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The Representation of Lattice Quadrature Rules

as Multiple Sums

By Ian H. Sloan and James N. Lyness*

Abstract. We provide a classification of lattice rules. Applying elementary group the-

ory, we assign to each s-dimensional lattice rule a rank m and a set of positive integer

invariants n i, Ti2,..., ns. The number v(Q) of abscissas required by the rule is the prod-

uct niri2 ■ • • ns, and the rule may be expressed in a canonical form with m independent

summations. Under this classification an iV-point number-theoretic rule in the sense of

Korobov and Conroy is a rank m = 1 rule having invariants N, 1,1,..., 1, and the prod-

uct trapezoidal rule using n3 points is a rank m = s rule having invariants n,n,...,n.

Besides providing a canonical form, we give some of the properties of copy rules and of

projections into lower dimensions.

1. Introduction. In previous papers, Sloan [11], Sloan and Kachoyan [12],

lattice rules for numerical quadrature over the s-dimensional unit cube were intro-

duced and defined.

A lattice rule employs as abscissas all points on an infinite lattice that lie within

and on the boundary of the unit cube. Those within are assigned equal weight,

and those on the boundary are assigned an appropriately reduced weight. Proper

definitions and background material are presented in Section 2. There it is shown

that the form

(i.i)        g/«_!_£;...£/(á»i+.:.+á!t)l

ji=i      jt=l

where / is a periodic extension of /, and z\,z2,...,zt are vectors with integer

components, is a lattice rule. The expression (1.1) is computationally convenient,

but far from unique. This lack of uniqueness hinders computer searches for lattice

rules with appropriate qualities. In this paper we seek representations of lattice

rules in which at least the numbers i,ni,n2,... ,nt are uniquely determined; the

vectors ii,... ,zt remain nonunique. First, however, we need to gain greater insight

into the structure of lattice rules.

To this end we employ elementary group theory. The concepts we require are

collected together in Section 3. The connection with group theory is apparent, in

that under appropriate circumstances the zth summation in (1.1) corresponds to a

cyclic group of order n¿, and the set of abscissas A(Q) is the direct sum of t such

cyclic groups.
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In Section 4 this theory is exploited to classify lattice rules. As a result, we are

able to show that every lattice rule can be written in the form (1.1). Moreover, we

are able to ascribe to any lattice rule a unique rank m and a unique set of invariants

m, ri2,..., ns—the rank being the least value of í in an expression of the form (1.1).

Our standard form of the lattice rule uses the m leading invariants ni,n2,... ,nm,

together with suitable integer vectors zi, z2,..., zm, in the expression (1.1) with t

set equal to m. The remaining invariants nm+x,... ,ns all have the trivial value 1.

Using this classification, the 'number-theoretic' rules of Korobov [8], Hlawka [4],

Conroy [1], Zaremba [13], Keast [7], Niederreiter [10], and Hua and Wang [5], which

are of the form

M «' = *£'(£)•
j=l   x   '

are rules of rank 1 and invariants AT, 1,1,..., 1; and the s-dimensional product

trapezoidal rule

(13) jw, ig-"E/(ö^n
3i=0        j.=0      V '

is a rule of rank s and invariants n,n,...,n.

Section 5 explores the structure of rules obtained by the projection of lattice

rules onto lower-dimensional unit cubes. Section 6 discusses ns-copy rules. Among

other things, we show that a lattice rule is of rank s if and only if it is an ns copy

of a lattice rule with smaller rank.

The scope of this paper is confined to the theory of the structure of lattice rules.

Examples are chosen simply to illustrate this theory. This forms a preliminary to

the important task of determining rules for use in practice; that problem will be

taken up in a later paper.

2. Lattice Rules. We denote the integral to be evaluated by

(2.1) If=f   f(x)dx,
Jc°

where Cs is the closed s-dimensional unit cube

(2.2) Ca = {{x1,...,xa):0<xi < 1, ¿ = 1,2,...,»}.

