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A Third-Order Accurate Variation Nonexpansive Difference

Scheme for Single Nonlinear Conservation Laws

By Richard Sanders*

Abstract. It was widely believed that all variation nonexpansive finite difference

schemes for single conservation laws must reduce to first-order at extreme points of the

approximation. It is shown here that this belief is in fact false. A third-order scheme,

which at worst may reduce to second order at extreme points, is developed and ana-

lyzed. Moreover, extensive numerical experiments indicate that the third-order scheme

introduced here yields superior approximations when compared with other variation

nonexpansive difference schemes.

1. Introduction. In this paper we introduce and analyze a formally third-

order accurate finite difference scheme used to approximate solutions to the single

hyperbolic conservation law:

a ci

(1.1) —u+—f(u) = 0,        u(x,0) = u0(x).

Future work will be devoted to extending the techniques presented here to hyper-

bolic systems in one and many space dimensions.

In recent years it has been found that incorporating the property that the vari-

ation of the exact solution to (1.1) does not increase in time into the design of

approximating schemes often leads to superior numerical results when compared to

approximations coming from methods where this property is ignored. However, it

was widely believed that total variation nonexpansive schemes (or loosely speaking,

total variation diminishing, or TVD schemes) must automatically reduce to first-

order accuracy near extreme points of the solution; see [8], [10]. In this paper we

show that TVD schemes need not be incompatible with high-order accuracy. We

introduce a high-order technique that yields approximate solutions to (1.1) which

have nonexpanding variation in time and which also satisfy the same maximum

principle given by the exact solution to (1.1). Moreover, away from extreme points

of the solution, we show that our method is formally third-order accurate, and

around extreme points it can reduce to no less than second-order accuracy.

This paper is divided into four sections. In Section 2 we develop an approxima-

tion procedure for functions of bounded variation. Our approximation procedure

cannot increase the variation of the function being approximated, and it is third-

order accurate in regions where the approximated function is smooth. In Section 3

we show how to evolve this approximation in time in a way that is variation non-

expansive, consistent with the weak form of (1.1), and we prove that the resulting
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536 RICHARD SANDERS

scheme is formally third-order accurate in space and time. Finally, in Section 4 we

present some numerical examples.

2.    Variation Nonexpansive Third-Order Accurate Approximation.

The goal of this section is to develop an approximation procedure that has the

following desirable properties. First, we require that our procedure yield an approx-

imation that retains the cell average of the function being approximated. Second,

we require that our procedure contract the total variation as well as local extrema

of the function being approximated. Finally, when our procedure is applied to

a sufficiently smooth function, we require that the resulting approximation have

third-order accuracy with respect to the mesh size. As is seen in the next sec-

tion, these factors are fundamental to the development of our stable and high-order

accurate finite difference method.

To begin, we give a few preliminary definitions. Partition the real line into

nonoverlapping intervals, R = (J, Ij, where Ij denotes the semiclosed interval I} =

[xj,Xj+i). Let Ij denote the closure of Ij and let 7° = (x3, Xj+i). Let Aa; represent

the length of Ij, Ax = Xj+i — Xj, and denote the midpoint of Ij by Xj+i/2. Finally,

let Xj(x) represent the characteristic function of the open interval Ij, i.e.,

(l,   xel°,

X] [X>     \ 0,    otherwise,

x = 0,

otherwise.

and let 6(x) be given by

«w-{¡¡
Now consider an interpolation taking the form

(2.1) ¿%A(u)(x) = £>,(x - xj+i/2)Xj(x) + u(x3)ô(x - Xj)],

3

where each Pj is a polynomial. To obtain the desired third-order accurate approx-

imation, the degree of P3 must be at least two. For organizational reasons, we list

here all of the properties that ¿%A(u) is required to satisfy. For any u e BV we

require that

(2.2a) /  3?A(u)(x)dx = [ u(x)dx,
Jl; Jl3

(2.2b) Var(¿?A(u)) < Var(u),

(2.2c) sup(^A(u)) < sup(u),        inf(^A(u)) > inf(u),

and in the event that u e C3 we require that

(2.2d) 3?A(u)(x) = u(x) + 0(Ax3).

To produce a first candidate for Pj, which below is denoted by Pj, we for the

moment forego considering properties (2.2b) and (2.2c) and concentrate on first

satisfying (2.2a) and (2.2d). Once this is accomplished, the complete problem is

treated by suitably modifying Pj in such a way that the resulting scheme yields an

approximation that satisfies all of the properties above.
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Let U(x) denote the antiderivative of u(x); U(x) = ¡Qx u(s) ds. It is well known

(see [4], for example) that the cubic Hermite interpolation to U on the interval Ij

is given by
3

H(I3,U)(x) = 1£al(U)hl(x),
k=0

where

and where

h3q(x) = l, h[(x) = (x-Xj),

h32(x) = (x- x3)2,        hJ3(x) = (x- Xj)2(x - Xj+i),

a0(U)=U(x3),        a\(U) = U'(x3),

a>2(U) = [A+U(xj) - AxU'(x3)]/Ax2,

a{(U) = \Ax(U'(x3) + U'(x3+i)) - 2A+U(x3)]/Axz.

Note that A+ represents the forward difference operator, A+U(x3) = U(x3+i) —

U(xj). It is furthermore well known that when U eC4 the formula with remainder,

U(x) = H(I3, U)(x) + ±UIV(Ç(x))(x - x3)2(x - x3+i)2,

is valid for some Ç(x) 6 7°. Differentiating this formula, we arrive at

u(x) = j-xH(I3,U)(x)

(2-3) + y"(t(x))(x - x3+i/2) ((x - x3+i/2)2 - (^)2)

+ k(x)(x — Xj)2(x - x3+i)2.

