!*: = iim / «w*:,

where L£ is the part of L obtained by deleting from L all those points which are

within a distance e from t. The complex functions a,b,f\ and k\ in Eq. (1.1) are

assumed to be given on L and it is required to find w, or an approximation to w.
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Following Muskhelishvili [12, §106] we assume that a,b,k\ and /i satisfy a Lip-

schitz condition on L (fci satisfies a Lipschitz condition with respect to both vari-

ables) and that the condition

(1.5) r(t) = a2(t)-b2(t)^0

is satisfied on the closure L of L. We look for solutions w of Eq. (1.1) belonging to

the class H* [12, §77] (see also Definition 3.1 of this paper). The class H* consists

of all functions which satisfy Lipschitz conditions everywhere on L except at the

endpoints, where integrable singularities are allowed.

Let k and Z(t) be respectively the index and the fundamental function of Eq.

(1.1) corresponding to the class ho [12, §109] (see also Subsection 2.3 of this paper).

Then it is well known [12, §109] that Eq. (1.1) is equivalent (in the sense that

solutions w E H* are being sought) to the following equation

Mm ,  a bZ    (Kxw\
(1.6) w + -Kiw- — S I —— 1 =/2,

where

„7) h.ia.»s(à) + *lp„,
r r      \ZJ       r

and where in (1.7) PK-\ is an arbitrary polynomial of degree at most k—1 (PK-\ = 0

if k < 0), provided that when rc < 0 the additional conditions

(18) //-'(^-/')(')d'=o,      , = 1(1,,-.,

are satisfied. Interchanging the order of integration in the last term on the left-hand

side of Eq. (1.6), we rewrite Eq. (1.6) in the form [12, §111]

(1.9) w - K2w = f2,

I dr.

where

(1.10)        KMi)-fL [ï(l)± f^f_'ydu-im¡(t.r}

As it was observed in [3], [4], [5], [6], [8], [9], rather than solving Eq. (1.9) for

w E H*, which may be unbounded at either or both endpoints of L, it is practically

more convenient to solve for the function

(LID 9=Ti,

which turns out to be bounded and continuous on L. Making use of the substitution

(1.11), Eq. (1.9) becomes

(1.12) (I-K)g = f,

where / is the identity operator and K is a Fredholm integral operator defined by

(1.13) Kg(t) = j k(t,T)g(r)dT.

The kernel k(t,r) in (1.13) is defined by

/. . ^ , /     n      Z, . \b(t)   f ki(u,t)IZ(u)  ,       a . .,   .
(1.14) k(t,r) = _(r) Ul jL   l[u!!t[,du - jWM*,-
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and the term / on the right-hand side of (1.12) is given by

(1.15) f = ïà-bs(Jf)+bPK-1.

The Fredholm integral equation of the second kind, (1.12)-(1.15), will be the start-

ing point for the numerical method of this paper. We shall solve Eq. (1.12)—(1.15)

approximately by means of Nystrom's method based on a Sine quadrature rule.

The paper has been organized into seven sections and two appendices. First,

in Section 2 we recall some necessary background material related to the theory

of the singular integral equation (1.1), so that the paper could be read indepen-

dently. However, throughout the paper we quite frequently refer the reader to

Muskhelishvili [12] for details of proofs. In Section 3 we examine closely the inte-

gral equation (1.12) (1.15). First we show that the function g defined by (1.11) is

indeed a solution of Eq. (1.12)—(1.15) which is continuous and bounded on L for

any solution w E H* of Eq. (1.1). Next we establish some properties of the kernel

k and right-hand side / given by the formulas (1.14) and (1.15), respectively. In

particular, we establish analyticity of k in some domain D containing L under the

assumption that the coefficients of Eq. (1.1) are analytic in D. We also determine,

for fixed t on L, the rate at which the kernel k(t,r) becomes infinite as the second

variable r approaches either of the endpoints of L. These properties will later play

an essential role in developing approximate methods for solving Eq. (1.12)—(1.15).

In Section 4, which can be viewed as an independent part of the paper, we present

Nystrom's method based on a Sine quadrature rule for the numerical solution of the

general Fredholm integral equation of the second kind given by (1.12), (1.13). Un-

der appropriate assumptions on the kernel k(t, r) of the operator K and right-hand

side /, we show that the error of convergence has exponential decay with respect

to the number of nodes used in the quadrature rule. It turns out that this method

is well suited for finding an approximate solution of Eq. (1.12)—(1.15), provided

that we could accurately evaluate the kernel k and right-hand side / (see (1.14)

and (1.15)), which in general are not known explicitly. Therefore, in Section 5 we

first develop some effective quadrature formulas for the approximate evaluation of

Cauchy principal value integrals given by (1.2). Finally, in Section 6 we combine re-

sults of the previous sections to describe an algorithm for the approximate solution

of Eq. (1.12) (1.15). We use formulas from Section 5 to evaluate the coefficients of

the matrix and the components of the right-hand side vector in the linear system

resulting from Nystrom's method, and we show that the error is still of exponential

decay. The final section contains two numerical examples on which our algorithm

was tested.

We would like to stress that it is, of course, this exponential (rather than alge-

braic) rate of convergence which makes this method and the general Sine function

technique in numerical analysis so attractive (see the review paper [13]). Other

known methods of solving Eq. (1.1) are based on collocation or Galerkin schemes.

The rates of convergence of the error in these methods are of the order 0(n~c),

where n denotes the number of function evaluations or basis functions, and where c

depends on the number of derivatives of the coefficients in Eq. (1.1) that exist and

are uniformly bounded on L (see [3], [4], [5], [8], [9], [10], [11], [14]). In addition,

all other methods seem to deal only with singular integral equations (1.1) taken
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over the interval (-1,1), whereas the method of this paper can be applied to more

general arcs L in the complex plane.

Finally, we want to point out that the first important attempt to provide a foun-

dation for the application of Sine methods to the approximate solution of Eq. (1.1)

taken over the interval (-1,1) was made in [6], where the use of a somewhat compli-

cated projection method was suggested. However, in the course of experiments and

trials the authors have found that the Nyström method applied to the numerical

solution of Eq. (1.12)—(1.15) is simple to implement, and it allows for carrying out

a complete convergence and error analysis.

2. Preliminaries. In this section we state some definitions and results from

the theory of singular integral equations, making this paper self-contained (for more

details we refer the reader to Muskhelishvili's book [12]). We recall such notions as

special and nonspecial ends of an arc L, the index and the fundamental function of

Eq. (1.1) corresponding to the class h0-

2.1. An Arc L and the Class of Functions Lip(L). Throughout the paper we

shall be assuming that L = L(ci,c2) is a smooth, open arc of finite length in

the complex plane with ends C\,c2 and direction from c\ to c2 (see [12] for precise

definition and properties of such arcs). Here we want to point out that according to

this definition, the points c\, c2 do not belong to L. The closure of arc L = L(c\, c2)

will be denoted by L, i.e., L = Lli {ci,c2}.

Let us recall that a complex function w(t) defined on L satisfies a Lipschitz

condition on L with exponent p (0 < p < 1) if for all points t\,t2 E L we have

(2.1) \w(t1)-w(t2)\<C\tl-t2\ß,

where C is a positive constant independent of t\ and t2. We write w E Lip(L) or

w E LipM(L) if we wish to emphasize the exponent p, and we shall say that w is a

function of the class Lip(L) or Lip^L), respectively. Let us note that if w E Lip(L)

then w can be uniquely defined at the ends c\ and c2, so that w E Lip(L). We shall

always assume this to be the case when talking about w E Lip(L).

2.2. Special and Nonspecial Ends of L. Let the coefficients a and b of Eq. (1.1)

belong to Lip(L) and let the following condition be satisfied:

(2.2) r(t) =a2(t)-b2(t) ¿ 0,        t EL.

For t E L let us define the function G by

and let logC7(i) be any definite one-valued branch of the logarithm which varies

continuously on L. Let us assume that cx3,ßj, j = 1,2, are real numbers such that

(2-4) ^+^ = T^T1'

where the minus sign is taken for j = 1 and plus sign for j = 2. Let integers Xj be

selected so that

(2.5) -Kttj+A, <0,        J = 1,2.

If -1 < otj + Xj < 0, then the corresponding end Cj is called nonspecial. If

OLj + Xj = 0 or, equivalently, if otj is an integer, then c, is a special end.  Let us
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observe that if c3 is a special end, then ß} = 0 if and only if b(cj) = 0.  Also, if

Ima(cj) = Reb(cj) = 0, then Cj is a special end if and only if b(cj) = 0.

2.3. The Index and Fundamental Function of Class ho- Let integers Xj be defined

by (2.5). Then the number

2

(2.6) « = -£*;
3 = 1

is called the index of Eq. (1.1) corresponding to the class fon- Let us recall (see [12,

§109] for details) that all possible solutions w E H* of Eq. (1.1) can be divided into

classes, depending on whether or not w is to remain bounded in neighborhoods of

one or more of the nonspecial ends of L. The class too is the class for which no

boundedness condition is imposed in any neighborhood of a nonspecial end of L.

Thus this class actually consists of all solutions w of Eq. (1.1) which belong to the

space H*.

Let

2

(2.7) n(z) = H(z-Cj)x>,

z&L,
W     2m JL     t - z

and let us set

(2.9) X(z)=U(z)er{z\        z£L.

Then for t E L the fundamental function Z(t) of Eq. (1.1) corresponding to the

class ho is defined by

(2.10) Z(t) = [a(t) + b(t)}X+(t) = [a(t) - b(t)}X~(t),

where X+(t) and X~(t) denote limits of X(z) as z approaches t from the left and

right of L, respectively. By the Plemelj formulas [12, §17] it is seen from (2.9) and

(2.10) that

(2.11) Z(í) = [a(í) + Kí)]e'logG(í)n(í)er(t) = [a(t) - 6(í)]e-*logG(í)n(í)er(t),

where for t E L,

(2.12) rW = JL / WU*.K       ' yl      2mJL      T-t

It can also be shown [12, §107] that if we set

(2.13) 7,- = a, + Xj + ißj,       j = l,2,

where otj,ßj,Xj are defined by (2.4) and (2.5), then

2

(2.14) Z(t)=u](t)X\(t-c3V>,

where w is a function of the class Lip(L), w(f) ^ 0 on I, and where (i - Cj)1' is

any definite one-valued branch of this function which varies continuously on L. It
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follows from (2.14) that the function Z~l E Lip(L') for any closed part L' of L.