When a; is a real number, its fractional part is conventionally denoted by {x}.

We extend this notation to vectors.

Definition, {x} is a vector, each of whose components is the fractional part of

the corresponding component of x. Thus {x} lies in the half-open cube Us,

(2.3) Ua = {(x1,...,xa):0<xi<l, i = 1,2,...,a).

It is convenient to define f(x), a periodic continuation of f(x) outside the unit

cube. Thus f(x) = f({x}) for all x, and

(2.4) f(x) = f({x}),        {3?}±Q, j = l,2,...,a,

so that / coincides with / in the interior of the unit cube.    At points x  =

(xl,x2,... ,xs) on the boundary of the unit cube, / is generally not continuous.
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At such points we define

(2.5) f(x1,x2,...,xs) = — £Hm+^^--^/>1+r1£,x2 + r2e,...,a;s + rse),

n     r2 r,

with each r¿ taking only the values of +1 and —1. If / is continuous on Cs then

this limit exists and is a symmetrical average of the values of / at corresponding

points on opposite faces of the boundary. Thus, in the one-dimensional case,

(2-6) /(i) = /(0) = i(/(0) + /(l)).

We now introduce the notion of a lattice. The simplest case is given by:

Definition. The s-dimensional integer lattice is the set

(2.7) Zs = {(h,i2, ...,is): ij G Z, i = 1,2,... ,s},

where Z is the set of integers. In general:

Definition. A lattice L is an infinite set of points in Ra with the following two

properties:

1. If x and x' belong to L then so do x ± x'.

2. Each lattice point is the center of a sphere of finite radius containing no other

point of the lattice.

We are interested particularly in the following special class of lattices.

Definition. A multiple-integration lattice is a lattice which contains the integer

lattice Zs as a sublattice.

We are now in a position to define a lattice rule.

Definition (Sloan and Kachoyan [12]). A lattice rule Qf is an approximation to

// of the form

(2-8) Q/== 4 £/>,)>
3 = 1

where x\,x2,...,xn are all the distinct points of a multiple-integration lattice

which lie in the half-open unit cube Us.

Definition. The abaciaaa aet A(Q) of a lattice rule Q is the set of quadrature

points {xi,..., xn} in the half-open cube Us.

Note that in (2.8) it is possible to replace Xj by Xj + Zj where Zj G Zs. This

is because f(xj) = f(xj + Zj). In the definition of the abscissa set, we have taken

care to remove this ambiguity.

Thus, to every lattice rule Q there corresponds a multiple-integration lattice L,

and the abscissa set of the rule is

(2.9) A(Q) = LnUs.

The multiple-integration lattice corresponding to the number-theoretic rule

1   N
(2.10) Qf = ñYfUz/N)

j = l

may be expressed in many forms, including

(2.11) L = {jz/N:j = l,2,...,N} + Z°,
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and the abscissa set is

(2.12) A(Q) = {{jz/N}: j = 0,1,... ,N - 1}.

It may be noted that the arguments of / in the form (2.10) do not necessarily

lie in Ua, and therefore may differ from elements of A(Q) by integer vectors. As

noted already, this is permitted by the periodic nature of /. For the same reason,

it is merely a matter of taste whether the summation label in (2.10) runs from 1 to

N, or say from 0 to TV — 1.

The only iV-point one-dimensional lattice rule is the trapezoidal rule

(2.13)     if>/ = I y Jam = Í ( \m + £ w w + \fw
3 = 1 V J = 1

Note that the abscissa set A(T¡N^) = {j/N: j = 0,1,...,N - 1} provides the

abscissas of /, but that each function evaluation of / may involve more than one

function evaluation of /. Thus what we have termed the Appoint trapezoidal rule

(also called the iV-panel trapezoidal rule) requires N + 1 function values of /.