Recalling that u(x) = U'(x), we easily conclude that

(2-4) ^(h, U)(x) = [s/-(Úk + ul)/4] + [ur- ú~L]9 + 3[ú^ + ú~i]92,

where above and throughout we let sé, u¿, and iTß and 9 denote the normalized

variables

SÍ = -T— /   u(s)ds,
Aa; JIj

(2.5) ui = u(xj)-sf,

uk = u(Xj+i) -sf,

9 = (x- x]+i/2)/Ax.

The subscripts on the left-hand side above have been omitted for ease of presenta-

tion. At this point we are led to take as our first candidate for P3 the quadratic

polynomial

(2.6) PJ(x-xj+i,2) = j-H(Ij,U)(x),

which by construction satisfies both (2.2a) and (2.2d) when restricted to the interval

Ij-
Next, we give an example to demonstrate that the interpolation formula given

by (2.4) does not in general yield an approximation that satisfies either (2.2b) or
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(2.2c). Consider interpolating the function u(x) = x3 on the cell [0,1] using formula

(2.4) above. Doing the calculations we arrive at

However, the value of Pq at x = 1/6 is -1/24. This demonstrates that Pq1 violates

both (2.2b) and (2.2c) locally. Therefore, one can modify u outside [0,1] to obtain

an example where the interpolation procedure implied by (2.4) violates (2.2b) and

(2.2c) globally. This "overshoot" phenomenon can however be rectified. Overcom-

ing this problem, which is inherent to cell average preserving piecewise quadratic

interpolation, is the subject of the remainder of this section.

Before continuing, we introduce some further notations. Let a quadratic P(a, b)(9)

be defined by

(2.7) P(a, b)(9) = 3(a + b)92 + (b - a)9 -(a + b)/4,

and note that this quadratic satisfies

rxl2 .
P(a,b){-\)=a,    P(a,b){\)=b,     \      P(a,b)(9)d9 = 0.

J-l/2

Recalling the definitions of (2.5), set

M = maxmod(ui,uñ),        m = mïnmod(ui,UR),

where here the max mod and min mod functions are defined by

,       (a    if|a|>|6|,
maxmod(a,o) = <

jb    if|a|>|6|,
minmod(a,o) = <

if |a| < \b\,

if \a\ > \b\,
if |a| < |6|.

Furthermore, let p represent the ratio

p = m/M,

and observe that \p\ < 1. Finally, let E represent the relevant extreme value of

u— sf on / (relevant in a sense made apparent below), which we define here by

j supj(u-sf)    ifM<0,

\ inf¡(u-sf)     ifM>0,

and when M ^ 0 let E be given by

Ê = E/M.

Our approach to eliminate any possible overshoot or undershoot, as was exem-

plified by the example above, is to insert

(2.8) P(TLui,TRuk)(9)+sf,

for Pj(x — Xj+i/2) in the formula for ^A(u)(:r), using certain to be determined

values of 0 <tl, tr < I (recall that we have omitted subscripts for convenience).

The decision to insert a quadratic of the form (2.8) into (2.1) is quite natural when

one observes that first when tl = tr = 1 we have that

P(ul,u^)(9) +sf = PJ(x- x3+i/2),
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and second for any r¿ and tr we also have

/ [P(TLui,TRuR)(9)+s/]dx= I u(x)dx.

Moreover, since P(a,b)(9) is affine in o, b, we have that

\PJ(x - x3+i/2) - (P(tlvTl,tríTr)(9)+s/)\

= \P((l-TL)ui,(l-TR)u^)(9)\,

which for |0| < i is bounded above by

max((l - tl)|ul|, (1 - tr)\ur\).

Therefore, inserting (2.8) into our interpolation formula ^A(u) in place of

Pj(x - Xj+i/2) will also yield a third-order accurate approximation provided that

tl and tr are constructed so as to satisfy

(2.9) (l-TL)\ui\ = 0(Axz),        (l-rfi)|u^| = 0(Ax3)

(in the event that u(x) is smooth of course).

At this point it should be clear to the reader that if Pj(x - Xj+i/2) is monotone

on J, it would satisfy the local estimates

(2.10) Var(PJ(x - xJ+1/2))|/ < Var(«(x))|7

and

swp(PJ(x - x]+i/2)) < sup(u(x)),
(2.11) l '

inf(Pj(x - xj+i/2)) > inf(u(x)).
i     J i

The goal now is to derive a recipe for determining r¿ and tr so that

P(tlÚ~Í,trUr)(9)+s/

satisfies the estimates above on every cell 7¿, regardless of whether Pj(x — Xj+i/2)

is monotone on l3 or not. Then we need to verify that this recipe at the same time

implies the error estimate (2.9).

Remark.      When  u(x)   is  smooth  we  see  upon  differentiating  (2.3)   that

Pj(x - x3 + i/2) is monotone on I unless for some x in / we have

u'(x)=i-u'"(x)^92-^jAx2 + 0(Ax3).

Therefore, it is necessary to modify Pj(x — xJ+1/2) only near certain (in a sense)

nongeneric points. Loosely speaking, these points can be thought of as extreme

points (or approximate extreme points) of u.

A straightforward calculation shows that the absolute value of the critical point

of Pj(x — Xj+i/2), in the normalized variables defined above, is

\9     I-    l-p

Therefore, Pj(x — x3+i/2) fails to be monotone on / only when

6(1 + p)      2'
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or equivalently when

(2.12) -h<P<±-

Again we calculate in the normalized variables to find that the critical value of

Pj(x - xJ + i/2) is given by

P .  -    M^ + P + f)  ,^.
Pent-      M     s{i + p)       +Sf.