It is clear that if Cj is a nonspecial end or special end with b(c}) = 0, then Z~l

also satisfies a Lipschitz condition on L near c3 (in the first case Z~~1(cj) = 0). If,

however, Cj is a special end and b(cj) ^ 0, then Z~l no longer satisfies a Lipschitz

condition on L near c}, although it is bounded there.

2.4. The Fundamental Function in the Case of Real a and Purely Imaginary b.

Let us assume that

(2.15) Ima(i) = Re b(t) = 0,        t EL,

and let us introduce a continuous function 0. defined on L by

(2.16) 0(t) = -arg[a(t) + b(t)}+M,

where M is an integer. We note that

(2.17) arg[a(i) + &(<)] = arctan Í  m ^ ' J + irm(t),

where —7r/2 < arctan a: < 7r/2 for x E R and where m(t) takes on only integer

values and may have discontinuities at zeros of a. It follows from (2.16) and (2.3)

upon setting

(2.18) logG(t) = -27r¿e(t)

that we obtain on L a definite, one-valued and continuous logarithm of the function

G. Simple calculations, (2.16) and (2.18) also show that

(2.19) e-*to.G(«) = (_1)M¿gl±*gl.
\a(t)+b(t)\

Therefore, from (2.11), (2.12), (2.7), (2.18), (2.19), (2.2) and (2.15) we obtain

(2.20) Z(t) = (-l)Mrl'2{t) f[(t- Cj)x'e~ £ e(r) ^^

3 = 1

By (2.4), (2.5) and (2.18) we see that integers Xj, j = 1,2, appearing in (2.20) can

now be chosen so that

(2.21) -1 < X3 ±e(cj) <0,

where O is defined by (2.16), the plus sign is taken for j' = 1 and the minus for

j = 2. Let us note that if we set M = 0 and omit the term r1'2 on the right-hand

side of (2.20), then we obtain a function which is called the fundamental solution of

Eq. (1.1) by Dow and Elliott [3]. As can be seen from (2.21), the introduction of the

integer M in (2.16) allows for a broader choice of X3, which is of some importance

if the formula (2.20) is used for computational purposes.

3. Properties of the Integral Equation (1.12)-(1.15). In this section we

show that the function o given by (1.11), which is a solution of Eq. (1.12)-(1.15),

is bounded and continuous on L. We also establish some important properties

of the kernel k and right-hand side / given by the formulas (1.14) and (1.15),

respectively. In particular, we show that k and / are analytic functions (k with

respect to each variable) in some domain D containing L if the coefficients of the
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singular integral equation (1.1) are analytic in D. We also determine the rate at

which, for fixed t from the arc L, the kernel k(t,r) becomes infinite as the second

variable r approaches either of the endpoints of L. These facts will be essential for

the development of a numerical method in Section 4.

3.1. Boundedness and Continuity of g. As was stated in Section 1, the solution

w of Eq. (1.1) is being sought in the class H*.

Definition 3.1 [12, §77]. The function w(t), given on an arc L = L(c\,c2) such

that w E Lip(L') on every closed part L' of L, and near an endpoint c = c\ or c2

of the form

(3.1) w(t)= tw*^l  ,       0<a<l,
v     i w     (t-c)a

where w* E Lip(L), is said to belong to the class H*.

We already mentioned in Section 1 that instead of solving Eq. (1.1) for w E H*

we shall look for the function g related to w by (1.11).

THEOREM 3.2. Let a, b, k\, /i belong to Lip(L) (k\ with respect to both variables)

and let condition (1.5) be satisfied on L. Let k and Z(t) be respectively the index

and fundamental function of Eq. (1.1) corresponding to the class ho. Then for

any solution w E H* of Eq. (1.1) the function g defined by (1.11) is continuous

and bounded on L. Furthermore, the function g is a solution of Eq. (1.12)-(1.15),

where in (1.15) PK-\ is a polynomial of degree not greater than k — 1 (PK_i = 0, if

k <0).

Proof. It was shown in Section 1 that g satisfies Eq. (1.12) (1.15). Also, g is

continuous on L since Z is continuous on L (see Subsection 2.3). Thus it remains

to prove that g is bounded on L. Rewriting Eq. (1.1), we have

(3.2) aw + bSw = f0,

where /0 = /, — K\w. It is easy to show that /o E Lip(L). Therefore, from (1.6),

(1.7) and (1.11) we obtain

(3.3) ff=^_6s(|)+6PK_,

It is obvious from (2.14), (2.13) and (2.5) that the first and last terms on the right-

hand side of (3.3) are bounded on L. Furthermore, S(fo/Z) E Lip(L') for every

closed part L' of L. Hence, let us examine the behavior of S(fo/Z) on L near the

endpoints c,, j = 1,2. If Cj is a nonspecial end, then (f0/Z)(cj) = 0. It then follows

from (2.14), (2.13), (2.5) and the theorem in [12, §19, p. 46] that S(f0/Z) satisfies

a Lipschitz condition on L near Cj and hence is bounded there. On the other hand,

if Cj is a special end, then from the same equations of Section 2 and (29.7), (29.8)

in [12, §29] we observe that for t E L and t in a neighborhood of Cj we have

(3.4) s(^\(t)=C1\og(t-cJ) + s1(t)

if b(cj) = 0 and

(3-5)        . 5(t)(í)=(T^F7 + S2(í)
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if b(cj) t¿ 0. In (3.4) and (3.5), C\,C2 are constants and si(i) and s2(t) are functions

that satisfy Lipschitz conditions on L near Cj. If b(c3) = 0, then we see from (3.4),

5° in [12, §6] and Io in [12, §7] that bS(fo/Z) satisfies a Lipschitz condition on L

near Cj and hence is bounded there. If b(cj) ^ 0, then (3.5) implies boundedness

°f S(fo/Z) on L near Cj, and Theorem 3.2 follows.    D

The proof of Theorem 3.2 and results from Subsection 2.2 yield the following

corollary.

COROLLARY 3.3. Iflma(cj) = Re6(c¿) = 0 for j = 1,2, in particular, if a(t)

is real and b(t) purely imaginary on L, then g E Lip(L).

3.2. Properties of the Kernel k of (1.14) and the Right-Hand Side f of (1.15).

Let us assume that D is a bounded, simply connected domain in the complex plane

such that D contains L = L(c\,c2) and such that the points ci,C2 are boundary

points of D. Let D+ and D~ denote the parts of D lying respectively to the left

and right-hand sides of L. Furthermore, let Q be the union of two sets, Lx D and

D x L. Throughout the paper, H(D) will represent the set of all analytic functions

in D and C(D) will denote the set of all continuous functions on the closure D of

D. In what follows, whenever we say that a function / defined on L is in H(D)

and satisfies some additional properties on D (such as, for example, / is bounded

on D), we will mean that / has an analytic extension to D with these properties.

A similar convention will apply to a function of two variables defined on L x L, if

one of the variables is fixed and the function is considered as a function of only the

other variable.

Assumption 3.4. Let a,b E Lip(L) n H(D) D C(D) and let condition (1.5) be

satisfied for all t E D.

LEMMA 3.5. Let Assumption 3.4 be satisfied, let Z(t) be the fundamental func-

tion of Eq. (1.1) corresponding to the class ho and let a3,Xj, j = 1,2, be defined

by (2.4) and (2.5). Then Z,Z~l E H(D), Z^1 is bounded in D and there exists a

constant C > 0 such that

(3.6) \Z(z)\<C(\z-Cl[\z-c2\y-\        zED,

where

(3.7) a = 1 + min (a-, + A,) > 0.
¿=1,2

Proof. Let us recall that the fundamental function Z(t) is defined for t E L by

(2.10). If we extend Z to D by the formula

(3'8) Z(z) = X(z)\
I [a(z) -b(z)\,    ZED   ,

where X(z) is given by (2.9), then from the theorem on analytic continuation we

see that Z E H(D). Furthermore, Z~l E H(D) since Z ¿ 0 on D+ U D~ by (3.8),

(1.5), (2.9), and likewise Z ^ 0 on L by (2.14). It is clear that in order to prove

that Z~l is bounded in D it will be sufficient to show that Z_1 is bounded in D

near the points Cj, j = 1,2. Proceeding similarly as in [12, §79], it is easy to see

that for z E D\L and z near Cj,

(3.9) X(z) = (z-Cj)~"Y(z),
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where 7., is given by (2.13), (t — Cj)*1* is any branch of this function defined in the

complex plane cut along L, and Y(z) is some function which is bounded and stays

away from zero in the neighborhood of Cj. Boundedness of Z~l in D near c3 and

the inequality (3.6) now follow from (3.8) and (3.9).    D

Assumption 3.6. Let a, b be as in Assumption 3.4 and in addition let us assume

that there exist positive constants C and pj such that

(3.10) \b(z)[ < C\z - Cj\^,       zED,

whenever c3 is a special end of L, and b(c3) = 0.

We note that if both ends of L are nonspecial, then Assumption 3.6 reduces to

Assumption 3.4.

Assumption 3.7. In addition to satisfying a Lipschitz condition with respect

to both variables on L x L, let us assume that k\(-,r) E H(D) for all r E L,

ki(t, ■) E H(D) for all t E L, k\(t,r) is bounded on fi and that there exist constants

C > 0 and 0 < p < 1 such that

(3.11) [fci (i 1, r) - fci (i2, r)I < C|í! - i21"

for all ti,t2E L and all r E D.

Lemma 3.8. Let Assumptions 3.6 and 3.7 be satisfied and for (t,r) E LxL let

H(t,r) be defined by

(3.12) H(t,r)=b(t)Sk^T)IZ{u)du,
Jl        u-t

where Z is the fundamental function of Eq. (1.1) corresponding to the class ho-

Then H(-,t) E H(D) for all r E L,H(t,-) E H(D) for all t E L and H(t,r) is
bounded in fi.

Proof. Two cases need to be considered.