We shall make frequent reference to the a-dimenaional product-trapezoidal rule:

n«f=±±±-±f(u"h'n-M)
31 = 132 = 1        j, = l       V '

i       n       n n / . . \

_ V* V^     V n^ix^ia      i Jses\
-ns ¿^ ¿^ ■ 'z^j y n + „ +-"+ n )>

Jl=lj2=l J. = l X '

where

(2.15) e, = (SjA,Sj,2,.. .,6jt9) = (0,0,... ,0,1,0,... ,0)

is a unit vector having unit component in the xJ direction and zero components

otherwise. This lattice rule employs the lattice

L = {0'i/n, h/n,..., js/n) : jt G Z, i = 1,2,...,a}.

It is one of the oldest and simplest s-dimensional quadrature rules, but is seldom

used because of its prohibitive cost in terms of function evaluations.

A complicating feature of the theory of lattice rules is that the same rule may

be expressed in many different ways: for example, the two-dimensional product of

the 4-point and 3-point trapezoidal rules may be written as

4        3

(2.14)

(3,4)'

3i = l32 = l

or as

3 = 1       V
12

And the following four forms all represent the same five-point two-dimensional rule:

5 /    /,    r,\\ ,5

(2.18)
3=1       X ' 3=1       V '

1 Ä-/ (2,4)\       1    *      *      /    (1,2) (3,1)\
= jö^f{J~w=2-^^f{3l—+32-r ■

3 = 1 3i = l32 = l
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Because of all this diversity, it is useful to study underlying properties of the

lattice rules. First we treat an undisciplined form of the lattice rule.

THEOREM 2.1.   Any expreaaion of the form

(2.19) Qf=-i-£Í>ÍM—+ — +■+—V

where f(x) is the periodic continuation of f(x) defined above and z¿ belongs to the

integer lattice Zs, is a lattice rule.

Proof. First we note that the infinite set

(2.20) lm + m + ... + hïi + rkiei:ji,ki€z)
{n, n2 nt      ¿j J

is a multiple-integration lattice L, but that the same point may occur for more than

one choice of the indices. The abscissa set A(Q) corresponding to this lattice L is

(2.21)
«JlZl    ,J2Z2,            ,3t*t\- 10 „      .-_10 À

-+-h-h-> : 3i = 1,2,..., m, i = l,2,...,t) ,
ni        n2                nt ) J

though again each point may appear more than once. It is straightforward to show

that if the zero point 0 is repeated precisely k times in (2.21), then each point is

repeated precisely fc times. Thus, the rule Q is an equal weight rule, and is therefore

precisely the lattice rule associated with the lattice L.    D

Note that there are virtually no restrictions in the form (2.19). The z¿ may or

may not be linearly dependent. The value of t may exceed s. The components of

z¿ may or may not have a factor in common with rii. In any event, the abscissa set

A(Q) of this rule comprises only the distinct elements of the set in (2.21).

It is convenient to introduce some further definitions.

Definition. The order v(Q) of the abscissa set A(Q) is the number of function

values of / required by Q.

Definition. The form (2.19) for Qf is termed nonrepetitive if each abscissa occurs

only once.

Definition. The form (2.19) for Qf is termed k-repetitive, or simply repetitive, if

each abscissa occurs precisely fc times and fc > 1.

If the form (2.19) is fc-repetitive then u(Q) = n\n2 ■ ■ nt/k. If it is nonrepetitive

then v(Q) =n\n2- ■ • nt. Later we shall use the following straightforward lemma.

LEMMA 2.2.   When the form (2.19) is nonrepetitive, the equation

(2.22) /^ + á*a + ... + áíi\=o
l ni        n2 nt J

holds for integers j\,j2, ■ ■ ■ ,jt if and only if j, is a multiple of ni for all i.

The following result about the elements of the abscissa set is of fundamental

importance to our study of lattice rules.