Using the fact that Pj(x - Xj+i/2) is convex (resp. concave) when M > 0 (resp.

M < 0), one easily determines that Pj(x — x3+i/2) satisfies the local estimates

(2.10) and (2.11) when, for |0| < |, it takes its values in the range of M + sf,

m + s/ and E + sf. In the nontrivial case, |#Cnt| < \, one easily checks that this

fact is implied by the inequality

(note that E < 0). Therefore, even in the case when Pj(x — x3+i/2) has its critical

point inside the interval Ij, when inequality (2.13) is satisfied we are assured that

the local estimates (2.10) and (2.11) are satisfied by Pj(x-x3+i/2) (or equivalently

by (2.8) with tl = tr = 1).

The only situation that remains to be considered is (2.12) satisfied, and (2.13)

violated. To obtain the desired stability and accuracy in this situation, some care

must be exercised choosing r¿ and tr. This task is divided into two separate cases.

Case 1. (2.12) is satisfied, (2.13) violated and p > 0.

We begin with a simple lemma given without proof.

LEMMA 2.1.   Let \9C\ < \ denote the critical point of P(uI,ur)(0)+s/.   We

then have that
(l-p)2+3(l + p)2

:P(uL,uk)(9c) >

T+ = -È-

M+ v-^-nn-c, _ 12(1+ p)

Now define r+ by
3(1 + p)

l + p + p2'

and observe that in this case 0 < r+ < 1. It is straightforward to check that if we

set

(2.14) TL=T+, Tr=T+

in this case, the critical point of (2.8) agrees with the critical point of Pj (x-x3+i/2).

More importantly, however, choosing t¿ and tr as prescribed above forces the

critical value of (2.8) to become exactly E + sf, the relevant extreme value of u.

These observations allow us to again conclude without proof:

LEMMA 2.2.   Choosing t¿, and tr as above, we have in the present case that

the function

P(tluí,trur)(9)+s/,        xel°,

u(Xj+l), X = Xj+i,

defined on I, satisfies the local estimates (2.10) and (2.11).
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Finally we verify that r¿ and tr as given by (2.14) satisfy the error estimate

(2.9).

LEMMA 2.3.   Choosing r¿ and tr as above, we have in the present case that

(1 - TL)\ul\ = 0(Ax3),        (1 - tr)\ur\ = 0(Ax3)

whenever u(x) 6 C3.

Proof.   First observe that formula (2.3) allows us to conclude that there is a

bounded function, say r](x), such that on /

1
P(uL, ur)(9) + S/ = u(x) + r,(x) Axó.

From this we get that

P(T+ui,T+uk)(9) + Sf

= u(x) + n(x) (--< Ax3 + (1 - t+)M
M

P(u2,ú^)(9)

At the critical point of P(ul,ur)(9), say 9C, we see that taking r¿ = tr = r+, as

we have done in this case, implies the inequality

sgn(M)[P(T+ul,T+uii)(9c) + s/] <sgn(M)u(9cAx + x]+i/2),

and this implies that

(l-r+)|M| "jjP{GL,uk){Oc)< rj(9cAx + xj+i/2) [j-9,
1

Ax3.

The result of Lemma 2.1 now makes the desired result obvious.

Case 2. (2.12) is satisfied, (2.13) violated and p < 0.

Rather than modifying both u¿ and ur as was done in the case above, here we

modify only the end point value with maximum modulus. Consider the following.

For p < 0 define r_ by

r_ = A-[(p + 3P) - (3(P - p)(3P + p))1'2]

and observe that when p < 0 we have that E < p, thus showing that t_ is real.

Now define r¿ and tr by

(2.15)

Jl if
TL = \r_ if

_   Í T_ if |Û2| <

TR~\l if |úl| >

ul\ < \ur\,

ui\ > \ur\,

\UR\

\ur\

One easily computes that this particular choice of tl and tr gives

1 / r_ - ps

(2-16) 9C = ±-
6 \ r_ + p t

as the critical point of (2.8); the sign above depends on which normalized end point,

ul or ur, has the maximum modulus. Choosing r¿ and tr in this way also forces

the critical value of (2.8) to be E + sf. Moreover, modifying only the end point

with maximum modulus in this case does not introduce any new oscillations, as
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could be the case if we modified here the end point with minimum modulus. Thus

the function

(u(Xj), X = Xj,

P(TLÚ~i,TRÚ~k)(9)+S/, xel°,

u(xj+i), x = x3+i

with tl and tr given by (2.15) has, in this case, only one local extremum in I, and

its extreme value is E + sf.

LEMMA 2.4.   In the present case, r_ satisfies the inequalities —2p < r_ < 1.

Proof. Set

T-(s) = -1-{(p + s)-(3(s-p)(3s + p))1/2}

and compute that

Since T-(p) = —2p and r_(s«) = 1 the final result is easily seen.

These observations above combine to give

LEMMA 2.5.  In the present case, choosing tl and tr as in (2.15) implies that

the function P(x — Xj+i/2) satisfies the local estimates (2.10) and (2.11).

Again we verify that r¿ and tr given by (2.15) satisfy the error estimate (2.9).

LEMMA 2.6.   Choosing r¿ and tr as above, we have in the present case that

(1 - TL)\ui\ = 0(Ax3),        (1 - tr)\ur\ = 0(Ax3)

whenever u(x) e C3.

Proof. We assume that ur = M since the proof is similar otherwise. Following

the proof of Lemma 2.3, we arrive at the inequality

{1-tr)\Úr\[-P(0,1)(9c)]< ri(9cAx + x3+i/2)(^-92j Ax¿

Ax3

This inequality and some simplification gives us that

^        r  2
(1-tr)\ur\ < const   6<9

Using the result of Lemma 2.4 together with (2.16) implies that 9C > 1/6, and this

inserted into the inequality above completes the proof of the lemma.

