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The Hellan-Herrmann-Johnson Method:

Some New Error Estimates and Postprocessing

By M. I. Comodi*

Abstract. We analyze the behavior of the mixed Hellan-Herrmann-Johnson method for

solving the biharmonic problem A20 = /. We show a superconvergence result for the

distance between i¡)h (the approximation of the displacement) and Phi) (where P/, is a

suitable projection operator). If the discrete equations are solved (as is usually done) by

using interelement Lagrange multipliers, our superconvergence result allows us to prove

the convergence, in suitable norms, of the Lagrange multipliers to the normal derivative

of the displacement, and to construct a new approximation of V^ which converges to

Vrb faster than V^h.

1. Introduction. Many authors, in the last few years, have studied from a

theoretical and applied point of view (e.g., [7], [9], [10], [20]) the Hellan-Herrmann-

Johnson (HHJ) mixed finite element method [13], [14], [15], [16] for the solution

of fourth-order linear elliptic boundary value problems of the following type: given

/€L2(fi),

f find w£H2(ü) suchthat
(1.1) I
K     ' 1 A2w = /     in ÎÎ.

The HHJ scheme is based on a splitting of the problem (1.1) in two second-order

equations in the unknowns (ip,u), where tp = w and Ui3 = d2w/dxidxj. The only

drawback is that it leads (as the mixed schemes usually do) to the resolution of

a linear system with indefinite matrix. This is due to the continuity constraints

imposed on the "stress field" u (u^ = d2w/dxidxj). For this reason, Lagrange

multipliers, defined at the interelement boundaries, are often introduced as new

unknowns in order to obtain the required continuity without imposing it a priori

[12]. This results in a new system of equations in the unknowns (üh, xph, \h) (re-

spectively: stress field, displacement, Lagrange multipliers) that are related to the

solution (ufc, iph) of the original system by the equations

(1.2) ü/l=u",        ii>h = ï>h.

However, in this new system it is very easy to solve a priori for üh in terms of ipk

and Aft. The resulting system in the unknowns (tj>h, Xn) now has a symmetric and

positive definite matrix, and therefore many numerical methods become available

for its solution.

In view of the relations (1.2), the estimates for u - uh and ip — tph, proved for

instance in [16], [7], [3], can still be used for the new system. On the other hand,
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18 M. I. COMODI

we have now computed a new approximation, A^, that we would like to interpret.

From the physical point of view, A^ represents the rotations in the normal direction

at each interelement boundary (A^ ~ dw/dn) which are often used by engineers.

However, a precise estimate of the error ||A/j - dw/dn\\ (in some suitable norm)

was still lacking.

A similar problem has been solved in the case of second-order problems ([2], [5]):

the authors prove both the convergence of the Lagrange multipliers and the possi-

bility of improving the error bounds obtained for the original scheme by suitably

exploiting the information provided by the new unknowns A/,.

Arnold and Brezzi [2] have analyzed the Hellan-Herrmann-Johnson scheme in the

case k = 1 (k is the local degree of iph) with a technique which cannot be generalized:

they show that the method, for k = 1, is equivalent to a slight modification of the

Morley method [18].

In the present paper we first analyze the HHJ scheme itself and we show a

superconvergence result for the error \^h—Phi>\\i, where P/, is a suitable projection

operator. The new estimate is of the same nature as the one proved for second-

order problems in [11]. Then we use the new estimate in order to obtain error

bounds for the Lagrange multipliers in suitable norms defined at the interelement

boundaries; finally we exploit the above results for constructing, by means of a

suitable postprocessing, a new approximation of V^ which converges with higher

order than Vtph. This last estimate is particularly interesting whenever the scheme

is applied to solve Stokes problems, where, as it is well known, the main interest is

in the velocity field.

An outline of the paper is as follows. In Section 2, for the reader's convenience,

we define the notations which are used in the paper. In Section 3 we recall the

classical result concerning the HHJ scheme, [3], [13], [14], [15] [16], [7]. Section 4

is devoted to studying the superconvergence result and the error bounds of the

Lagrange multipliers. Finally, Section 5 deals with the construction of the new

approximation for Vip with related error estimates.