THEOREM 2.3. The elements xi,x2,... ,Xn of the abscissa set A(Q) of a

lattice rule Q form an abelian group under the group operation defined by

Xi  plus Xj = {Xi + Xj}.
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The proof is trivial and is not given here. We note that the identity element is 0

and that the inverse of x, € A(Q) is {—x,}. In the sequel we shall not distinguish

between the set A(Q) and the group A(Q), and we shall use the + symbol both in

its conventional sense and as the group operation symbol.

For example, in (2.17) it is clear that the abscissas Xj = {j(3,4)/12}, j =

1,2,..., 12, form a cyclic group of order 12, generated by (3,4)/12. In the form

(2.16), that cyclic group of order 12 is expressed as a direct sum of cyclic groups of

orders 4 and 3. That is, defining

(1,0) (0,1)
c, = —,        c2 = —,

Ci generates a cyclic group C\ of order n¡ = 4 and c2 a cyclic group C2 of order

n2 = 3, these two groups having only the zero element (0,0) in common; and the

elements of A(Q) are each expressible uniquely in the form Xj, +Xj2 where Xj, G Ci

and Xj2 G C2.

In the next section we shall collect together a selection of results from elementary

group theory, which we shall use in Section 4 to construct a classification of lattice

rules.

3. Finite Abelian Groups. Many of the results of this paper depend critically

on the structure of the group A(Q). In particular, decompositions of A(Q) into the

direct sum of cyclic groups play a key role. The results stated here are standard

results from the elementary theory of finite abelian groups, or are minor corollaries

of such results. Here we simply provide a brief summary. At the end of the section

we provide an example illustrating many of the concepts.

The central result is:

THEOREM 3.1. A finite abelian group G may be expressed (uniquely up to an

isomorphism) in the form

(3.1) G = D1®D2®---®Dm,

where Dj is a cyclic group of order Uj > 1, and

(3.2) n3+i I nj    for j = l,-..,m — l.

In particular, thenumbersm (the 'rank' of G) andni,n2,... ,nm (the 'invariants)

are uniquely determined.

Note that the product of the invariants is the order of the group. The theorem

is proved, for example, in Ledermann [9, Section 4.5, Theorem 4]. In essence,

the result is obtained by first representing G as a direct sum of cyclic subgroups,

each of prime-power order, and then recombining, so that for a given prime p each

cyclic subgroup whose order is a power of p is incorporated into a different one of

D\,D2,... ,Dm, starting at the left with the subgroup with the highest power of

p. Note that we may define the rank directly by:

Definition. The rank m oî a finite abelian group G is the smallest number of

cyclic subgroups into which 67 may be decomposed.
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Similar considerations lead to:

THEOREM 3.2.   Given a direct sum decomposition

(3.3) G = Ex © E2 © • • • 8 Et

into cyclic groups Ei of orders ni respectively, the group G is of rank m = t if and

only ifm,n2,...,nt have a nontrivial common factor.

We shall also find occasion to use the following theorem, which relates the rank

and invariants of a subgroup to the corresponding quantities for the group itself.

THEOREM 3.3. Let G, a finite abelian group with rank m and invariants n\,

n2,..., nm, have a subgroup G' with rank m' and invariants n\, n2,..., n'm,. Then

m > m', and n\ \ Hi for i = 1,..., m'.

Proof The result for the case in which G is of prime-power order is given in

Hall [3, Theorem 3.3.3]. The general result then follows by expressing G and G' as

direct sums of Sylow subgroups.    G

Next, we state a corresponding result for factor groups of G. (Recall that if H is

a subgroup of the abelian group G, then the factor group G/H is the group formed

by the 'cosets' x + H, with x G G. The identity in G/H is H. Loosely, the factor

group G/H is the group obtained from G by treating as equivalent any elements of

G that differ by an element of H.)

THEOREM 3.4. Let H be a aubgroup of a finite abelian group G having rank m

and invariants ni, n2,... ,nm, and let G/H have rank m' and invariants n[, n2,...,

n'm,. Then m>m', and n[ | n¿ for i = 1,..., m'.