We conclude this section by condensing its main results into a theorem.

THEOREM 2.1.  In the interpolation formula (2.1), define P3(x - x3+i/2) by

P3(x - x3+i/2) = P(tluZ,trú~r~)(9)+s/,

where tl and tr are given by the following recipe:

If-l<P< -1/2, then

tl = 1,        tr = 1.

// -1/2 < p < 0 and ur = M, then

tl = 1,        TR = min(T-,l).
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// -1/2 < p < 0 and Ul = M, then

TL =min(r_,l),       tr = 1.

IfO<p<l, then

tl = min(r+, 1),        tr = min(r+,l).

Then the interpolation formula (2.1) j/î'e/ds an approximation ¿ft,A(u) í/iaí satisfies

all properties (2.2a) through (2.2d).

3.1. Evolution of the Approximation. In this section we develop a simple

and accurate method to evolve a piecewise parabolic approximation to the solution

of (1.1) from one time level to the next. This evolution scheme together with

the reconstruction algorithm of Section 2 combine to yield a generically third-

order accurate finite difference scheme. Moreover, the resulting approximation

has nonincreasing variation in time and satisfies the same maximum principle as

satisfied by the exact solution to (1.1).

To implement the approximation of Section 2, three basic pieces of information

must be available for each cell. Specifically, the cell average and the left and right

cell boundary point value of the function being approximated must be known. To

obtain this information, we employ a staggered spatial mesh together with the

method of characteristics. To simplify the presentation, we discuss our procedure

for one time iteration only and note that succeeding time iterations follow in an

analogous manner.

Let T(uo)(x,t), t > 0, denote the solution to the differential equation

(3.1) _u + _/(u)=o,        u(x,0) = uo(x).

As in the previous section, partition the real line into nonoverlapping intervals

U • Ij, with Ij = [xj,Xj+i), and approximate uo e BV by

(3.2) v°(x)=S?A(u0)(x).

Consider the staggered partition Uj/>-i/2, I3-1/2 = [xj-i/2,Xj+i/2), along with

its associated staggered reconstruction algorithm S?s. The object of our evolution

technique is to determine a piecewise parabolic approximation of T(v°)(x, At/2).

This goal is accomplished by computing a slight perturbation of S?s(T(v°)(-, At/2)).

To avoid abusing notation too much, we assume that v°(x) is given by

(3.3) v°(x)=^A(u0)(x),

_¿± _c

where S? (and S? as well) denotes a "preconditioned" version of S?A. By pre-

conditioned we mean specifically that the data which S?A is applied to is modified

(in a way we discuss in detail at the end of this section) so that for all u in the

range of uo and all j,

d
(3.4a) |/"(u)|Aimax dxP3(x-x3+i,2) <2.

Written hi terms of the normalized variables (2.5), (3.4a) becomes

d
(3.4b) |/"(«)|A max

|0|<l/2
P(TLUL,TRUk)(9) <2,
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where A = At/Ax. Essentially what we do below to enforce condition (3.4) is

to push extremely large gradients of u out of the quadratic P3 and into jump

discontinuities at cell interfaces. A condition much like (3.4) is made in [10]. An

additional condition that we assume throughout is the Courant condition; that is,

for all u in the range of uo we assume the ratio A is taken so that

(3.5) |/'(u)|A < 1.

With (3.4) and (3.5) we have:

LEMMA 3.1.   The characteristic equation

jtx(s,t)=f'(v°(s)), x(s,0) = s e I°_i,

has a unique solution x(sj-i,t) such that

x(s3-i,At/2) = Xj-i/2,        s3-i e Ij_i.

Proof. Consider finding the root of the function

H(s) = f'(v°(s))At + 2(s-xj-i/2).

According to (3.5) we have that

H(xj-i + 0) = f'(v°(x3-i + 0))At - Ax < 0,

H{xj - 0) = f'(v°(x3 - 0))At + Ax > 0,

and (3.4) implies that for every s 6 7°_j

£h{s) = f"(v°(s))At f/j-i(s - s3_x/2) + 2 > 0.

Therefore, H(s) has a unique root in /?_x, call it Sj-i, and

x(Sj-i,t) = Sj-i + f'(v°(s3-i))t

defines the desired characteristic.

The result of the previous lemma guarantees that through each point

(xj_i/2,At/2) there is a unique backward characteristic of (3.1) (with u(x,0) =

S?A(uo)(x)), intersecting the line t = 0 within cell Ij-i. The divergence the-

orem applied to (3.1) over the trapezoid defined by the points (Xj-i/2,At/2),

(xj+i/2,At/2), (sj-i,0) and (sj,0) gives the formula

)(x,At/2)dx

(3'6) i   a x
= Ä~x]      V°{x)dX " 2 A+ ^V°^-^ * />0(s;-i))"°(s¿-i)) •

Therefore the average of T(v°)(x, At/2) on every cell Ij-1/2 is given exactly by the

right-hand side of (3.6). Moreover, the cell endpoint values of T(v°)(x, At/2) are

given exactly by

(3.7) T(v°)(x3_i/2,At/2) = v°(s3-i),        T(v°)(x3+i/2,At/2) = v°(s3).

For convenience we adopt the following notation. Let

ui=v°(s3-i),    u2=v°((s3-i+x3)/2),    u3=v°(x3 -0),

(3.8) n n n
Ui = VU(X3 + 0),      U5 = VU((X3 + Sj)/2),      Uq = VU(Sj),
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and rewrite the right-hand side of (3.6) with the aid of Simpson's rule as

Sij-i/2 = F(ui,u2,u3,uA,u5,u6)

(3.9)

j_
12

1 - /'(«6)A)(«6 + 4u5 + u4)

+ —(l + f'(ui)\)(u3 + 4u2 + ui)

-^[(f(ue)-f'(u6)u6)-(f(u1)-f'(ui)ui)].