2. Notations and Green's Formulae. Given a convex polygon D of R2 with

boundary dD and vertices a¿ (i = Í,2,...,Nd), a scalar-valued function w, and

a tensor-valued function v = (víj), i,j = 1,2, we denote (using the summation

convention of repeated indices) by n = (rti,n2) the unit outward normal to 3D

and by t = (ii, ¿2) = (—n-2,ni.) the unit tangent to dD. We also set

w/i = dw/dxi (i = 1,2),

W/„ = W/iUi,

W/t = W/iti,

Mn(\) = VijUiUj,

Mnt(\) = vijnitJ,

Qn(v) = Vij/iUj,

Kn(v) = dMnt/dt + Qn(v),

Si(v) — jumps of Mnt(v) at the corners Oj of D, i = 1,2,..., 7Vr>

Moreover, | • \m<D = \ • \m and || • \\m,D = || • ||m will denote the usual seminorm and

norm in the space Hm(D) = Wm'2(D). We refer, for instance, to [1], [17] for the

definition of the Sobolev spaces used in this paper. The following Green's formulae
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hold for any w £ H2(D) and any v £ (H2(D))4 such that d12 = V2x,

/ VijW/ijdx.= - /  vij/iw/Jdx+ /    Mn(\)w/nds
Jd Jd JdD

+ /    Mnt(v)w/tds,
JdD

(2.1)

(2.2) /  vij/iw/jdx = -      vlj/tJwdy:+        Qn(v)wds,
Jd Jd JdD

(2.3) /   Mnt(v)w/tds = - f    dM2t}V)wds + Tsi(y)w(ai).
JdD JdD        at ¿=1

Then, by combining (2.1)-(2.3),

/   VijW/tJdx.=   /   Vij/i:jwdx+ /     Mn(\)w/nds
Jd Jd Jôd

(2.4) ND

- /    Kn(v)wds + y2Si(v)w(a,i).

In what follows we shall use the notations:

Pk(D) for polynomials of degree < k on D\

C or d, i 6 N, for positive constants independent of the data and of the

decomposition of D, generally with different values at different occurences.

3. The Hellan-Herrmann-Johnson Scheme. In this section we recall the

well-known mixed formulation of the model problem (1.1). This formulation allows

us to approximate the problem by means of the Hellan-Herrmann-Johnson scheme.

Moreover, we shall recall the main results concerning the convergence of this dis-

crete scheme, the implementational technique generally applied and the reasons for

choosing this technique.

More precisely, let us consider a convex polygon fi of R2, with boundary dYl, and

let T/, be a decomposition of fi into regular triangles T, with boundary dT and sides

ti, i = 1,2,3, whose maximum diameter is less than h. We now introduce the mixed

continuous formulation of the model problem (1.1) that allows the application of

the Hellan-Herrmann-Johnson method. For this purpose, we consider the following

spaces and the following bilinear forms:

-The space

V = {v = (vij), i,j = 1,2, u,2 = v2i,Vij £ L2(Q),

vijW £ Hl(T) for all T £ Th,Mn(\) is c.i.b.}.

Mn(v) is c.i.b. (continuous at the interelement boundaries) if and only if, for any

pair (Ti,T2) of adjacent triangles, we have

Mn(v|Tl) = Mn(v|T2)     on TxnT2,

where n is the unit normal to Ti n T2.

A function v £ V has the following norm

(3-2) ||v||v=     £Tl|v||2,T.

T6Th
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-The finite-dimensional subspace of V,

(3.3) Vh = {vh £ V>£.T £ Pfc-i(T) for all T £ Th};

-the space

(3.4) W = W¿'P,        p > 2;

-the finite-dimensional subspace of W,

(3.5) Wh = {0* G W, tfT £ Pfc(T) for all T € Tfc};

-the symmetric continuous bilinear form

(3.6) a(u,v)= / \Xij\ijdx.,        u,vGV;
Jn

the continuous bilinear form

(3.7) b(y,<p) =     ̂ 2TU Vij/ityjdx- I    Mnt(w)<p/tds\,
TSTfc

Then, with these notations, the mixed formulation of (1.1) is:

' find (u,ip) £ V x W such that

a(u, v) 4-6(v, í¿>) = 0     forallv€V,

b(\x, <p)= f f<p dx        for all <p £ W ;
Ja

and its numerical approximation,  by means of the Hellan-Herrmann-Johnson

scheme, is:

v € V, <p £ W.