Proof. Because G is a finite abelian group, G/H is isomorphic to some subgroup

of G (see Hungerford [6, p. 82, Ex. 14]). Thus the result follows immediately from

Theorem 3.3.    D

We conclude the section with an example of a particular group of order 12,

G={(o,o,o),(|,o,i),(|,o,0,(i,o,o),(|,o,i),

1 I i\   (I I i\   (\ i í\
3'2'6/'V2'2'2,/'V3'2'6,/'

(Hi) (o1-1-) ß1-5-))
V6'2'67'V    2'2,/'V6'2'6;j

with addition modulo 1.  This group is the abscissa set for a lattice rule Q with

lattice

(3-5) ü-{a(|.0.|)+a(|.5.J)+^:A.A€^}.

A direct sum representation of G in the manner of Theorem 3.1 is

(3.6) G = Di®D2,

where

(3-7) * = {i(g,5,g):y-0.1.....5},

(3-4) (ÏMH
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the cyclic group of order 6 generated by (|, ±, |), and

(3-8) 02= {(0,0,0), (o,^)J.

The invariants of G (that is, the orders of D\,D2) are 6,2; note that, as required,

the second divides the first.

To illustrate the properties of the factor group G/H, we take as H the order 2

subgroup

(3.9) H=i(0,0,0),(j,0,o\\.

Each element of G/H is a coset of the form

(3.10) x + H=ix + (0,0,0), x+(i,0,o\\,

where x is an element of G. It will be found that the six cosets form a cyclic group,

generated by the element

lU' 2'6j'(,3' 2' 6jj
Thus, this particular factor group has rank 1 and sole invariant 6, in conformity

(since the rank does not exceed 2, and since 6 divides 6) with Theorem 3.4.

4. Classification of Lattice Rules. In this section we employ the results of

Section 3 to classify lattice rules.

Given a lattice rule Q, the abelian group formed by the abscissa set A(Q) may

be expressed (usually in many different ways) as a direct sum of cyclic groups,

(4.1) A(Q)=Ci©C2 ©■•■©<?«.

Corresponding to this we have:

THEOREM 4.1.   A lattice rule Q is expressible as a nonrepetitive form

(4.2)     Qf = —l—yy-.-y/ÍjA+j^+'+jA).
mn2 ■ • • nt *-' f-*       f-J     \   ni n2 nt J

Ji = lj2 = l        3t = l

Proof. If the cyclic group G\ in (4.1) is of order n¿ then C¿ has at least one

element of that order; we call one such element c, and choose z¿ = n¿c¿.    D

Comment. Clearly, v(Q) = mn2 ■ ■ ■ nt. This theorem is a converse of Theorem

2.1 (which states that any Qf of form (4.2) is a lattice rule). We refer to (4.2) as

a t-cycle form of the rule Q.

Conversely, a lattice rule Q given in nonrepetitive form (4.2) yields immediately

a direct sum decomposition of the abscissa set (4.1), the group C, in (4.1) being

generated by z¿/n¿.

The 1-1 correspondence between (4.1) and (4.2) allows us to transcribe many of

the results about group decomposition in Section 3 to results about nonrepetitive

representations of Q of form (4.2). The definitions of rank and invariants are also

applied to lattice rules Q. Thus we have:

Definition. The rank m of a lattice rule Q is the least possible value of t for

which A(Q) may be expressed in form (4.1) or Qf in form (4.2).



LATTICE QUADRATURE RULES 89

By extension, the trivial one-point lattice rule T¿ ', for which the abscissa set is

A(T^1]) = {0}, will be said to have rank 0.

Definition. The form (4.2) of a lattice rule Q is said to be minimal if t = m,

where m is the rank of Q.

It is useful to be able to determine whether or not a given expression of a lattice

rule is minimal. This turns out to be straightforward if the form is nonrepetitive.