We pause now to give a direct proof of a result concerning the monotone and

conservative operator F(- ■ ■).

Lemma 3.2. Let

M =   max  (v°(-)),
[Sj-l.Sj]

m =    min   (t>°(-)),

and suppose that conditions (3.4) and (3.5) are satisfied.   Then, when sfj_i/2 is

given by (3.9), we have that

m <sf3-i/2 < M.

We prove the lemma using a more restrictive version of (3.4). That is, we replace

2 on the right-hand side of (3.4) with 2/3. The interested reader can easily relax

this assumption. We choose the route of simplicity here over generality, for ease of

presentation.

Proof. First one easily checks that

F(m, m, m, m, m, m) = m,        F(M, M, M, M, M, M) = M.

Condition (3.5) gives us that F is an increasing function in arguments two through

five. Moreover, a simple calculation gives us that

Q^-H- ■■) = ^[(1 + />iM + />i)A(«3 + 4u2 - 5«i)],

ft 1

q^E{- ■ ■ ) = —[(1 - />6)A) - />6)A(«4 + 4«5 - 5«6)],

and another simple calculation gives us that

-5(«i -u3) + 4(u2-u3) = -Ax(l + f'(ui)X)—P3-i(x* -Xj_i,2),

with x* = Xj + |(sj-i - Xj), and

-5(u6 - u4) + 4(u5 - u4) = --Ax(l - /'(u6)A) j-Pj(x' ~ x3 + i/2),

with x' = x3 + ^(sj — Xj). Putting these identities together we find that

dui

d

du&

F(- >

P(...)>

l + f'(ui)X

12

1 - f'(u6)X

12

>-!

i

/»«A« -p^

rwAi-p,

Modified condition (3.4) now implies that F is also increasing in argument one and

six. Arguments ui through uq can now be perturbed to m, as well as M, in such

a way as to maintain condition (3.4), therefore establishing the desired result.
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Next we show that the reconstruction-evolution algorithm developed above is

third-order accurate in regions where the smooth initial datum uo satisfies

(3.10) K(x)|>l|u0"(x)|Ax2 + O(Ax3),

and in regions where uo violates (3.10), loosely speaking near local extrema, we

lose at most one order of accuracy. In the present context, what we mean by an

rth-order accurate scheme is that if we define üj-i/2 to be the j — 1/2 cell average

of the exact solution to (3.1) at t = At/2, starting with smooth datum uo, that is,

öj-i/2 = -t- /        T(u0)(x, At/2) dx,
Alt;

then the rth-order scheme gives a j — 1/2 cell average, say J^_1/2, which satisfies

(3.11) K_1/2 - %_i/2| = 0(Axr+1).

At the present time this notion of accuracy has not been shown to have rigorous

theoretical significance. Nevertheless, extensive numerical evidence demonstrates

the dramatic improvement of the quality of approximations coming from certain

higher-order methods; see [7], [8] for example.

LEMMA 3.3. Suppose that uo e C4 and that At is taken sufficiently small so

that 3iA(uo) satisfies (3.4). Moreover assume that uo(x) satisfies (3.10) for all

x e Ij-i U Ij. Then we have that

Wj-i/2 - "j-i/al < const Ax4,

where sfj-i/2 is given by the reconstruction algorithm of Section 2 combined with

the evolution operator (3.9), and öj-1/2 is the j — 1/2 cell average of the exact

solution to (3.1) at t = At/2.

Proof. Since assumption (3.10) implies that no modification of Pj-i or Pj is

performed in the reconstruction, we have that in Ij-i U Ij

v0(x)=íPj-ÁX-XÍ-^ *€/,•_!,
\PJ(x-Xj+i/2), i6/,;

see the remark of the previous section. The divergence theorem allows us to rewrite

.»$•-1/2 as

i    I" ex, /-zy+i/2

■sÇ-i/2 = T-    / Pj-i(x - Zj-i/a) dx+ I P, (x - x3+i/2) dx
\.Jxi-U2 J*i

cAt/2

Jo       (f(T(v°)(x3+i/2,t)) - f(T(v°)(x3_i/2,t)))dt

(3.12) r   r-At/21

Äx"

and also to write uJ_1/2 as

1
"i-l/2 = Ä"

(3.13)

fXj + l/2

/ uo(x)dx
I X,   . i IIZj-l/2

Ax [Jo

At/2

(f(T(uo)(xj+i/2,t)) - f(T(u0)(x3-i/2,t)))dt
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Identity (2.3) gives us immediately that

1

Ax

(3.14)

fXl fXi+V2
/ Pj_i(x-x3_i/2)dx+ Pj(x-x3+i/2)dx

Ixj-\/2 I*]

rxi+i/

•'1,-1/2

uo(x)dx
Jxj-l/2

< const Ax4,

where the constant above depends on sup/._ XJI (|u0v|). The quantity

4+1/2(0 = f(T(v°)(x3+i/2,t)) - f(T(u0)(x3+i/2,t))

can be investigated over the time interval 0 < t < At/2 using characteristics. One

easily finds that

T(v°)(x3+i/2,t) = Pj(sv3+i/2(t) - xj+1/2),

T(u°)(x3+i/2,t)=uo(s]+i/2(t)),

where s1j+1,2(t) and s_l+x,2(i) satisfy

Xj+1,2 = sv3+i/2(t) + f'(v0(s%x/2(t)))t,

Xj+1/2 = «J+i/aW + f'(M^+i/2(t)))t-

The characteristic equations above, along with the error estimate (2.2d), combine

to imply that

(3.15) kî+1/aW - s"+i/2WI < const Ax3i,

provided that Pj(x - xJ+1/2) satisfies the slope condition (3.4) and 0 < t < At/2.