I. The case when t E L. For fixed r E L let the function H(t, r), given for t E L

by (3.12), be extended to D with respect to t as follows:

(   -7r¿á(í,r) + $(í,r),     tED+,
(3.13) H(t,r)=b(t)\ K     ' '

V     ;       W\ mh(t,T) + ${t,T), tED-,

where

(3.14) h(t,r)=kl{t'T)

and where

(3.15) $(t,r) = j

Z(t)   '

h(u,r)du

IL       " — t

By Lemma 3.5 we know that Z~l E H(D) and that Z~l is bounded in D. Hence

a(-,r) E H(D) and h(t,r) is bounded for t E D. The latter implies that <p(-,t) is

analytic in D+ U D~. Thus H(-,t) is also analytic in D+ U D~. Next, applying

Plemelj's formulas [12, §17] to $(i,r) with respect to the variable t, we conclude

via analytic continuation that H(-,t) E H(D). To prove that H(t,r) is bounded

on D x L, we note that it is sufficient to show boundedness of H(t,r) for r E L,

t E D+ U D~ and t being near c, where c is either of the endpoints ci,C2 of L.
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Boundedness for the remaining t will then follow from the maximum principle. Also,

since b(t)h(t,r) is bounded on D x L, we only need to consider the boundedness

of o(í)$(í,r). The following argument will simplify our considerations. Let L be

divided into two parts, L\ and L2, such that c E L\, and such that L2 is at a

finite distance from c. Let us split $(i,r) into the sum of two integrals, $i(i,r)

and $2(t,r), which are taken respectively over Li and L2. It is obvious that only

b(t)$i(t,r) has to be examined. Let us first assume that c is either a nonspecial

end, or else it is a special end with b(c) =¡¿ 0. Then it follows from (2.14), (2.13)

and Io, 2° of Appendix A that $(i, r) is bounded for all r E L, t E D+ U D~ and

t being in the neighborhood of c. On the other hand, if c is a special end with

6(c) = 0, then the boundedness of b(t)$(t,r) for the same r and t follows from Io

in Appendix A and the inequality (3.10).

II. The case when t E L. Let us define ty(t, t) for fixed t E L and r E D, by

h(u, r)du

(3.16) M,{LT)=-f^Jl     «L        u~t

where h is given by (3.14). It is clear from (3.12) and (3.16) that in order to prove

that H(t, ■) E H(D) and that H(t, t) is bounded on L x D, it will suffice to show

that *(i, ■) E H(D) and that 6(i)$(i,r) is bounded on L x D. First we note by

(12.4) of [12, §12] that (3.16) can be rewritten as

c2 - t
(3.17) 9{t,T) = Vi{t.T) + h{t,T

where

7U + log
C\ — t

h(u,r) — h(t,r)
(3.18) *i(t,r)= [ ' -du.

Jl u~t

It follows from (3.14) and (3.11) that for fixed t E L the integrand in (3.18) can be

bounded from above, independently of r e D, by a function that is integrable over

L with respect to u. Thus by Lebesgue's dominated convergence theorem, í*i (í, •) E

C(D). Now let A be a closed triangle such that A c D. Since h(t, ■) E H(D), it

follows by Fubini's theorem that JdA \I/i(i,r)dr = 0, and thus Morera's theorem

implies that *i(t, ■) E H(D). Therefore, we conclude by (3.17) that *(r, •) E H(D).

It remains to prove that b(t)^(t,r) is bounded onixö. It can be seen from (3.17)

and (3.18) that it will be sufficient to show that 6(¿)1ír(¿, r) is bounded for all r E D,

t E L and t being in the neighborhood of c, where c is either of the endpoints Ci, c2

of L. But this follows from (3.16), (3.11) and 3°, 4° in Appendix A, by considering,

as in case I above, the possibilities of c being a nonspecial end, a special end with

b(c) t¿ 0 or a special end with 6(c) =0.    D

THEOREM 3.9. Let Assumptions 3.6 and 3.7 be satisfied and let the kernel

k(t,r) of the operator K of (1.13) be given by (1.14), for (t,r) E L x L. Then

k(-,r) E H(D) for all r E L and k(t, ■) E H(D) for all t E L. Furthermore, there

exists a constant C > 0 such that

(3.19) |fc(í,r)|<C(|r-c1||r-c2|r-1,        (t,r)EÜ,

where a > 0 is given by (3.7).

Proof. The proof of Theorem 3.9 follows directly from (3.6) and Lemma 3.8.    □

Assumption 3.10. Let fi E Lip(L) D H(D) and let / be bounded in D.
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THEOREM 3.11. Let Assumptions 3.6 and 3.10 be satisfied and let the right-

hand side f of Eq. (1.12) be given by Eq. (1.15). Then f E H(D) and f is bounded

in D.

Proof. By Lemma 3.5, Z~l E H(D) and Z~l is bounded in D. Hence it is seen

from (1.15) that we only need to consider the term bS(f\/Z). But analyticity and

boundedness in D of this term follow from Lemma 3.8 upon setting fci (i, r) = /i (i)

for(£,r)€fi.    D

4. Nystrom's Method Based on a Sine Quadrature Rule for the Nu-

merical Solution of Fredholm Integral Equation (1.12)-(1.15). First, at

the beginning of this section we shall recall briefly some definitions and results

from the numerical theory of Sine functions (see also [13]). Next, in Subsection

4.2 we present Nystrom's method based on a Sine quadrature rule to obtain an

approximate solution of the integral equation (1.12), (1.13). We want to emphasize

that the results of Subsection 4.2 are independent of the rest of this paper and

can be used for the numerical solution of a general Fredholm integral equation of

the second kind given by (1.12), (1.13). Finally, in Subsection 4.3 we show how

the method of Subsection 4.2 can be applied to obtain an approximate solution of

Eq. (1-12) (1.15), which was derived from the singular integral equation (1.1) via

a regularization process.

4.1. The Sine Quadrature Rule. Let Z, R, C denote, respectively, the set of all

integers, the set of real numbers and the set of complex numbers, i.e., Z = {n: n =

0, ±1,... }, R = (-00,00), C = {z = x + iy: x E R, y E R}. Let d > 0, and let us

define Dd by

(4.1) Dd = {zEC:[lmz[ <d).

Definition 4.1. Let D be a simply connected, bounded domain in the complex

plane C with boundary 3D. Let ci,c2 (ci ^ c2) be boundary points of D and let

(j) be a conformai map of D onto Dd (see (4.1)) such that 4>(c\) = -00, <fi(c2) = 00.

Let (f)~l denote the inverse map of 0 and let the smooth open arc of finite length

L = L(c\,c2) be given by

(4.2) i = {f'(i):i£R}.

In what follows, the set of all complex analytic functions in D will be denoted

by H(D).

Definition 4.2. Let the domain D be defined as in Definition 4.1. Then B(D)

will represent the family of all functions F E H(D) such that

(4.3) / \F(z)dz\^0   asi- ±00,

(4.4) N(F, D) = lim inf / \F(z) dz\ < 00,

where for x E R and 0 < y < d,

(4.5) LX = {z = x + iy: —d < y < d},

(4.6) Ly = {z — x±iy:x E R}.

The following result, obtained by Stenger [13, Theorem 4.4], will be of impor-

tance.
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THEOREM 4.3.   Let F E B(D) and let there exist positive constants C and a

such that

(4.7) \F(t)\<C\<t>'(t)\e-a^^,        tEL.

For a positive integer N choose h = [27rd/(aN)}1^2 and set zn = (p~l(nh), n =

-N(1)N. Then

N

(4.8) //(i""-\Ç„£fe N(F,D) 2C_
\ _ e-(2irdaN)ir2  + ~^~

<    -(2ndaN)l/2

-N

We shall refer to the summation formula in (4.8) as a Sine quadrature rule.

4.2. Nystrom's Method Based on a Sine Quadrature Rule for the Numerical

Solution of the General Fredholm Integral Equation of the Second Kind. Notations

introduced in Subsection 4.1 will be used in this subsection. We shall assume in

what follows that the domain D, the arc L = L(ci,c2) and the map (¡> are given as

in Definition 4.1. One more definition will also be useful.

Definition 4.4. Let X be the Banach space of all continuous and bounded com-

plex functions defined on L normed with the sup norm, i.e., for g E X,

(4-9) \\g\\x = sup[g(t)\.
t€L

For g E X and t E L, let

(4.10) Kg(t) = jk(t,T)g(r)dr

be a bounded operator from X to X, i.e., ||Ä"|| < oo, for which (/ - Ä")-1 exists on

X and hence is bounded. Then, for given f E X, the equation

(4.11) (I-K)g = f

has a unique solution g E X which will be found approximately by means of

Nystrom's method. For given positive integer N, h > 0, g E X and tEL, let

K^g be defined by

(4.12) KNg(t) = h  Y   1J77T9M
n=-N   * [Zn>

where

(4.13) zn = <f)-1(nh).

Then the Nyström method for solving Eq. (4.11) is to find a solution g^ E X of

the equation

(4.14) (/ - KN)gN = f.

We shall show that under certain assumptions on k(t,r), Eq. (4.14) has a unique

solution for N sufficiently large, and we shall bound the error [\g — ojv||x-

LEMMA 4.5.   Let the following conditions be satisfied:

(a) k(-,r)EH(D) for all t E L;

(b) there exist positive constants C and a such that for all t E D and all r E L,

(4.15) \k(t,r)[<C[(p'(T)\e-a^T^;
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(c) let K and K^ be defined by (4.10) and (4.12), respectively.

Then for any g E X the functions Kg(t) and K^g(t) belong to H(D); moreover,

2(1
(4.16) sup \Kg(t)[<—\\g\\x,

teD a

(4.17) ™v\KNg{t)\<c(h+-\\\g\\x.
teD \      at/

Proof. For g E X and t E D we have from (4.10) and (4.15) that

\Kg(t)\ <  f \k(t,T)g(r)dr\ < C\\g\\x Í e~^^\(¡>'(r) dr\
(4.18) JL Jl

= C\\g\\x         e-o^dx,
J — oo

and thus (4.16) follows. It can also be seen from (4.18) that k(t,r)g(r) is bounded

from above, independently of t, by a function integrable over L. Hence by Lebesgue's

dominated convergence theorem, Kg(t) is continuous in D. Next, applying Fubini's

theorem, we also see that for any closed triangle Acflwe have jdA Kg(t) dt = 0.

Thus, Morera's theorem implies that Kg(t) E H(D). Similarly for (4.17): From

(4.12), (4.13) and (4.15) we obtain

N

n=-N
<t>'(Zn)

N

(4.19) \KNg(t)\<h  Y    k4l7T^n)  <Ch\\g\\x   Y  ^^'■
n=-N

Since for a, h > 0 we have eah - 1 > ah, (4.17) follows after evaluating and

estimating the sum on the right-hand side of (4.19).     D

COROLLARY 4.6.   K is a bounded operator from X to X with \\K\\ < 2C/a.

COROLLARY   4.7.   K^  is a compact operator from X  to X with ||Ä"jv||   <

C(h + 2/a).

LEMMA 4.8.   Let the following conditions be satisfied:

(a) fc(t,-) EH(D) for allt E L;

(b) the inequality (4.15) is satisfied for all t E L and for all r E D;

(c) h in (4.12) and (4.13) is selected by h = fiird/^N)]1/"2.