Theorem 3.2 gives immediately:

THEOREM 4.2. A nonrepetitive form (4.2) is minimal if and only if Hi, n%,...,

nt have a nontrivial common factor.

The following is a useful property of a nonrepetitive minimal form of a lattice

rule.

THEOREM 4.3. If the form (4.2) is nonrepetitive and minimal (implying t =

m), then the vectors zi,z2,...,zm are linearly independent (with respect to the

rational field).

Proof Obviously it is sufficient to establish the linear independence of the vectors

Cj = Zi/ni, i = 1,2,...,m. Suppose the contrary. Then there exist rational

numbers Ai, A2,...,Am, not all zero, such that

(4.3) AiCi+A2c2H-hAmcm=0.

Without loss of generality we may assume that Ai, A2,..., Am are integers, with no

nontrivial overall common factor. It follows immediately that

(4.4) {AiCi+A2c2-l-l-A„cm} = 0.

Since the rule is assumed to be nonrepetitive, it follows from Lemma 2.2 that

(4.5) A i is a multiple of ni,        i = 1,2,... ,m.

But because the rule is also minimal, it follows from Theorem 4.2 that the numbers

ni,..., nm must have a nontrivial common factor, say a, and since we have shown

that Xi is a multiple of n¿, it now follows that a is a common factor of each of

Ai, • • •, Am. Since this gives a contradiction, the result is proved.    D

There follows an important consequence:

COROLLARY 4.4. The rank m of an s-dimensional lattice rule satisfies 1 <

m < s.

Now we state the main theorem of this section. This is an immediate transcrip-

tion of Theorem 3.1, but incorporates the result of Theorem 4.3 above.

THEOREM 4.5. An s-dimensional lattice rule Q can be expressed as a nonrepet-

itive form

(4.6) Qf =-!-££...£/(à!! + fe + ... + a55-).
Jl=lj2 = l 3m = l
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where m (the 'rank) and n\,n2,... ,nm (the 'invariants) are uniquely determined

natural numbers satisfying 1 < m < s and

(4.7) ni+i|n¿,        i = 1,... ,m - 1; nm > 1.

The vectors z\, z2,..., zm are linearly independent.

A lattice rule satisfying the conditions of this theorem will be said to be in

canonical form.

We now extend slightly the definition of the invariants.

Definition. A lattice rule satisfying the conditions of Theorem 4.5 (and therefore

being of rank m) will be said to have invariants n\, n2,..., ns, with rti ,n2,..., nm

taking the values in (4.7) and nm+1 = nm+2 = • • • = ns = 1.

It is often convenient to suppress the trivial invariants, that is those whose value

is 1. The nomenclature then corresponds precisely to that for the abscissa set A(Q)

regarded as a group. Note that the product of the invariants is the number u(Q)

of abscissas.

COROLLARY 4.6. A quadrature rule which can be expressed as a nonrepetitive

form (4.6) with ni,n2,...,nm satisfying (4.7) is a lattice rule with rank m and

invariants n\, n2,...,nm.

This follows from Theorem 2.1 together with the uniqueness provision of Theo-

rem 4.5.

We conclude with an example. Suppose

u*\ nr     1 V* V> /f.-(5.0,2)        (4,3,1)\

3i=lh=l

The reader will easily verify, by writing out the abscissas, that this form of the

rule is repetitive, and that the abscissa set A(Q) contains just 12 points, namely

those given in (3.4). Thus, this example has already been analyzed in Section 3.

The direct-sum representation (3.6)-(3.8), conforming as it does to Theorem 3.1,

corresponds to the expression

(4-9) Qf = ñ^ 2-MJ1—6—+-?2—2—J'
Jl=lj2=I        V 7

which is precisely of the canonical form described in Theorem 4.5. This 3-dimen-

sional rule has rank 2 and invariants 6, 2, 1; or, more briefly, invariants 6, 2.