(3.8a)

(3.8b)

(3.9a)

(3.9b)

\  find (u\ xbh) £ Vh x Wh such that

a(u\v'l)-r-&(v'\T/>'l) = 0     for all \h £ Vh,

b(u\<ph)= [
Ja

f<t>hdx. for all 4>h £ Wh.

It is well known that both problems (3.8) and (3.9) have a unique solution (u, ip)

and (uh,rph), respectively, where (u,ip) is related to the solution of the model

problem (1.1) in the following way: u^ = w/jj, i,j = 1,2; ip = w.

Many authors have contributed to the mathematical study of this method ([3],

[7], [13], [14], [15], [16]). We recall in the following propositions some basic results

in approximation theory and in error estimates that will play a fundamental role

in our study.

PROPOSITION 3.1. Define the operator ith € L(V,Vh) in the following way.

given v £ V, for every edge e and for every triangle T of the triangulation Th,

(3.10)

(3.11)

Then

(3.12)

/ Mn(v - nhv)qk-i ds = 0     for all çfc_, £ Pfc_i.(e),

/ (Vij - TthVi3)qk-2 dx = 0     for all qk-2 £ Pk-i(T).

b(v - TTfcV, <pn)=0     for all (ph£Wh.
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Moreover, ifv£Vn [#fc(fi)]4,

(3.13) ||v - 7Thv||0 < Chk\v\k.

PROPOSITION 3.2. Define the operator Ph £ L(W,Wh) in the following way.

given <j> £ W, for every vertex a, for every edge e, and for every triangle T of the

triangulation Th,

(3.14) Phd>(a) = <p(a),

(3.15) J(<t> - Ph<t>)qk-2 ds = 0     for all qk-2 e Pk-2(e),

(3.16) Í (<p- Ph<t>)qk-3 dx = 0     for all qk-3 £ Pfc_3(T).

Then

(3.17) b(vh,<p-Ph<j>) = 0    forallvh£Vh.

Moreover, if<p£Wn Hk+l(Q),

(3.18) \\<t>-Ph<t>\\o<Chk+1\<t>\k+1.

PROPOSITION 3.3. Let (u,V) be the solution of (3.8), (uh,tph) the solution of

(3.9), and let w £ Hk+2(ü) nH^(Q) be the solution of (1.1); then

(3.19) ||u - u*||o + ||^ - rl>% < Chk(\w\k+1 + \w\k+2).

Moreover,

(3.20) U - iP% < Chk+1(\w\k+1 + \w\k+2).

We now come to the first topic of this paper. The matrix arising from the scheme

(3.9) is indefinite. To circumvent this inconvenience, the continuity constraint on

the bending moment Mn(vh) is eliminated from the space Vh, and new unknowns

(Lagrange multipliers), defined at the interelement boundaries, are introduced [12].

For this purpose, we introduce:

-the set

(3.21) Eh = set of the internal edges e of T^;

-the spaces

(3.22) Vh = {vh = (Vij), i,j = 1,2, v*¡2 = !&,«&,T £ Pfc-i(T)

for all T e Th},

(3.23) Mh = {ph € L2(Eh),Ph\e € Pfc-.(e) for all e £ Eh};

-the continuous bilinear form

(3.24) c(v*lWk)=     T   S   Mn(vh)ßhds,       yh£Vh,pheMh.
T€TJJdT

Now consider the following problem:

find (üh, ï>h,\h)£VhXWhxMh such that

a(ùh,vh) + b(vh,iph) = c(vh, Ah)     for all vh £ Vh,(3.25a)

(3.25b)

(3.25c)

(üh, </>")= [

Jn
b(ün, <bn)= l  f<ph dx for all <pn £ Wh,

fa

c(uh,ph) = 0 for ail ph € Mh-

It is easy to prove the following proposition.
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PROPOSITION 3.4. Problem (3.25) has a unique solution (üh,t¡>h,Xh) such that

ûh = uh and iph = tph, where (uh,i/jh) is the solution of (3.9).