Then for any g E H(D) and g bounded in D,

(4.20)      \\(K-KN)g\\x<e-V"daWl
I _ e-(2TrdaN)'/'-

+ 1 — sup|a(z)|.
OL   ziED

Proof   Let M = sup0eD |o(z)|.   For fixed t E L let us consider the function

F(z) = k(t,z)g(z), where z E D. Then it follows from assumption (b) that

(4.21) \F(z)\ <MC[(f)'(z)\e-a^z)\        z E D.

We also observe that F € B(D), since (4.3) and (4.4) follow from (4.21).   For

example, we have

/oo e-a\x+id\ dx

-oo
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Thus, since

(4.23) (K - KN)g(t) = f F(r) dr - h   ¿   §fi±

Lemma 4.8 follows from Theorem 4.3, (4.21), (4.22) and (4.23).    G

THEOREM 4.9. Let all assumptions of Lemmas 4.5 and 4.8 be satisfied and let

(I — K)~l exist on X. Then there is an integer No > 0 such that for all integers

N > No, (I — Kn)~1 exists on X and

(4 24) \\(I     K   \-H< l + W-K)-l\\\\KN\\

(4-24) W~Kn)   11-i-\\(i-k)-i\\\\(k-kn)knw

Let f E H(D) and let f be bounded in D. Let g E X and g^ E X be solutions

of Eqs. (4.11) and (4.14), respectively. Then g E H(D) and g is bounded in D.

Furthermore, there exists a constant C > 0 independent of N and g such that for

N>N0,

(4.25) ||? - gN\\x < Ce-^daN)U2 sup \g(z)\.
zeD

Proof. To prove the first part of Theorem 4.9, let us take g E X. Then it follows

from Lemma 4.5 that K^g E H(D) and that the inequality (4.17) holds true. Now

applying Lemma 4.8 to ä"jvo, we have from (4.20) and (4.17) that

[\{K - KN)KNg\\x

(4-26) <e-(2^N)'^2C2
a

+ 1 h + -\I — e-(2irdaNy/'2

But the inequality (4.26) implies that [[(K - Kn)Kn\[ —* 0 as N —► oo and hence

the first part of Theorem 4.9 follows from Theorem 1.10 in [1, §1.7] and Corollaries

4.6 and 4.7. To prove the second part of Theorem 4.9, we first observe that the

identity g = Kg + f and Lemma 4.5 imply that g E H(D) and that g is bounded

in D. To verify (4.25), we note from (4.11) and (4.14) that

(4.27) g-gN = (I-KN)-1(K-KN)g,

and hence

(4.28) \\g - gN\\x < ||(J - Kn)'1^ \\(K - KN)g\\x.

Now using (4.24), we see that the first factor on the right-hand side of (4.28) can

be estimated by a constant as N —> oo, since ||(Ä" — Kn)Kn\\ —► 0 and since, by

Corollary 4.7, ||ÄAr|| can be bounded independently of N. Thus, (4.25) follows from

(4.28) and (4.20).    D

In order to find the solution gN of Eq. (4.14), assuming of course that N > N0,

we first solve the linear system

(4.29) (I-K)d = f

for the vector d = (d_jv,. - •, djv)') where in (4.29) I denotes the unit matrix of

order 2N + 1, and where the square matrix K = (/cmn)^ „=_jv or" the same order

and the vector f = (f-N, ■ ■ ■, /jv)* are defined by

(4.30) kmn = n%^J,
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(4.31) fm = f(zm).

It follows from Theorem 4.9 that the linear system (4.29) has a unique solution. For,

if oat is a solution of Eq. (4.14), then d = (g^(z-N), ■ ■ ■, gN(zN)Y satisfies (4.29)

and conversely, to each solution d of (4.29) there corresponds a unique solution

ojv E X of Eq. (4.14) which agrees with the components of d at the points zn,

n = -N(1)N (see [2, §3.0]). Thus, having found a solution d of (4.29), we have

(4.32) gN(zn)=dn,        n = -N(l)N,

and hence from (4.14) and (4.12),

(4.33) gN(t) = f(t) + h   T   1%Hd^        tEL.
n=-N   * [Zn>

4.3. The Numerical Solution of Eq. (1.12)-(1.15). We now consider applicability

of Nystrom's method of Subsection 4.2 to obtain an approximate solution of Eq.

(1.12)—(1.15). Let us assume that the arc L = L(ci,C2) and the domain D are

defined as in Definition 4.1, and let Assumptions 3.6, 3.7 and 3.10 be satisfied. In

addition, assume that for the map qb of Definition 4.1 and for any a > 0 there is a

positive constant C such that

(4.34) (Iz-dHz-cgl)"-1 <C\(t>'(z)\e-a^z^,        zED.

If (I-K)~x exists on X, then it follows from Theorems 3.9, 3.11, 4.9 and inequality

(4.34) that Nystrom's method of Subsection 4.2 with a = a, where o is given by

(3.7), can be applied to obtain an approximate solution of Eq. (1.12) (1.15). The

inequality (4.25) then gives a bound on the error between the exact solution g and

its approximation ojv defined in (4.33), where d = (d_./v,..., aV)1 is a solution of

the linear system (4.29). It is clear from the definitions of the kernel k, and the

right-hand side / (see (1.14) and (1.15)) that in order to evaluate the coefficients

kmn (see (4.30)) of the matrix K and components fm (see (4.31)) of the vector f

of the linear system (4.29), it will be necessary to have a good numerical technique

for approximating singular integrals of the form (1.2). We therefore consider this

problem before describing completely an algorithm for obtaining an approximate

solution of Eq. (1.12) (1.15).

5. Quadrature Formulas for Evaluating Cauchy Principal Value Inte-

grals. In this section we derive formulas for the approximate evaluation of singular

integrals SF(t), t E L, defined by (1.2) in the case when the function F is analytic

in some domain containing L. First we present a general, infinite sum formula,

which will later be used to obtain a finite sum formula for a certain class of func-

tions F. The formulas presented here were first introduced for specific arcs L in

[6],
In this section we shall use the notations and definitions of Subsection 4.1. In

what follows we assume that the arc L = L(c\,c2), the domain D, the map 0 and

the constant d are the same as those of Definition 4.1. Also, by H(D) and B(D)

we denote the classes of functions introduced in Subsection 4.1.

5.1. General Quadrature Formula. For h > 0 and n E Z we define the functions

_ h cos[tt{0(¿) - nh}/h] - 1
(5.1) tn(z) = —-——-r-, ZED,

■ÏÏI <P'{zn)(z- Zn)
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where

(5.2) zn = (¡>-\nh).

For later purposes we note that

h    (-l)m-n-l        ..      ,
it n jt m,

(5.3) tn(zm) = l   Trift (zn)(zm - zny

\ 0,    if n = to.

LEMMA 5.1.   Let the functions tn(z) be defined by Eq. (5.1).   Then there is a

constant C > 0 such that for all n E Z

(5.4) sup|í„(í)| <C.
teL

Proof. See Appendix B.    D

THEOREM 5.2.   Assume that a function F E B(D) is such that ¡L \F(z) dz\ <

oo, and let either one of the following inequalities (5.5) or (5.6) be satisfied:

F(zn)
(5.5) Y

nez V(Zn)
< oo;

(5.6) Y \F^)\ < °°-
nez

Given tEL, let SF(t) be defined by (1.2), and let e(t) be defined by

(5.7) £(t) = SF(t) - Y E(Zn)tn(t),
nez

where tn(t) are given by (5.1).  Then

-rrd/(2h)

(5-8) \£(t)\< N(F,D,t)-—. , ,   J,/K,..,
v     ' i wi -     v   i    i  ;27Tsinh[7rd/(2h)]

where

F(z)
(5.9) N{F,D,t) = limirii [

t
dz

and where Ly in (5.9) is defined by (4.6).

Proof. See Appendix B.    D

We remark that under our assumptions on F in Theorem 5.2, the quantity

N(F, D, t) as well as SF(t) may become unbounded as t approaches either of the

endpoints of L. Hence, in this case the estimate (5.8) should be interpreted in the

sense of a relative error.

5.2. Uniform Estimate for N(F, D, t). If the domain D satisfies some additional

geometric properties and F(z) goes to zero fast enough as z approaches the end-

points of the arc L, then it is possible to obtain a bound for N(F, D, t) which is

independent of t.

Assumption 5.3. Let c denote either of the endpoints ci,C2 of L and let Ly be

given by (4.6). For a constant Y, 0 < Y < d, let positive constants c¡, I = 1,2,3,

exist such that

(5.10) |z-t| >Çi|i-c|
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for all z E (¡>~1(Ly), where Y < \y\ < d, and for all t E L n D(c,ç2), where

D(c, ç2) = {z E C: \z - c\ < ç2}, and such that

(5.11) |*-«|>fc

for all z E <f>~l(Ly), where Y < \y\ < d, and for all t E L\\J2j=1D(cj,ç;2). In

addition, let us also assume that for any a > 0, there exists a constant C > 0 such

that

(5.12) f \z-c\a-1\dz\<C

for all y satisfying Y < \y[ < d.

LEMMA 5.4. Let Assumption 5.3 be satisfied and let F(z) be a complex-valued

function defined on D for which there exist positive constants C and a such that

(5.13) [F(z)[<C([z-cx\[z-c2[)a,        ZED.

Let N(F, D, t) be defined by (5.9).  Then

(5.14) sup N(F, D,t) <oc.
teL

Proof. It is easy to see that the uniform boundedness of N(F,D,t) for í E

L\\J =1 D(cj,(2) follows from (5.11), (5.13) and (5.12). Therefore, assume that

t E L n D(ci, Ç2) (the case when íeLíl D(c2, Ç2) is analogous) and let y be such

that Y < \y\ < d. Then using (5.13), we obtain

(5.15) / ^-dz  <C sup \z-c2\a [ ^ ~ ClJQ |dz|
Jé-UL„)    z~t zeD •/<*->(zeD J<t>-'(Ly)

where sup2eD \z — C2|a is finite because D is bounded. Now, since

Z\z - Ci Ia f \z — c, Ia
1 t       X    \dz\± / 'f     Cl1, \dz\

T.-'(Ly)      \Z-t\ J<t>->(Ly)    \z-cl\

(      ' r 1  -    i»-1 r
< |i-Ci| / lZ ,   Cl[.     \dz\+ / \z-Cl\a-l\dz\,

Jrfi-HLy)        l2-Jl J<t>-l(Lv)

the inequality (5.14) follows from (5.15), (5.16), (5.10) and (5.12).    D

5.3. Finite Sum Quadrature Formula. The next step in deriving effective formu-

las for approximating the singular integrals SF(t) is to replace the infinite sum in

(5.7) with a finite one.