5. Rule Projection. Given an arbitrary quadrature rule Qf for the s-dimen-

sional cube Cs,

(5.1) Q/ = £Wi/(xJ1,xJ2,...,xJs),

3 = 1

we define an s'-dimensional projection Q'f, with s' < s, to be any rule obtained by

omitting a — s' specified components. Most simply, if the last a — a' components

are omitted, we obtain the principal s'-dimensional projection of Q, namely

V

(5.2) Q7 = 5>i/(*J.*?,...,*Í),
3 = 1
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which is a quadrature rule (possibly in repetitive form) over the s'-dimensional cube

C*'.
In the case of a lattice rule, every projected rule has a structure that derives

from that of its parent:

THEOREM 5.1. Let Q be an s-dimensional lattice rule having rank m and in-

variants ni,n2,... ,nm. Any s'-dimensional projection Q' is a lattice rule having

rank m! <m and invariants n[,n'2,...,n'm,, where n[ \Hi for i = l,2,...,m'.

Proof. The abscissa set A(Q) has a subgroup H consisting of all the abscissas

whose only nonzero components (if any) are omitted in the formation of Q'. In

other words, H consists of the abscissas that project onto the origin. Then A(Q')

is isomorphic to the factor group A(Q)/H (see Section 3), and the theorem is an

immediate consequence of Theorem 3.4.    D

COROLLARY 5.2. Let Q be an N-point s-dimensional lattice rule, and let Q' be

an s'-dimenaional projection. If Q' has N distinct abscissas, then Q' has the same

rank and invariants as Q.

Proof. This follows immediately from Theorem 5.1 and the fact that the product

of the invariants of Q' is the same as the product of the invariants of Q, since both

are equal to N.    D

To illustrate rule projection, we return to the 3-dimensional rule (4.9),

K*\ nr     l r V^ y/.. (1,3,1) , ..(0.UA
(5-3) Qf = - Y L / (*—o" + ̂ —2~ ) '

¿1=1.72=1       V '

whose abscissas are listed in (3.4). Being already in the standard form of Theorem

4.5, this rule manifestly has rank 2 and invariants 6, 2.

There are three two-dimensional projections of this rule, into the xl,x2 plane,

the x^x3 plane, and the x2,x3 plane. These are respectively the two-dimensional

rules

M   9«/-¿tt/(*M+AM).
¿1=1 ¿2 = 1 V '

kk\     n   f- 1 V V ffvCM).. (0,m(5.5)      Qizf = — 2_; Z^f ^Ji-g-+J2-^- J,

(W.   «-/-¿¿¿/(/.M^MJ-lt/^M).
¿1=1 ¿2=1        V ' 3 = 1        X '

By inspection, the first two are in nonrepetitive form, and so have rank m = 2 and

invariants 6, 2. The third appears first in a repetitive form, but as indicated may

be rewritten in nonrepetitive form with rank 1 and invariant 6.

The key to predicting this situation is to examine the list of abscissas (3.4) of Q

to see how many project into the origin. In the first two cases, <3i2 and Q13, only

one element projects to (0,0). We have then the uninteresting case in Theorem 5.1

in which H is the identity and A(Q)/H is isomorphic to A(Q). In the third case,
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pertaining to Q23, inspection of the list (3.4) shows that two elements project to

(0,0). These two elements now constitute H, i.e.,

H= {(0,0,0), Q,0,o)},

giving immediately that A(Q)/H is of order 6. The group A(Q)/H is described in

Section 3 and is seen there to be a cyclic group of order 6. The import of Theorem

5.1 is that the abscissa set A(Q2%) is isomorphic with this group, and so is also

a cyclic group. Thus A(Q2¡) has rank 1 and invariant 6, in agreement with the

statement above for the rule Q2$.

6. ns-Copy Rules. The ns-copy Q("> of a general quadrature rule

(6.1) Q/ = £>¿/(*¿)
¿=i

for the unit cube Cs is the rule obtained by subdividing Cs into ns cubes each of

side n_1, and applying a properly scaled version of the rule Q to each smaller cube.