It should be noted at this point that (3.1'5) remains valid whether assumption (3.10)

is satisfied or not. Adding and subtracting f(v°(s\1/2(t))) into EJ+1,2(t) yields

the identity

(3 16) EÍ+l/2(t) = /'(«0(^l/a(í)))(«0(«?+1/a(t)) - Ms^+l/2(t)))

+ 0(l)Ax3t + 0(Axe),

which is again valid whether assumption (3.10) is satisfied or not. The same analysis

yields an expansion for E3_x,2(t) withy-1/2 replacing j+1/2 in the formula above.

Moreover,

(3.17) »"+1/2(0 - s"-i/2(0 = Ax + O(Axi),

which as above is valid when (3.4) is satisfied and 0 < t < At/2. Finally, noting

that Pj_i(x — Xj-i/2) and Pj(x — xJ+1/2) both satisfy smooth error formulas (see

identity (2.3)), we easily conclude with the aid of (3.17) that

I   /-At/2

/        (EJ+1/2(t)-EJ_1/2(t))dt
J 0

J_
Ax

< const Ax2 Ai2,

which completes the proof of the lemma.

To see that the order of accuracy can be no less than two, regardless of whether

uo satisfies (3.10) in I,_i U I3 or not, simply return to Eqs. (3.14) and (3.16) of

the lemma above and recall from (2.2d) that

u(x)=^A(u)(x) + 0(Ax3),

for any smooth function u(x).
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Next we discuss the piecewise parabolic reconstruction of T(v°)(x, At/2). The

evolution procedure described above yields the quantities

(3.18a) Í       T(v°)(x,At/2)dx,
Jlj-l/2

(3.18b) T(v°)(x3_i/2,At/2),

(3.18c) T(v°)(x3+i/2,At/2),

in each cell Ij-i/2- This is enough information to construct the basic parabolic

approximation Pj_x,2(x — x}). To implement the full reconstruction of Section 2,

we need information concerning the values of

max (T(v°)(-, At/2)), min (T(v°)(-, At/2)).
Ij-l/2 Tj-l/2

However, these values are in general difficult to calculate exactly. In place of them

we use instead

(3.19a) max  (v°(-)),
[Sj'-l.Sj]

(3.19b) min   (v°(-)),

to calculate r¿ and tr; see Theorem 2.1. Over cell I3-i/2, (3.19a) and (3.19b) serve

as an upper and lower bound for the maximum and minimum of T(v°)(x, At/2),

respectively. Therefore, using (3.19) does not affect the accuracy of the approxi-

mation. In fact, if v° is continuous across the interface between cells I3-i and Ij,

(3.19) gives the maximum and minimum of T(v°)(x, At/2) on Ij-1/2 exactly.

Define the reconstruction of T(v°)(x, At/2) by

(3.20) ¿?s(T(v°)(-, At/2))(x) = ¿2 P3-i/2(x - x3) + v°(s3-i)6(x - x,_1/2),

j

where P;_1/2(x - x3) is obtained from the algorithm of Theorem 2.1, using (3.18)

and (3.19) on the staggered mesh \J3 Ij-i/2- The results and techniques of Lemma

3.2 and Theorem 2.1 now combine to make the proof of the following lemma obvious.

LEMMA 3.4. Given that u0 e BV, and that v°(x) andS?s(T(v°)(-, At/2))(x)

are obtained by the methods described above, we have the estimates

(i) Var(S?s(T(v°)(-, At/2))) < Var(t;0) < Var(u0),

sup(^s(T(v°)(-, Ai/2))) < sup(t;0) < sup(u0),

(ii) inf (Sfs(T(v°)(-, At/2))) > inf(t;0) > inf(u0).

We have assumed throughout that the reconstruction algorithm applied to pre-

conditioned data yields an approximation that satisfies properties (2.2a)-(2.2d) as

well as satisfying property (3.4) (a particular preconditioning method is described

at the end of this section). Therefore, defining v1 by

v1(x)=^S(T(v°)(;At/2))(x)
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and succeeding vn analogously, we have that

(3.21a) Var(w") < Var(u0),

(3.21b) sup(vn) < sup(uo),        inf(vn) > inf(u0),

for all n > 0. Extend the discrete time approximation vn to all í > 0 by

(3.22) <;A(x, t) = ErK)(*, t - nAt/2)Xn(t),
n

where
nAt <2t< (n+l)Ai,

<»<"={i; otherwise.

The usual techniques combine to show that every sequence {vA}, with Ax and At

tending to zero, with fixed ratio Ai/Ax satisfying the Courant condition, has an

L1 convergent subsequence on any compact subset of R x R+; see [5], [12]. In

addition, we have

THEOREM 3.1.   If v = limAi-.o^A, with Ai/Ax fixed and satisfying the Cou-

rant condition (3.5), and if Uo € BV, then v is a weak solution to (3.1).

Proof. Let <p e C°°(R x R+) have compact support. A straightforward calcula-

tion gives the identity

/ (vA<pt+f(vA)tpx)dxdt+      uo<p(x,0)dx
JRxR+ JR

= £ [ (T(vn)-^A(T(vn))Mx,tn)dx

n=ljR

+ / (uo-¿%A(uo))<p(x,0)dx.
JR

The idea is to show that the right-hand side of the identity above tends to zero as

Ax tends to zero. Using the result of Lemma 3.2 in [13], together with properties

(2.2a) and (2.2b), we easily find that for any u e BV

i \u-S?A(u)\dx<2AxVar(u).
JR

This inequality allows us to bound the absolute value of the identity above by

E(,   max    \p(x,tn)-p(y,tn)\)+max\<p(x,0)\
~! \>-y|<Ax /Ln=l

which tends to zero as Ax tends to zero.