Assumption 5.5. Let the domain D and the map </> be defined as in Definition

4.1. In addition, assume that there exists a constant C > 0 such that

(5.17) \z-c1\\z-c2\<Ce-M*H,        zeD,

and such that

(5.18) / \dz\ <C,    as x -► ±00,
J<t>~HLx)

where Lx in (5.18), for x E R, is given by (4.5).
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THEOREM 5.6.   Let Assumptions 5.3 and 5.5 be satisfied. Let F E H(D), and

let us also assume that there exist positive constants C and a such that

(5.19) [F(z)\ <C([z-Cl[\z-c2\)a,        zED.

Let SF(t) be defined for t E L by (1.2), and let h be selected for a positive integer

N by h = [27r/(cvAr)]1/2. Then there exists a constant C\ > 0, which is independent

of N, such that for all t E L,

N
p/2

(5.20) SF{t)-    Y    F(Zn)tn(t)
n = -N

<c1Jv1/2e-(*í",,

where tn(t) and zn in (5.20) are defined by (5.1) and (5.2), respectively.

Proof. It follows from the assumptions that all hypotheses of Theorem 5.2 are

satisfied. In particular, we see from (5.19) and (5.17) that there is a constant C2

such that

(5.21) Y\F^\^Ci/Ze~a¡nlh<00>
nez nez

and hence the inequality (5.6) holds. Next, by Lemmas 5.4, 5.1 and (5.8), (5.19),

(5.17) we have for t E L that

N

(5.22) SF(t)~    Y    F(Zn)tn(t)
n=-N

<C3e-nd/h + C4   Y   e~anh'

n=N+l

where Cz,C$ are positive constants independent of N and t. The estimate (5.20)

now follows from (5.22) upon choosing h.    D

COROLLARY 5.7. Let all assumptions of Theorem 5.6 except the inequality

(5.19) be satisfied. Let numbers F3, j = 1,2, and constants 0 < a < 1 and C > 0

be such that

(5.23) \F(z)-F3\<C\z-c3[a,        z E D,

for j = 1,2.   Then there exists a constant C\ > 0 which is independent of N and

such that for all t E L,

N

(5.24) SF(t)-S(LF)(t)-   Y [F(zn) - LF(zn)]tn(t)
n=-N

< C^'/2e-(*^ ' ,

where

(5.25) LF(z) = p-±Fl + IZfLfi,
C2 - C\ C2- Ci

Proof. From (5.25) and (5.23) we have for z E D

c2 - z

zED.

[5.26)

\(F-LF)(z)\<
C2 -Ci

[F(z)-F1] +
Z — C\

C2-*n2-C1|Q(|c2-2

C2 "Cl

1-a

[F(z)-F2]

+ \z-ci
').

|C2 -Ci|

Since D is a bounded region, the functions [c2 — z[1~a and \z — ci|1-a are uniformly

bounded on D. Hence, there exists a constant C2 > 0 such that

(5.27) \(F-LF)(z)\<C2(\z-Cl\\z-c2\)a,        zED.
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Thus, (5.24) follows upon applying Theorem 5.6 to (F - LF)(z).    D

We note that S(LF)(t) can be evaluated explicitly for tEL, and hence (5.24)

provides a very accurate formula for the approximate evaluation of SF(t) for func-

tions F satisfying the assumptions of Corollary 5.7.

6. Algorithms and Error Estimates for the Numerical Solution of Eq.

(1.1). Finally, we are in a position to present an algorithm to approximate the

solution of Eq. (1.12)-(1.15), and hence also of Eq. (1.1). We shall assume that

the arc L = L(c\,c2) and the domain D are given as in Definition 4.1, and that

the inequality (4.34) and Assumptions 5.3 and 5.5 are satisfied. The coefficients

a,b,ki,fi of Eq. (1.1) will be assumed to satisfy Assumptions 3.6, 3.7 and 3.10,

so that all results from Subsection 3.2 concerning the fundamental function Z of

Eq. (1.1) corresponding to the class h0, the kernel k (see (1.14)) and the right-

hand side / (see (1.15)) of Eq. (1.12) (1.15) will hold true. Let us also assume

that for K defined by (1.13) the operator (/ - K) has an inverse on the space

X (see Definition 4.4). In presenting the algorithm, we consider two cases. First

we describe and analyze in detail the algorithm when both endpoints of the arc

L = L(c\,c2) are nonspecial (see Subsection 2.2). Next, we treat the case when

one or both of the endpoints are special. In what follows, we assume that the

fundamental function Z is known explicitly. Later, in Subsection 6.4, we explain

how one can compute Z approximately in the case when an explicit formula for Z

is not available.

6.1. Nonspecial Ends. In this subsection we assume that both ends C\,c2 of

the arc L = L(c\,c2) are nonspecial. The following additional result about the

fundamental function Z will be needed.

LEMMA 6.1. Let the assumptions of Lemma 3.5 be satisfied and let c3, j = 1

or 2, be a nonspecial end of L, i.e., —1 < a3+Xj < 0. Then there exists a constant

Cj > 0 such that

(6.1) \Z-\z)\<C3\z-c3\-aJ-x',        zeD.

Proof. Following the proof of Lemma 3.5, we see that (6.1) follows from (3.8),

(3.9) and (1.5).    D

To simplify the derivation of the algorithm, let us set

(6.2) a = min(<7, —«i - Ai, —a2 - X2) > 0,

where a,a},X3, j = 1,2, are given by (3.7), (2.4) and (2.5). Then (3.6) and (6.1)

imply that there exists a constant C > 0 such that the fundamental function Z

satisfies

(<o.Z)[Z(z)\<C([z-c,[\z-c2\)a-x,    \Z-l(z)\<C([z-Cl\[z-c2[)a,        ZED.

To obtain an approximate solution of Eq. (1.12)—(1.15), we use Nystrom's method

described in Subsection 4.2, with

(6.4) h=(~a~Ñ)      '        zn=(p-1(nh).



152 BERNARD BIALECKI AND FRANK STENGER

We approximate the singular integrals in the expressions for kmn (see (4.30), (1.14))

and fm (see (4.31), (1.15)) by means of the summation formula in (5.20) with

(6-5) A*=(^)      '        < = r\nh*)

and 2N in place of h, zn and N, respectively.  It is obvious from (6.4) and (6.5)

that h* = a/2 and zn = z2n. Therefore, on using (5.3), we obtain

kmn ~ <f>>(zn) r {Zn)

(6.6)

b(zm)h*   ^   k1(z¡,zn)lZ(z*)l-(-l)
£

= -2.
i^2m

m        l = ^2N V {*1 ; Ä;   - ¿m

y yZm)kl yZ-m, Zn)

2.V
ah,     .     b(zm)h*   ^   h(z¡)/Z(z¡)l-(-lf    _ ^JJ_(      -. _ u\Zm)'i       v^

Jm =      7   (Zm) ■ Ti 2^

;=-2
i#2m

+ b(zm)PK-i(zm)

ii-2m

(6.7) m      i=-2N      PW z*~z"

in place of kmn and fm. It follows from Theorem 5.6 and the inequality (6.3) that

(6.8) \krnn " h*n\ < h(|Z" " °f'if' " ^'^"'o^/Vt3'^)'7'),
\<P (Zn)\

(6.9) |/m-/m|<0(JV1/V<a™to">,/2).

Of course, the linear system (4.29) is now replaced by

(6.10) (I-K)d = f,

where d = (d-N,... ,dNy and where K = (kmn)mn=_N and f = {f-N,... ,fNY

are given by (6.6) and (6.7).

We shall use maximum vector and matrix norms, i.e.,

N

(6.11) |d|oo =     max     |d„|, IK^ =     max       Y   \kmn\,
-N<n<N -N<m<N    £—'

-   - ~    -     n=-N

to estimate the error between d and d. By well-known results of linear algebra on

solving perturbed linear systems (see for example [15]) we find that

(6'12)      Id * à'~ S 1-l(.-K)-KÍ'^-Ku"f - "" + |K " kUdU-

But for Nystrom's method we have |(I - K)-1|00 < ||(7 - /sTyv)-1!! (see [2, §3.1]),

where Kff is defined by (4.12). Hence it follows from (4.24), Corollary 4.7 and the

fact that ||(Ä" - KN)KN[\ —♦ 0 as N —► oo, that there exists a constant C > 0,

which is independent of N, such that

(6.13) |(I -K)-1!^ C.
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Now using (6.8), (6.9) and (4.34), we obtain from (6.12)

(6.14) |d - dU = 0(Nl'2e-^daN^'2).

Therefore, from (4.25), (4.32), (6.14) and the triangle inequality we have

(6.15) \g(zn)-dn\ = 0(Nl'2e-^daN^12),        n = -N(l)N,

which gives the discrete error estimate between the exact values of the solution

o of Eq. (1.12) (1.15) at the points zn and the corresponding components of the

solution d of the linear system (6.10).

To find an approximation to g(t) for arbitrary t E L, we can make use of Eq.

(4.33). First, let us replace dn by dn, where d = (d-jv,..., aV)' is a solution of the

linear system (6.10). Next, we approximate the singular integrals in k(t,zn) and

f(t) (see (1.14) and (1.15)) by means of the summation formula in (5.20), where

a*, z*n defined by (6.5) and 2N replace h, zn and N, respectively. Denoting by k

and / the approximations to k and / obtained in this way, we see that gw in (4.33)

is replaced by ()n, where

(6.16) gN(t) = f(t) + h  Y   k4r4¿n,        tEL.

Carrying out a similar error analysis as above, we can then show that

(6.17) \g(t)-~gN(t)\=0(N1/2e-^daN^/2),        tEL.

Thus, it is seen from (6.15) and (6.17) that both discrete and continuous errors are

of exponential decay with respect to N.

It follows from (6.16), that in order to evaluate <?#(£) for each new value of

tEL, complicated expressions for f(t) and k(t, zn) have to be computed. One way

to overcome this inconvenience is to construct an interpolant to o, which would also

give an exponential error estimate for all tEL, and whose cost of evaluation for

arbitrary t E L would be relatively low. To develop this idea further, we shall need

the following result which establishes some properties of the function o.