We shall identify, then, üh with uh and iph with tph. On the other hand, \h

clearly approaches V/n at the interelement boundaries. We wish to find an error

bound, in some suitable norm, for this approximation. This will be the topic of the

next section.

4. Error Estimates for the Lagrangian Multipliers. In [2], results similar

to those we want to obtain are proved for second-order elliptic problems; the authors

of [2] also treat the Hellan-Herrmann-Johnson scheme, but only in the case k — 1

and with a technique which does not work for k > 2. In this section we shall

employ the "strategy" used in [2], for second-order elliptic problems, in order to

obtain estimates on (3.25) for k > 2. To do this, we first have to extend the

techniques described in [11], [5] for second-order elliptic problems. In particular,

we shall consider duality with respect to HT(Q) instead of Hq(Q).

Definition 4.1. Given x G L2(Q), X ̂  0, we set

(4.1) ||xl|-r=      SUP      iMl.
peHr(Q)   \\P\\r

p=É0

Moreover, we shall consider the error equations obtained from (3.8), (3.9) and from

Proposition 3.2 with

(4.2) z = u-u'i,

(4.3) £ = Phtp - tph.

We have

(4.4) a(z, vh) + ¿>(v\ 0=0     for all v € Vh,

(4.5) 6(z, 4>h) = 0     for all <ph £ Wh.

We can prove the following lemma.

LEMMA 4.1. Let z € V and £ £ Wh be given by (4.2) and (4.3). Then for

—2 < r < — 1 4- e (where e depends on the maximum angle ofQ)

(4.6) ||e||-r < C(/lmin(r+2'fc)||z||0 + fc,nto<r+8'fc)||u - TThUHi).

Proof. Let x be the solution of the problem

(4.7a) f A2x = p in n,

(4.7b) \ x = x/n = 0     on dQ.

Since H is a convex polygon, we have

(4-8) ||x||r+4 < C|H|r.

With the solution \ £ HT+A fl Hq of (4.7) we associate a tensor-valued function v

defined by

(4.9) vl3=x/ij,        i,j = 1,2,
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and we consider the equations (4.4) and (4.5). By Green's formula, the orthogo-

nality (3.12), and by Proposition 3.2 we get

(4.10) (p, 0 = -b(v, 0 = -b(irhv, 0 = a(«,7r„v),

(4.11) a(z, v) = -b(z, x) = -b(*, X-PhX),

that is,

(4.12)
(p, 0 = a(z, TThv - v) 4- b(z, x - PhX)

= a(z, iThV - v) 4- b(u - irhu, x ~ PhX)-

By virtue of the definition of the form b(-, •), (4.2), (3.15), and the regularity of u,

we have

6(u - 7TAu,x - PhX) =     YIt    (Uii ~ ,r'»u»j)/»(X ~ phX)/j dx,
TerhjT

so that

(4.13) \(p, 0| < C(||z||oKv - v||o + ||U - TTfcUlliHx - PhXh),

from which, using (3.13), (3.18), (4.8), (4.9) and (4.1), the estimate (4.6) follows. D

Remark. The estimate (4.6) will be useful if k > 2; if k = 1 it is more useful to

obtain a slightly different estimate. Actually, the term b(u — 7rhu, x - PhX) which

appears in (4.12) can easily be estimated as |6(u-7T/,u, x~PfiX)\ < H/||o||x-.P/iXl|o-

By using the latter formula we can obtain

(4.14) IKIIi<C(A||*||o + fca||/||o).

Thanks to the previous lemma we can now give an estimate which will be essential

both for measuring the error in the Lagrange multipliers and in postprocessing.

THEOREM 4.2. Let ip and iph be the solutions of (3.8) and (3.9), respectively,

and let Phtb be given by Proposition 3.2.  Then

\\Ph^ - V"||i < Chk+1(\w\k+1 + \w\k+2 + ||/||rAi).