2AxVar(u0),

3.2. Preconditioning of the Data. The preconditioning algorithm we de-

scribe below serves two purposes. First, it mollifies the basic piecewise quadratic

interpolation in regions of large variation. Second, it is designed to limit the slope

of the approximation on the interior of grid cells so that (3.4) is guaranteed to

be satisfied. Moreover, our preconditioning is designed so that the error formula

(2.3) does not degrade through terms of order Ax3. Since preconditioning will be

the main topic of future work, we give here only a rough sketch of the particular

technique we use in the numerical examples of the next section.
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Let v(xj) represent the point values of the approximation at cell interfaces Xj

(see (3.18) and note the obvious change of notation). Moreover, let sf3 be given by

(3.18a). Formula (2.8) implies that

(3 23a) (v(x3+i)-s/3) + 0(Ax4)

= {s/j-i - v(x3-1)) + 1(sfj-i - sfj) + A(sf3 - v(x3)),

and

(3.23b)
(v(x3) - sf3) + 0(Ax4

= (Sf3+i - v(x3+2)) + 20*$+! - Sf3) + A(sf3 - v(x3+i)).

Denote the right-hand sides of (3.23a) and (3.23b) by ur and u£, respectively.

Now define Ur and u~Z by the following recipe. For the case when \v(x3+i) —sfj\>

\v(xj) — sfj\, set

u~r~= maxd^Xj) -Sfj\,min(\v(xj+i) - sf3\,\uk\))

(3.24a) -sgn(v(x3 + i)-Sf3),

~U~L~= v(Xj) -Sfj,

and when \v(xj) - sf3\ > ^(x^+i) — sf3\ set

ÜR- = v(xj+i) -sfj,

(3.24b) vll= max(\v(xj+i) - sfj\,min(\v(x3) - s/j\,\ul\))

■sgn(v(x3) -Sf3).

Again, we have omitted the subscripts on the left-hand side for convenience. So we

have by using (3.23) and (3.24) that

un = v(x3+i) -sf3+ 0(Ax4)

and

uZ = v(xj)-sfj+0(Ax4).

Therefore, if we replace the point values v(xj) and v(xj+i) in cell Ij by ü~T + sfj

and UR+sfj, respectively, we do not affect the results of Theorem 2.1. This defines

our mollification procedure.

To limit the slope of P,(x — xJ + 1/2) so that (3.4) is satisfied, fix S > 0 so that

5<2/(A-max|/"|).

Next, define d by

Í min(|ïïl|,|ïï^|,S'/2)    ifüi;-ü^<0,

\ 0 otherwise,

and set

u¿2nd = d ■ sgn(uZ),        UR2ud = d ■ sgn(ü~ñ).

By construction, u¿2„d and uñ2„d yield a function that automatically satisfies the

slope condition (3.4). Next, define

52 = 2 • d,

53 = 2 ■ max(|2ü~^ + u~Z\, \2u~Z + ür\),

fs3-s
?? = max-—,0
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and note that 0 < r¡ < I. S3 is nothing more than the maximum of \dP3(9)/dO\ on

the interval /,. We have from Section 2 that

\du
+ 0(Ax)

dx
Ax-S,

which therefore implies that n = 0 for smooth functions when Ax is sufficiently

small. Defining the final preconditioning by the modified end points

(3.25) u¿ = (1 -r])üZ + r¡uL2nd,        u^ = (1 - n)ü^ + ??ufi2nd,

one easily verifies that the reconstruction will now satisfy the slope condition (3.4).

4. Numerical Experiments. Understandably, one could surmise on first read-

ing that the precondition-reconstruction-evolution algorithm described in the sec-

tions above is complicated and possibly difficult to program. Needless to say, we

believe that this is not the case. In our FORTRAN program we use separate sub-

routines to perform the preconditioning and reconstruction step. The main routine

performs the evolution steps along with program initialization and output of the

approximation. The preconditioning and evolution routines are straightforward

and we believe warrant no further discussion. A simple to read, while admittably

not very efficient, FORTRAN code for the reconstruction step of Section 2 is given

at the end of this section. The preconditioning and reconstruction routines return

modified cell boundary interface values for the approximation and leave fixed the

approximation cell average.

The first numerical example we present is simple linear advection defined by the

equation

(4-1) |-u+|-u = 0,
at       ox

with periodic boundary conditions

u(0) = u(l),

and initial datum

uo(x) = sin(27Tx).

For this example we take the ratio Ai/Ax to be 0.8. Figures la and lb show the

cell averages (circles) of our third-order method compared to the exact solution to

(4.1) (the solid lines), using 10 grid points on [0,1], after respectively two cycles

and six cycles; that is t = 2 and t = 6. Notice the very slight decay of the peaks

after six cycles. The fine resolution found here is retained after many more cycles.

Figures 2a and 2b show the performance of the first-order Lax-Friedrichs scheme

using the same parameters as above. Figure 3 demonstrates the first-order Lax-

Friedrichs scheme on the example above after six cycles, this time using 100 grid

points. Fixing r¡ = 1 in the preconditioning step (3.25) defines a second-order TVD

scheme; variants of this second-order scheme will be the topic of a future paper.