LEMMA 6.2. Let Assumptions 3.4 and 3.10 be satisfied and let ki(t,r) satisfy a

Lipschitz condition with respect to both variables on LxL. Let us also assume that

fci(-,r) E H(D) for all r E L and that ki(t,r) is bounded on D x L. Let 0 < p < 1

be such that a, 6, /i 6 LipM(L) and let there exist positive constants C\ and C2 such

that

(6.18) IMti>r)-Mía.r)l<Ci|*i-*a|M,        h,t2,rEL,

and

(6.19) \b(z) - b(c3)\ < C2\z - c3\»,        z E D,

for j = 1,2. Let both ends ci,c2 of the arc L — L(ci,C2) be nonspecial and let olj

and X3, j = 1,2, be given by (2.4) and (2.5). Then for any solution w E H* of Eq.

(1.1) the function g defined by (1.11) is bounded and analytic in D. Furthermore,

g is continuous at the ends c\ and c2 and there exists a constant C3 > 0 such that

(6.20) \g(z) - g(c3)[ < C3\z - c3p,        z E D,
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/.

for j = 1,2, where

(6.21) 7 = min(p, —ai—Ai, —a2 - X2) > 0.

Proof. First we show that for the fundamental function Z we have Z~x E

Lip1(L). It is easy to see from our assumptions that the product of the first two

factors on the right-hand sides of Eq. (2.11) is a function in the class Lipß(L), since

logG E LipM(L). Also it follows from Eqs. (2.7), (2.12) and the theorem stated

in [12, §19, p. 46] that Zx defined by Zx(t) = n(i)er(t) satisfies Z'1 E Upß(L'),

where V is any closed subset of L. Therefore, it only remains to consider Z^ (t)

on L near the points ci and C2- Without loss of generality we shall analyze Z^l(t)

only for t E L and t in a neighborhood of c\. By adding and subtracting logG(ci)

in the numerator of (2.12). it follows from (2.7), (2.4), the identity

aY
- = l0g(c2 - t) - l0g(í - Ci)

fLT-t

(see (12.9a) in [12, §12]) and the theorem in [12, §19, p. 46] that

(6.22) Zi{t) = (t-Ci)a,+A,+i*l(t-c9)Aa(c3-0~a,~iftefc(*),

where h(t) is a function which satisfies a Lipschitz condition on L near ci with

exponent p. Thus, using results of [12, §7], we conclude from Eq. (6.22) that Z±l

satisfies a Lipschitz condition on L near ci with exponent 7. This concludes the

proof that Z~x E Lip1(L).

In order to verify the properties of 0 stated in Lemma 6.2, we first note from Eq.

(3.3) that

(6.23) 0 = 01-02 + 03.

where

(6.24) 0l = ^T'    »a=6S(f)'    93 = bPK-i,

and where

(6-25) fo(t) = fi(t) - J h(t,T)w(T)dT.

It is easy to see from Eq. (6.25) and our assumptions on f\ and k\ that /o is bounded

and analytic in D and that /o E LipM(L). Hence it follows from Eq. (6.24), Lemma

3.5 and (6.1) that the function gi satisfies all assertions of Lemma 6.2. Obviously,

the same is true for the function 03. Let us therefore consider h\ = S(fo/Z), which

can be extended analytically into D via the formulas

-h2(t) + H(t),    tED+,
(6.26) hi[t) = ,

1 h2(t) + H(t), teD-

where h2 = fo/Z and where H(t) = (ni)-1 fL h2(r)/(r - t) dr. We conclude from

(6.1) and from what has been proven about /o and Z~l that h2 E Lip1(L) and

also, that h2(c\) = h2(c2) = 0. By the theorem in [12, §22, p. 53], the function H

satisfies all assertions of Lemma 6.2 in the regions D+ and D~. Since the same is

true for h2, and since g2 = bh\, it thus follows that g has all the properties we set

out to establish.    D
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We are now ready to construct an interpolant to g. Let us assume that all

assumptions of Lemma 6.2 are satisfied, in addition to all assumptions listed at

the beginning of this section. Let us set a = [nd/^M)]1/2, where 7 is given by

(6.21) and M is a positive integer, and let us define points zn = 0-1(na), where

n = -M(l)M. Let

/„ -^ „/    ;„  ,      sin[ir(x - nh)/h] _
(6.27) s(n,h)(x) = —^-r-fM,        1ER,

ir(x - nhj/h

and let ¿3(2) be the linear part of g, which is equal to g at the endpoints ci,C2 of

the arc L = L(ci,c2), i.e.,

(6.28) Lg(z) = ^^g(c1) + ^^g(c2),        z E D.
c2-c\ c2-ci

Then it follows from Lemma 6.2 and Theorem 4.3 of [13], applied to g - Lg, that

M

(6.29) g(t)-Lg(t)-   Y  [9-Lg](zn)S(n;h)o^t)  < CM1^"^^)
n= — M

for all t E L, where C depends only on g, d and 7. Based on the inequality (6.29), the

interpolant to g can now be constructed as follows. First, from (6.16) we compute

the approximations gn = g~N(¿n) to g at zn for n = -M(1)M, for which we have

(6.30) \g(zn)-~9n\<0(Nll2e-^daN^2),        n = -M(l)M,

by (6.17). Next we set

(6.31) Zg(t) = ^—^g-M + ^^9m,        t E L,
C2-C1 c2-ci

which is a linear function in t equal to g~M and c¡m at ci and C2, respectively. The

interpolant to g is then defined by

M

(6.32) g(t) = Cg(t) +   Y  [9n - Cg(zn)\S(n,h) o^t),       t e L.
n = — M

Using (6.29), the triangle inequality and (6.30), it is easy to estimate the difference

(9 - 9)(t) for £ € L by first estimating the expression Lg(t) - Lg(t).

Let us recall at this point that evaluations of gn = <JN(zn), n = -M(l)M, can

be carried out by means of Eq. (6.16). Then the construction of the interpolant g

in (6.32) is simplified significantly if 7 and M in the expression for the step a are

equal, respectively, to a and 2N, which were used in the formula (6.4). Since we

can always choose a of Eq. (6.2) and 7 of Eq. (6.21) by the expression

(6.33) a = 7 = min((T, -ct\ - Ai, —a2 - X2, p) > 0,

we shall assume that 7 = a and M = 2N. Then, of course, h = h/2, and it is easy to

see that k(z2m, zn) and f(z2m), to = -N(1)N, in (6.16) will be equal, respectively,

to kmn and fm, from (6.6) and (6.7), since h = h* and zn = z*n, n = -2N(1)2N.

This and (6.10) show in turn that 32m = dm, m = -N(1)N, where values of

dm have already been computed by solving the linear system (6.10). Also, the

evaluation of gm for to odd and —2N < to < 2AT is easy, since the corresponding

values of k(zm,z„) and f(zm) in Eq. (6.16) will be computed by formulas similar to
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those in (6.6) and (6.7). More precisely, let us replace zm and 2to in (6.6) and (6.7)

by zm = zm and m, respectively. Then the right-hand sides of (6.6) and (6.7) will

yield k(zm,zn) and f(zm), respectively. As we can see from (6.29) with M replaced

by 2N, another advantage of taking a equal to 7 and proceeding as above is that

the difference between g and its interpolant g (see (6.32)) will be of the same order

as the error between g and its approximation g^ (see (6.16), (6.17)), which will be

obtained via Nyström's method.

Since we are assuming for the time being that the fundamental function Z is

known explicitly, the approximation to the solution w of Eq. (1.1) can be obtained

from (1.11), once the approximation to g is known. Let w be the approximation

to w obtained by replacing g in (1.11) by either g^ of (6.16) or g of (6.32). Since,

in general, Z(t) will be unbounded at the ends of L = L(c\, C2), the absolute error

\(w — w)(t)\ may be large in the neighborhoods of ci and c2. However, if g(c3) ^ 0,

j = 1,2, then w(t) will become infinite for t approaching c\ or C2, at the same rate

as Z(t) does. Thus, in this case the relative error \(w — w)(t)/w(t)\ will be of the

same order as the absolute error in the approximation of g by (¡n or by g.

6.2. Special Ends. In this subsection we assume that one or both of the endpoints

of the arc L = L(ci,c2) are special. Let us first establish some additional properties

of the fundamental function Z.

LEMMA 6.3. Let the assumptions of Lemma 3.5 be satisfied and let Cj, j = 1 or

2, be a special end with b(cj) = 0, i.e., a3 + X3 = 0. Let us assume that 0 < p3 < 1

is such that a,b E LipM (L), the inequality (3.10) of Assumption 3.6 is satisfied,

and that there exists a constant C\ > 0 such that

(6.34) \a{z) - a(cj)\ < d\z - Cj\^,        zED.

Then Z~l is continuous at Cj, and there exists a constant C2 > 0 such that

(6.35) [Z-1(z)-Z-1(cj)\<C2\z-Cj\^,        ZED.

Proof. Without loss of generality we assume that j = 1, i.e., that ci is a special

end and that 6(ci) = 0. Then it follows from Eq. (2.4) that logG(ci) = -arfiri,

where »i is an integer. By adding and subtracting logG(ci) in the numerator of

(2.8) (compare [12, §16, Eq. (16.5)]) we obtain

(6.36) T(z) = To(z)-al\ogZ-^l,        z£L~,
Z — C\

where

(6.37) T0(z) = ¿ / 73^,        Ht) = logG(r) - logG(ci).

Here, log[(z - c2)/(z - ci)] is understood to be a definite branch of the logarithm

which is one-valued in the complex plane cut along L. The assumption a, 6 G

LipM] (L) implies that both log G and h are in the class Lip (L). Since obviously

h(c\) = 0, it follows by the theorem in [12, §16, p. 38] that To(z) is continuous

at ci and that Tq(z) tends to To(ci) as z —► cj. It can also be shown, by making

use of the theorem in [12, §22, p. 53], that there is a constant C > 0 such that for

z $l L and z near ci

(6.38) \To(z)-TQ(cl)[<C[z-ci\^.
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Now using (6.36) as well as (2.9), (2.7) and the relation c*i + Ai = 0, we obtain

(6.39) X(z) = (z-c2)x*-a'eVo(z\        z£L.

Finally, since 6(ci) = 0, we find from (2.10) and (6.39) that

(6.40) Z(c1)=a(c1)X(c1).

Thus, (6.35) now follows from (3.8), (6.40), (6.39), (6.38) (6.34) and (3.10).    D

Without loss of generality let us now suppose that ci is a special end, and that

C2 is a nonspecial end. We also assume that 6(ci) = 0, since the case 6(ci) ^ 0 is

seldom encountered in applications, and even if it occurs, it can be handled by a

similar, although somewhat more complicated, analysis.