Proof. The above estimate follows from (4.2), (4.3) and (3.19) by using (4.6)

with r = -1, if k > 2, and (4.14) if k = 1.    D

We are now able to bound the error A/, — ip/n defined on Eh- Following the

development of [2], we first of all define the norms on M/¡:

(4.15a) \Ph\l,h = J2 IMIo.e'
e€Eh

(4.15b) |M*|ii/a,fc = £ MllwJcne,
e€Eh

where |e| is the length of e, and we define

(4.16)       Qh4> = orthogonal projection of <p\Elt onto Mh in the norm (4.15a).

We can then state the following result.
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THEOREM 4.3. Let w be the solution of (1.1), (u,ip) the solution of (3.8),

(uh,iph,\h) the solution of (3.25), and let Phip and Qh^/n be given by Proposi-

tion 3.2 and (4.16), respectively. Then

(4.17) |A„ - Qhip/n\-i/2,h < Chk+1(\w\k+1 + \w\k+2 + ||/||rAi).

Proof. The estimate (4.17) is an obvious consequence (see (4.15), Theorem 4.2,

and Proposition 3.3) of

(4.18) ||Afc - Qhï>/n\\o,e < C(4/2||(u - uh)||o,T + h^'2\\Ph^ - t/^lkr).

It thus suffices to prove (4.18).

We consider a triangle T £ Th, with boundary dT, an edge e £ dT, and we

consider v £ Vh uniquely defined by

Í A», — Qhip/n     on e,
(4.19) Mn(v)= \h    m,n '

1. 0 on oT\e,

(4.20) Í vtJqk-2dx = 0     for all qk-2 £ Pk-2(T).

By easy scaling arguments we get

(4.21) ||v||o,t < ChlT/2\\Xh - Qhip/n\\o,e.

Inserting v in (3.25a) and using Green's formula, Proposition 3.2, and (4.16), we

obtain

(4.22) Í u^Vij dx+ Í Vij/itfj dx- Í   Mnt (v)tft ds - Í Mn (v) Xh ds = 0,
JT Jt J dT Je

/ UijVijdx+ / Vij/iifr/jdx- /    Mnt(\)x¡}/tds- I Mn(v)ip/nds
Jt Jt Jöt Je

(4.23) = / uijvijdx+ / Vij/iPhip/jdx- j    Mnt(\)Phip/tda
Jt Jt Jot

- I Mn(v)Qhip/nds.

Adding the last equations, the definition (4.19) and, once more, Green's formula,

yields

II Aft - Qh1>/n\\o,e =   / (uij - uü)vi] dx- j   Vij(lph - Ph^)/ij dx
(4.24) Jt Jt

+ J (Ah - Qhlp/n)(*ph - Ph^)/n ds.

By known trace theorems [19] and by simple scaling arguments we have

(4.25) /"(Ah - Qhip/n)(ï>h - Phi>)/n ds

< C\\Xh - Qh4>/nÏÏ0,e(hTï/2\Tph ~ Ph1>\l,T + ^ V ~ Ph^2,T).

Then, by applying (4.21), (4.20) and (4.25) we get (4.18) from (4.24).    D
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5. Postprocessing of the Hellan-Herrmann-Johnson Scheme. In this

section we want to "improve" the approximation of the original unknowns by means

of a suitable postprocessing. The problem can be solved by different techniqes (e.g.,

[1], [4]). We shall use the estimates previously proved:

(5.1) \\iph - Phalli < Chk+1(\w\k+1 + \w\k+2 + ||/HrAi)

and, for all e £ Eh,

(5.2) ||Ah - Qhip/n\\o,e < C(/4/2||u - ufc||o,r + h~1/2\\^h - PhV>||i,r),

in order to find a "better approximation" of Vip.

It is well known that the Hellan-Herrmann-Johnson scheme is mainly applied to

either solve plate problems (then %b := transversal displacement) or to solve Stokes

problems (then ip := stream function); an approximation of VV>, which represents

the velocity field, will be particularly interesting for Stokes problems. Before defin-

ing this "new" approximating function, let us remark upon the orthogonalities

arising from the definition of Ph4>.