Figures 4a and 4b illustrate the performance of this second-order scheme with 10

grid points, again after two and six cycles respectively. To our knowledge, no other

TVD scheme yields approximations of the quality exemplified by our third-order

method. This is not surprising since ours is at present the only TVD scheme that is

guaranteed to retain second-order accuracy at extreme points of the approximation.
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Numerical results of comparable quality have been previously obtained from ENO

schemes [8], [10], however various theoretical questions concerning the stability of

ENO approximations remain unresolved. Letting the problem above run through

100 cycles gives Figure 5a, our third-order TVD method, and Figure 5b, our second-

order TVD method. The fact that the cell averages of 5b appear to be flat is no

illusion; its variation is on the order of 10-3.

The second example we consider here is the nonlinear problem

(4.2) |„ + A(„V2)=0,

with the same boundary conditions and initial datum as above. An easy calculation

verifies that the solution to (4.2) remains smooth until t = l/2ir, after which a shock

forms. We use this example simply to indicate the convergence of our third-order

method. Again we take Af/Ax = 0.8. Figures 6a, 6b and 6c illustrate the third-

order method at t = 0.16 ~ 1/27T, using respectively 20, 40 and 80 grid points.

Figures 7a, 7b and 7c illustrate the third-order method at í = 0.32, again using 20,

40 and 80 grid points.

The final problem we examine is given by

-u+—f(u)=0,
at       ox

where f(u) is the nonconvex function

f(u) =
u2

d2 + {l-u)2/4'

The initial datum for this problem is assumed to lie in the interval [0,1], and the

ratio At/Ax is fixed so that

max |/'(u)|— = 0.8.
ue[o,i] Ax

This problem has particular interest since certain TVD schemes have been found

to frequently "latch" onto entropy violating solutions.

We consider first the datum,

(1,        x< 1/4,

UO(X)={0,        x>l/4.

Figures 8a, 8b and 8c compare respectively our third-order TVD method, our

second-order TVD method and the Lax-Friedrichs method, using 40 spatial grid

points, to the exact solution at í = 0.404. The most notable difference between the

third-order approximation and the second-order approximation is at the interface

between the constant state on the left and the rarefaction wave. Additionally, we

have found that on this example certain well-known schemes tend to "overcompress"

in the region between the rarefaction wave and the moving discontinuity. As is seen

in Figure 8, there is no evidence of this phenomenon with our methods. Figure 9

illustrates the problem with datum

0,        x < 1/4,

u0(x) = { 1,        1/4 < x < 1/2,

0,        1/2 < x,
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displayed at t = 0.202. Figure 9a demonstrates the performance of our third-order

method using 40 grid points, 9b demonstrates the performance of our second-order

method using 40 grid points, and 9c demonstrates the performance of the Lax-

Friedrichs schemes, this time however using 200 grid points.

SUBROUTINE RECON(UMIN,UMAX,AVE,UL,UR)
C*
C*    THIS SUBROUTINE ALTERS THE QUADRATIC INTERPOLATION:

C*     P - 3*(UL+UR-2*AVE)*THETA**2 + (UR-UL)*THETA + (AVE-(UL+UR-2*AVE)/4),

C*     THETA = (X-XMID)/DX, XMID - (XL+XR)/2, XL < X < XR,
C* BY MODIFYING THE CELL BOUNDARY VALUES UL AND UR IN SUCH A WAY AS

C* TO PRESERVE THE CELL AVERAGE AVE, MAINTAIN THIRD ORDER ACCURACY

C* WHEN APPLIED TO A FUNCTION U WITH CELL MINIMUM (MAXIMUM) VALUE

C* UMIN (UMAX) , AND TO FURTHERMORE GUARANTEE THAT THE RESULTING

C* INTERPOLATION P HAS ITS CELL VARIATION BOUNDED BY THE CELL VAR-

C* I AT ION OF U.

C*
REAL MAXMOD, MINMOD

ULHAT  = UL - AVE

URHAT  = UR - AVE

AULHAT = ABS( ULHAT )

AURHAT = ABS( URHAT )

IF(AULHAT.GE.AURHAT) THEN

MAXMOD - ULHAT

MINMOD = URHAT

ELSE

MAXMOD = URHAT

MINMOD = ULHAT

ENDIF

IF(MAXMOD.EQ.0.0) RETURN

RHO     = MINMOD/MAXMOD

IF(RHO.LE.-0.5) RETURN

CRITVAL = -MAXMOD*( 1.0+RHO+RHO*RHO )/( 3.0*(1.0+RHO) )
IF(MAXMOD.GT.0.0) THEN

E = UMIN - AVE

IF(CRITVAL.GE.E) RETURN
ELSE

E » UMAX - AVE
IF(CRITVAL.LE.E) RETURN

ENDIF

EHAT =  E/MAXMOD
IF(RHO.LT.O.O) THEN

TAUMIN -1.0

TAUMAX = 0.5*(-(RHO+3.0*EHAT)+SQRT( 3.0*(RHO+3.0*EHAT)*(EHAT-RHO) ))

ELSE

TAU    = -EHAT*( 3.0*(1.0+RHO)/(1.0+RHO+RHO*RHO) )
TAUMIN =  TAU

TAUMAX =  TAU

ENDIF

IF(AULHAT.GE.AURHAT) THEN

UL - TAUMAX*ULHAT + AVE
UR - TAUMIN*URHAT + AVE

ELSE

UL - TAUMIN*ULHAT + AVE

UR = TAUMAX* URHAT + AVE
ENDIF

RETURN

END
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Figure la Figure 2a

Figure lb Figure 2b

Figure 3
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Figure 4a Figure 5a

Figure 4b Figure 5b
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FIGURE 6a FIGURE 7a

Figure 6b Figure 7b

Figure 6c Figure 7c
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Figure 8a Figure 9a

Figure 8b Figure 9b

Figure 8c Figure 9c
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