In order to describe the algorithm, let us assume, in addition to all assumptions

mentioned at the beginning of this section, that the assumptions of Lemma 6.3

corresponding to j = 1 are also satisfied. Further, let us assume that the coefficients

fci and /i of Eq. (1.1) satisfy inequalities similar to (6.34), with j = 1. More

precisely, let there exist a constant G > 0 such that

(641) Mz,T)-k1(c1,T)\<C\z-c1\'i\        ZED, TEL,

\fi(z)-fi(ci)\<C[z-Clr,        ZED.

Finally, set

(6.42) a = min (a, pi, -a2 - X2),

where a, a2, X2 are given by Eqs. (3.7), (2.4), (2.5). As in Subsection 6.1, we

first apply Nystrom's method with a = [2ird/(aN)\1^2 and zn = (/>_1(na) to obtain

an approximate solution of the integral equation (1.12)—(1.15). We approximate

the singular integrals in kmn (see (4.30), (1.14)) and fm (see (4.31), (1.15)) via the

summation formula in (5.24), in which we take a* = [nd/(a2N)]1/'2, z* = 0_1(na*)

and 2A7 in place of a, zn and N, respectively. We then get a linear system of the

form (I —K)d = f. It is obvious from (5.24) that all error estimates from Subsection

6.1 still hold true. In particular, (6.17) will be satisfied if / and k in (6.16) are in this

case approximations to / and k, respectively, obtained by means of the summation

formula in (5.24). Furthermore, we can show that an interpolant similar to the

one in Eq. (6.32) can be constructed for g. Once again, an approximation to the

solution w of Eq. (1.1) will then be obtained via the relation (1.11).

Let us remark at this point that all cases considered so far, i.e., the ends of

L = L(ci,c2) being nonspecial as in Subsection 6.1 or else special, but with the

coefficient 6 vanishing at c3, cover completely all possible situations which may

occur when the coefficients a and 6 of Eq. (1.1) are respectively real and purely

imaginary on L.

6.3. Determination of the Polynomial PK-i- We have tacitly assumed up to

now that the polynomial PK-\ of degree not greater than «— 1, appearing on the

right-hand side of Eq. (1.15), was known explicitly. In general, however, instead

of PK_i we may only know values of the solution w to Eq. (1.1) at some discrete

points tj, j = 0(1)k, where tj ^ t¡ for j ^ I. Hence, by the relation (1.11) we will

also know values g(t3), j = 0(l)/c, of the solution g to Eq. (1.12)—(1.15). Without
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loss of generality let us consider the case of nonspecial ends from Subsection 6.1,

and let us assume that

K-l

(6.43) PK-1(z) = Yl3ZJ>

3=0

where the 7¿ are unknown coefficients. Let the vectors d^' = (d_N,..., djv )* f°r

j = —1(1)k— 1 be solutions of the linear system

(6.44) (I-K)dW=f(j),

in which the matrices I and K are the same as in the linear system (6.10), and

where the components f¡¿\ m = -N(1)N, of the vectors fM = (f{_j)N,..., /$)*

are given by

(6-45) f^=b(zm)zm

for j = 0(1)k - 1, whereas the components fm of the vector f(_1) are equal to

the sum of the first two terms on the right-hand side in (6.7). It follows from (6.44)

that the solution d of the linear system (6.10) can now be written in the form

K-l

(6.46) d = d{-1) + Yl3¿U)-

3 = 0

Thus having first solved (6.44) for d^3\ j = — l(l)/c - 1, we can determine the

coefficients ^3 in (6.43) or (6.46) by equating either g^(t) or g(t), given respectively

by (6.16) and (6.32), to g(t) at the points t = t3, j = 0(l)/c. In the case when all

discrete points t3, j = 0(l)/c, coincide with some of the points zn, n = —N(1)N, it

follows from the identity gN(zm) = dm that the coefficients 7¿ can be found easily

from (6.46) by equating appropriate components of the vector on the right-hand

side of (6.46) with those of the corresponding values of the function g. Once the

vector d is determined, then an approximation to g(t), for t E L, is obtained using

either (6.16) or (6.32).

6.4. Numerical Evaluation of the Fundamental Function Z. If the fundamen-

tal function Z is not known explicitly, then in order to carry out the algorithms

described in Subsections 6.1 and 6.2, we will first have to evaluate Z at some

discrete points. For example, for the case of nonspecial ends, the values Z(z^),

n = —2N(1)2N, will be required, as we can see from Eqs. (6.6) and (6.7). It is

obvious from Eq. (2.11) that the problem of computing Z(t) for t E L leads to

the evaluation of the function T(t) given by (2.12). Let us assume that in addition

to Assumption 3.4 we also have a,b E LipM(D), i.e., a and 6 satisfy (2.1) for all

h,t2 E D. Then log G E LipM(D) n H(D), where G is defined by (2.3). Hence,

the function Y defined in (2.12) can be computed at the required points using the

summation formula in (5.24).

7. Numerical Examples.  In this section we consider two numerical examples

which illustrate some of the points discussed in the preceding sections.

Example 7.1 [3]. Consider the singular integral equation

,,,/,    , .      t    f    w(r)dr      1   f1    w(r)dr . ,     „ .   ,/9
-(l-t2)l'2w(t) + - f    ^±-r + - _V, = -1+ ta+6t + 8-1/a

7T   J_l     T — t Tt J _i  T + t + ó
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for -1 < t < 1. This equation has the particular solution w(t) = (1 - t2) 1/2.

Both points -1 and 1 are nonspecial ends, the index k is 2, and the fundamental

function Z is Z(t) = 2(1 - i2)"1/2. Thus it follows from Eqs. (1.5) and (1.11) that

the exact solution g of the Fredholm integral equation (1.12)—(1.15) is g(t) = 1/2.

Equation (1.12)-(1.15) has been solved approximately by the method of Subsection

6.1 with a= 1/2 and d = tr/2.

We have performed two tests for various values of N. In the first of these we used

the explicit formula for the fundamental function Z(t) to carry out computations,

while in the second, the fundamental function Z(t) was computed approximately,

as described in Subsection 6.4, according to the formula (2.20). In both cases we

have obtained two significant figures of accuracy in the approximate solution to

g(zn), n = -N(l)N, when N = 4, three when N = 8 and four when N = 16.

These results confirm the theoretical error estimate given by (6.15).

Example 7.2. Let us consider the singular integral equation

m/2   , x     (l + i)1/2   f1 w(r)dr      f1 .        ,   , . J
(l-t)1/2w(t) + ±-:— + _      + /    (t + T)w(T)dr

for — 1 < t < 1. This equation has the solution w(t) = (1 — t)~ll2. The points

— 1 and 1 are respectively special and nonspecial ends, the index k is 0 and the

fundamental function Z is Z(t) = (1 - i)-1/2. The exact solution g of Eq. (1.12)

(1.15) is g(t) = 2. The approximate solution of Eq. (1.12)-(1.15) has been obtained

by the method of Subsection 6.2, in which we chose a = 1/2 and d = ir/2. As

in the previous example, corresponding to each value of N we have set up the

linear system arising from Nystróm's method in two ways: firstly by making use of

the explicit formula for the fundamental function and secondly by computing the

fundamental function approximately. When computing approximations to g(zn)

for n = —N(1)N we have in both cases obtained one significant figure of accuracy

when N = 4, two when N = 8 and three when N = 16.

Appendix A. The Behavior of Cauchy Integrals Near the Ends of the

Line of Integration in the Case when the Density Function Depends on

a Parameter. Let L = L(ci,c2) be a smooth, open arc of finite length with ends

ci,C2 in the complex plane and with direction from ci to C2, and let A be a set

of points in the complex plane. Let us assume that w*(t,r) is a bounded function

defined on L x A which satisfies, uniformly for r E A, a Lipschitz condition with

respect to t E L, i.e., there exist constants C > 0 and 0 < p < 1 such that

(A.l) \w*(ti,r) - w*(t2,r)\ < C[h - t2\'i,

for all 11, t2 E L and for all r E A. Let us define the function w for all (t, r) £ L x A

by

(A.2) u;(i)T) = ^M)        1 = iß}

where c is either ci or C2, where ß is a real number and where (t-c)1 is any definite

branch of this function which varies continuously on L.
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Let us state some results on the behavior of

,. ~s f w(u,r)du
A.3 $z,t  = /     V     ;     ,

where t E A. Let z be near c, but not on L. Then:

Io. If 7 = 0 (i.e., w(t,r) =w*(t,r)), then

(A.4) $(z,t) = ±w(c,r)\og-+&0(z,t),
z — c

where the upper sign is taken for c = ci and the lower one for c = C2. In (A.4),

log(l/(z - c)) = -log(z — c) is any branch of the logarithm which is one-valued

near c in the complex plane cut along L and the function $0(z,t) is bounded for

all z in the neighborhood of c and all r E A, i.e., there exist positive constants M,

6 such that

(A.5) \$q(z,t)\<M   for |z - c| < 6, z£L, t e A.

2°. If 7^0, then

/» ^ */     x      ■ Tre^^ w*(c,t)       .   .     ,
A.6 $(z,t) = ± y '  ' +$0{z,t),

sm(77r) (z - cp

where the signs are chosen as in Io. In (A.6), (z — c)1 is any branch of this function,

one-valued near c in the complex plane cut along L, taking the value (t - c)"1 on

the left side of L, and the function $o(z,t) has the same properties as in Io.

In the case when the point z = t is on L and near c (of course, in this case the

integral in (A.3) is to be understood as Cauchy principal value integral), we have

the following results:

3°. If 7 = 0, then $ has the form

(A.7) *(i,T) = ±ti;(c)7-)log-J-+$i(i,r))
t — c

where the signs are again chosen as in Io, where log(l/(i — c)) = — log(i — c) is any

branch of the logarithm that is one-valued and continuous on L and where $1 (i, r)

is a bounded function for all t E L in the neighborhood of c and all r € A, i.e.,

there exist positive constants M, 6 such that

(A.8) |$i(i,r)| <M    for |i - c| < 0, t E L, t E A.

4°. If 7^0, then

(A.9) $(í)7-) = ±TCot(77r)^^ + $1(í,r),

where the signs are selected as in Io and where $i(i,r) has the same properties as

in 3°.

The above results were established in [12, §29] for the special case of w*(t,r) =

w*(t), i.e., when w* is independent of r. In our case the proofs may be carried out

in a similar way, and we therefore omit them.
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Appendix B. Proofs of Lemma 5.1 and Theorem 5.2.