PROPOSITION 5.1. Let <t> £ W, and let Ph<¡> £ Wh be defined as in Proposi-

tion (3.2). Then, for all e£Eh,

(5.3) j(4>-Ph4>)itqk-ids = 0     forallqk-1£Pk-1(e),

and for allT£Th,

(5.4) ( (<p-Ph<t>)/]qk-2ds = 0,        j = 1,2 for all qk-2£Pk-2(T).

Proof. Consider a triangle TeT/,, with boundary dT, and an edge e of dT.

The conditions (3.14) and (3.15) immediately imply (5.3) with qk-2 = qk-i/t

(t: unit tangent to e). Analogously, (3.15) and (3.16) imply (5.4), since

(5.5)

l (<t>- Ph<p)/jQk-2 dx =-/(</> - Ph<p)qk-2ij dx
Jt Jt

+       (<t>- Ph<}>)qk-2nj ds,        j = 1,2.    D
JdTIdT

Now we shall use xph and Ah, which are respectively a polynomial of degree < k

in each TeT/, and a polynomial of degree < k — 1 on each e £ Eh, in order to

define a vector t belonging to the following space:

(5.6)    Sh = {a £ [L2(Q)}, a = (oj), j = 1,2,    o]W £ Pk(T),

i = 1,2, forallTGTh},

which converges to Vip faster than Vtph.

Unfortunately, we have to distinguish between the cases k odd and k even, as

the technique we shall use for k odd does not work for k even. However, we shall

succeed in our task following the strategy suggested in [6].

Let us introduce the following lemma. In this section, the index i will assume

the values 1,2,3, and the index / the values 1 or 2.
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LEMMA 5.2. Let k be a nonnegative odd integer, and let T be a triangle ofTh,

with edges e¿. Then, given pn>Pt £ L2(ei), and <j> £ \L2(T)]2, a vector a £ Sh is

uniquely defined on T by the following conditions:

(5.7) /    (an- pn)qk-1ds = 0     for all qk-i €Pfc_i(e¿),
J  e¿

(5.8) /    (at- pt)qk-ids = 0      for all qk-i £ Pfc_i(e¿),
J  e{

(5.9) /   (al-<pl)qk-3dx = 0       for all 9fc_3 G Pfc_3(T).

Moreover,

(5.10) ||ff||0,r < C \h1'2 ¿(llMnllo.e, + INkeJ + ||«AI|o,T ) •

Proof. The number of equations and unknowns of the system (5.7)-(5.9) is

(5.11) 3k + 3k + (k- 2)(k - 1) = (jfc + l)(jfc 4- 2),

i.e., the dimension of Sh', then, to verify that the conditions (5.7)-(5.9) identify

(T in a unique way, we have only to prove that taking pn = pt = <¡>i = 0 we get

a = 0. In this case, the conditions (5.7), (5.8) imply that each component of a is,

on each edge, a multiple of a Legendre polynomial of degree k. Since k is odd, these

polynomials have to take values of opposite signs at the endpoints of each edge;

then the continuity of <r¡ yields a¡ = 0 on dT, or a has the form <r¡ = AiA2A3pj¡.i3,

Pfc-3 e Pk-3(T),Xi := barycentric coordinates on T. Now, (5.9), with <pi = 0,

9fc-3 = Pfc-3) immediately gives a = 0. A standard scaling argument leads to

(5.10).    D

We are finally able to prove the desired estimate.

THEOREM 5.3.   Let k be a nonnegative odd integer,

(u,V) £ [Hk(Q)}4 x {Hk+2(Q)nH2(n)}

the solution of (3.8), w = ip the solution of (1.1), (uh,iph,Xh) £ V/, x Wh x Mh the

solution of (3.25), and let r £ Sh be uniquely defined by the following conditions:

(5.12) /    (rn - Ah)?fc_i ds = 0     for all qfc_i £ Pk-i(e,),
J   e\

(5.13) j    (rt-tft)qk-1ds = 0     /oro«9fc_i€Pfc-i(e¿).
J   e,

(5.14) J   (Tl-tfl)qk-3dx = 0      forallqk_3£Pk_3(T).