Proof of Lemma 5.1.  It follows from the properties of smooth arcs that there

exist positive constants Gi and G2 such that for all n E Z and |n| > Gi we have

(B.l) [  |aY| <G2|i-z„|    for allie/n
Jzn

and

(B.2) \t >       min
t = Z„-\,Zn+l

\t - zn\    for all t E L\ln,

where /„ is the part of L between zn_i and z„+i, and where the integration in

(B.l) is taken over the part of L from z„ to i. It is obvious from the definition of

tn(z) that in order to prove Lemma 5.1, it will be sufficient to verify (5.4) for all

n E Z such that |n| > Gi. Thus, let |n| > Gi, and let us consider two cases, that

when t E ln and the other when t E L\ln. In the case when t E /„, we find from

(5.1), on using (B.l), that

/ m      ft 11
\tn(t)[ = ~   -

7T

cos[ïï{(j)(t) — nh}/h]

-I
\J zn

4>'(Zn)(t - Zn)

1 0'(r)sin[7r{</>(r)-nä}/ä]dr

0'(zn)(f-zn)
< G2max

zein

<t>'(z)

<t>'(Zn)

< G2/„,

(B.3)

where

*" ~ îi^2el(n-T)h,(n+l)h]   ((f)-1)'^)

Similarly, when t E L\ln, then from the obvious inequality |1 -cos[n{(p(t) -nh}/h}[

< 2 and (B.2) we have

/„ = max
íi,Í26[(n-l)fc,(n+l)/i]

tt-Vitl)

(B.5)

!*„(£)I < -      max
TX t=z„-\ ,3„ + i

- max
7T e=(n-l)h,(n+l)h

<j>'(Zn)(t-Zn)\

(4>~l)'(nh)

7T\[<t>-l(0-<t>-l(nh)}/h\

where In is defined by (B.4). Thus we see from (B.3) and (B.5) that the quantity

In given by (B.4) needs to be estimated in both cases.

Let us introduce a domain Bo C D¿ which encloses the interval [—a, a] on the

x-axis; for simplicity, we have chosen B0 to be a rectangle (see Figure B.6).

y|

B„

(n-l)h    nh    (n+1)h

FIGURE B.6.  The domain B0.
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Let sn be the linear map such that sn((n - l)h) = —h and such that

sn((n + l)h) = h. Let s~l be the inverse map of s„, and let Bn = s~1(B0). Let us

define a map hn on B0 by án(£) = 0~1(sñ1(£))- It is clear that hn is a conformai

mapping of B0 onto some subset of D. For f E Bn we have <f>~1(£) = hn(sn(0)

and hence

(B.7) (4>-1)'(0 = h'n(sn(0)s'n(0-

Furthermore, since s'n(£) = const ^ 0, Eq. (B.7) implies that

\h'n(Vl)
(B.8) /„ = max

rii,Tl2e[-h,h] K(-n2

Now using a result from the theory of univalent functions (see Theorem 4 from [7,

§4, Chapter 2]), we conclude that a uniform bound, independent of n, exists for the

right-hand side of (B.8). Hence Lemma 5.1 is proven.      D

Proof of Theorem 5.2. Let the inequality (5.5) be satisfied and let t E L. Let n

be a positive integer such that -nh < q>(t) < nh and let 0 < Y < d. We introduce

the following contours (see Figure B.10),

lli,Y = <A_1({2 = x± lY: -(n + 2/3)a < x < (n + 2/3)a}),

ll,Y = <t>~l{{z = ±(n + 2/3)á + iy: -Y < y < Y}),

'n,Y — ín,y U lny,

Ln = 4>~l({z = x: -(n + l/3)a < x < (n + l/3)á}).

(B.9)

yA

i)>(t)        nh (n+1)h

-Y

FIGURE B.10.  The contours lnYiln,Y'Ln-

In order to derive the formula for s(t) defined by (5.7), we assume that í # zK

for all k = —n(l)n; the same formula for t = Zk will follow by letting t approach
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Zfc. For any r E Ln and r / t, r ^ zk for all A: = — n(l)n, we have from the residue

theorem that

F(t)[J>(t) - (f>(t)]       A   F(zk) cb(t) - kh h(-l)k sin[7r^(T)/ft]

i(T-t)<p'(r) ^  4>'(zk)    t-zk        -Ki       4>(r)-kh
(B.ll) k=~n

sm[7T(A(r)/á]   f F(z)[(t>(z) - (¡>(t)\dz

2tt JlnY [4>(z) - (¡>(t)\(z - t) sin[7T<¿(z)/a] '

Given e > 0, let Ln denote the image under the map 0-1 of the set {z = x:

— (n+l/3)á < x < (n+l/3)á} with deleted segments of length 2e centered at points

kh, k = -n(l)n, and (¡>(t). Multiplying both sides of (B.ll) by 0'(r)/7r[(/>(r) -<t>(t)]

and integrating over Ln with respect to r, we get

J_  f   F(t) dr      A     F(zfc)a(-l)fc

TÎ Jl%     T-t fcf^„ <P'(Zk)ni(t - Zk)

f    1 [sin[7r0(r)/a]^(r)      8in[7T0(r)/ft]0/(r) )

(B.12)

A« t I      4{t) - 4>(t) Ht) - kh

J_fl   f   sin\K(j)(T)lh](j>'(T)dT  f F(z)dz

2tt \ ic JL,n        4>(t) - (f>(t)        JlnY (z - t) sin[7n/.(z)/a]

sin[7r0(r)/a]0'(r)dr F(z)dzÍ  HJln.y * Jl\ 4>(z) - (J)(t)        (z - t) sin[TT(f>(z)/h}

In the last integral in (B.12) we interchanged the order of integration, which is

possible, since by (B.9), \4>(z) — (¡>(r)[ > min(a/3,Y) > 0 for all z E ln,Y and all

r € Ln- Making a change of variables and letting e go to zero in (B.12), we obtain

1_   f   F(r)dr _  A   F(zk)   h(-l)k   1   fN"  j sin[7rz/a]     sin[7rx/a] \

■Ki JLn   T-t       J^n (j)'(zk) ixi(t - zk) it J_Nn \ x - (¡)(t) x-kh   f

(B.13) _ -1 Í 1   fNn sinfrx/h]dx   f F(z) dz
" 2tt | 7T J_Nn     x - 4>{t)     JinY (z - t) sm[K(p(z)/h\

" sin[7rx/a] dx F(z)dzi ir
Jln.Y   "" J-Nn (p(z) — x    (z — t) sin[7T0(z)/a]

where Nn = (n + l/3)á.

Now we let n approach oo and analyze (B.13). On the left-hand side we introduce

*   \J-oo       J-N,

sin[7nr/a] dx

z-W)
(B.14)

sin[7ri/a] dx

x — kh

where in the second expression in (B.14), k = —n(l)n. Clearly,

(B.15) lim èn = 0,
n—»oo

but more importantly, it can be shown that

(B.16) lim        max       |«S„ J = 0,
n^oo-n/2<fc<n/2
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and also that there exists a constant Gi > 0 such that

(B.17) max   |¿n,fc| < Gi    as n —► oo.
—n<k<n

Using (B.14), the identity

f°° sin[7Ti/a] dxfJ —c

= ttcos(ttx*/h)    for x* E R,
x — x*

and the definition of tk(z), the left-hand side of (B.13) can be rewritten as

(B.19)
Zfc) TTl(t - Zfc)

(on - &n,k)-

k=—n k=—n

It follows now from (B.15)-(B.17) and (5.5) that as n —* oo the expression (B.19),

and hence the left-hand side of (B.13), becomes

(B.20) SF(t)-YF(zk)tk(t).
kez

Now we turn to the right-hand side of (B.13). Since |sin[7T0(z)/a]| > \f%/2 for

all z E /2 y, it follows from (B.18), the definition of ln,Y in (B.9), (4.3), (4.5) and

(4.6) that as n —» oo the first term on the right-hand side of (B.13) approaches

F(z)dz

2-K ~ "' J<t>-i(LY) (z-t)Än[ir4>(z)/h\'

Thus, it only remains to consider the second term on the right-hand side of (B.13).

It can be shown that there exists a constant G2 > 0 such that for all z E ln Y,

~Nn sin[7rx/á] dx

(B.21) -^cos[-K(j>(t)¡h\ j

(B.22)
/. N„      <t>(z) - X

<C2,

uniformly as n —► 00. Hence it follows by the same argument as the one used above

that the part of the integral corresponding to ln Y vanishes as n —* 00. Let us

rewrite the contribution from ln Y as follows:

(B.23) X-   / Xn,Y~   /¿7r J4>-<(Ly) 7T J_

Nn sin[TTx/h}dx F(z)dz

4>(z) t) sin[TT<t>(z)/h]

where Xn,Y in (B.23) is the characteristic function of ln Y. Similarly to the case of

(B.22), it can now be shown that there exists a constant G3 > 0 such that for all

zE<t>-l(LY),

(B.24)
/

Nn sin[7ra;/á] dx

Nn      4>(Z) - X

<G3,

uniformly as n —► 00. Therefore, from (B.24), Lebesgue's dominated convergence

theorem and the identity

0 sin[7rx/á] dx
(B.25) I x - z

= 7rexp[(27rz/á)sgnlmz],        z E C\R,

it follows that as n —► 00 the expression (B.23) approaches

exp[(i7T(^(z)/a)sgn Im (¡>(z)\F(z) dz

l(Ly)
(B.26)

27r70- (z - t) sin[7T</>(z)/a]
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Finally, combining all results from (B.20), (B.21) and (B.26), we obtain

SF(t)~YF(Zn)tn(t)

m 27ï "ez
{   '    ' 1_  f F(z){exp[(t7r0(z)/a)sgnlm0(z)]-cos[7r^)(¿)/a]}dz

2tt /¿-i(ly) (z-í)sin[7T^(z)/á]

The error bound (5.8) now follows from (B.27) by bounding the contour integral,

taking the liminfy_(j- and making use of the inequality

(B.28) |sin[7T0(z)/á]| >sinh|7rF/á|,        zef'fiy).

The proof of Theorem 5.2 for the case when (5.6) is satisfied instead of (5.5) is

similar, and we will not give it in detail. We only note in this case that by the

first inequality in (B.5) and the estimate (5.4), the expression in (B.19), i.e., the

left-hand side of (B.13), approaches the limiting form (B.20) as n —» oo. This again

yields (B.27), from which we obtain the estimate (5.8) as above.    D
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