Then

(5.15) \\t - Völler < Chk+1(\w\k+1 + \w\k+2 + \\f\\06kl).
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Proof. We define an auxiliary function r* G Sh by means of the following equa-

tions:

(5.16) /   (7-*n-^/n)gfc_ifis = 0     for all 9fc-i G P*_i(e<),
J  et

(5.17) /   (r*t-^/t)9fc_ids = 0      forallçfc-i ePfc-i(e¡),
J  e,

(5.18) j  (r(*-t/>/i)9fc-3dx = 0        for all 9fe_3 G Pfe-3(T).

Known arguments of interpolation imply

(5.19) ||r*-VV||o<C/lfc+1|t/.U+2,

and by (5.12)-(5.14), (5.16)-(5.18), (4.16) and Lemma 5.1 we get for all qk-X £

Pib-i(cO and for all qk-3 G Pfc_3(T),

(5.20) / (rn - r*n)<jfc_i ds =      (Xh - Qh^/n)<7fc-i ds,
Jti Je,

(5.21) ( (rt - r*t)9fc_i ds = f (tph - Phip)/tqk-x ds,
Je{ Je¡

(5.22) / (tj - r,*)(fc-3 dx = / tyfc - Ph^)/iqk-z dx.
Jt Jt

This means, by Lemma 5.2, that

||r — r*]|o,T

(5.23) < C U1/2 ¿(||Afc - QhtA/nllo.e. + |^ - Pk*\l*) + \<Ph - Ph^\l,TJ ■

Then (5.15) is a simple consequence of the triangle inequality, (5.23), (5.19), (5.2)

and (5.1).    D

Let us now treat the case k even.

As we pointed out, the previous technique no longer works, but following [6],

we shall find the desired estimate increasing by one the number of the degrees

of freedom (hence also of the unknowns) which determine r. More specifically:

given Lk(ei), the Legendre polynomial of degree k on e¿, assuming the value 1 at

the endpoints of e,, we define Xfc+i £ Pfc+i(T) and ik £ Pk(T) by the following

conditions:

(5.24) Xfc+i(at) = 0, ai the corners of T,

(5-25) Xfc+i/tu, = Lk(ei),

(5.26) J Xk+iqk-2 dx = 0   for all 9fc_2 G Pk-2(T),

(5.27) -ik = Lk(a) = Xk+x/t on dT,

(5.28) j lkqk-3 dx = 0       for all qk-3 € P*-3(T),

and we define the space

(5.29) Sh = {a G [L2(U)}2,o}W G Pfc(T) 0 {Xfc+i} for all T G Th}.

We can now define r G Sh which satisfies (5.15).
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THEOREM 5.4. Let k be a nonnegative even integer, (u,ip), w and (uh,iph,Xh)

as in Theorem 5.3, and let t £ Sh be defined by (5.12)-(5.14) and

(5.30) J(rl-tfl)Alkdx = 0.

Then the error bound (5.15) still holds.

Proof. Since the number of degrees of freedom of r is equal to the dimension of Sh,

we have only to show that, taking in (5.12)-(5.14) and (5.30) Ah = 1/)% = V1/; = 0,

we get r = 0. Now, if r has the form

(5.31) n=P$i+ßlXk+u        Ä6R,

(5.12) and (5.13), with qk-i = -¡k/t, and summing over t, imply, owing to (5.24)-

(5.27), that

(5.32) ßt f   1\ds = Q, le.,ßk = 0,
JdT

and this means that, once more by (5.12) and (5.13), r has the form

(5.33) r, = Qnfc + A1A2A3p['l3,

where a¡ G R, pk_3 G Pjt_3(T) and A¿ are the barycentric coordinates of T. Taking

in (5.14) gfc_3 = pkl)_3, we get

(5-34) j (allk + A1A2A3p[il3)p(;il3 dx = 0,

from which, by (5.28), p[l)_3 = 0 or

(5.35) ti = attfk.

Then (5.30) and (5.27) give

(5.36) / aakA~/k = -0!¡|7fclÍ,Ti

i.e., a¡ = 0.

The same arguments used in Theorem 5.3 complete the proof. In particular,

observe that, owing to (5.4), we have

j (r, - r;)A7fc dx = j (xph - Phip)n&lk dx.    U
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