Specifically,

(«i     0<->/ = "¿' g ■ ■ ■ £ ± g/ (<*v \ "M+z).

In particular, with the aid of (2.5), the ns-copy of the lattice rule (2.8) is

,      n-l   n-1 n-1    N        /n      . ,   .. N

(63)    g'-'/^SE-EE/''"'':"1^-
fc1=0fc2=0        fcs=0¿=l       v '

THEOREM 6.1.   The ns-copy of a lattice rule is a lattice rule.

Proof. This follows from the original definition of a lattice rule through an infinite

lattice L. Defining a lattice l/"' by

(6.4) i6L-*i/neLw,

we find directly that the lattice rule constructed using L^ is precisely the ns-copy

rule.    D

For example, the ns-copy of the one-point rule TJ / = /(0) is the ns-product

trapezoidal rule Ts . The product trapezoidal rule plays a central role in the study

of ns-copy rules. From the definition (2.14) and Corollary 4.6 we have immediately:

LEMMA 6.2. The ns-product trapezoidal rule Tg w a lattice rule of rank s

and invariante n,n,...,n.

And from the definition (6.3) of the ns-copy Q^ we have:

LEMMA 6.3. The absciasa set A(Q(n') of the na-copy of a lattice rule Q con-

tains the abscissa set A(Ts    ) as a subgroup.

THEOREM 6.4. The ns-copy of a lattice rule is a lattice rule of rank s. The s

invariants all have n as a common factor.

Proof. It follows from Lemmas 6.3 and 6.2 and from Theorem 3.3 that there are

s invariants of A(Q^) all having n as a factor.    D
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LEMMA 6.5. If the s-dimensional lattice rule Q is expressible in nonrepetitive

form as

(6.5) Qf =-!-YY--t,¿(—+ —+ ■■+ —
nirn-n( ~ ~       4",    \nj n2 ns

.71=1.72 = 1 JS = 1

where all ni have a factor fc > 1, then Q is the ks-copy of the rule

(6.6)   Pf=—i—Y£-£f(—+—+•••+—

uni/i fj = íij/fc, i = 1,2,..., s.

Proof. In the expression (6.5) we may decompose the sum over j¿ by setting

(6.7) ji-hvi + n,        1 = 1,2,...,*,

and summing /¿ over 0,1,..., fc — 1 and r¿ over 1,..., i/,-. Thus we obtain

fc—1 fc—1      1/1 !/„

/g g-, s li=0       ¡s=0ri = l        r,=l

t /,   Zi ,   Z2 ,   Zs Zi Z,
x/ ii-r + /2-r+-- + /8-r + riri- + --+r«irL

\    fc fc fc kv\ kvs

Because Q has nin2 • • • ns distinct abscissas, all the quadrature points in the latter

expression must be distinct. In particular, the fcs points

(6.9) {llT+" + laj}'        k = 0,l,...,k-l,i=l,...,s,

must be distinct, and so these must be just the abscissas of the fcs-point product
ffcl

trapezoidal rule T¿ ' taken in a different order.

Thus, Q is expressible as

1 fc—1 fc-1      V\ vs

1     Qf =  ksVXV2-Vs   2-   ' " '  2-r   ¿~>"¿^
(6.10) fci=0       fc.=0ri=l        r,=l

x//(fc1;fc2,...,fc,)+riZL + ,,. + r^

which according to (6.3) is just the fcs-copy of the rule (6.6).    D

The following theorem is an immediate corollary of this lemma.

THEOREM 6.6. Any s-dimensional lattice rule of rank s having invariants

ni,n2,... ,ns is the nss-copy of a lattice rule of rank less than s having invariants

m/na,n2/ns,...,ns/ns.

Proof. This follows from choosing n\,n2,... ,ns in Lemma 6.5 to be the invari-

ants of Q and setting k = ns. In this case we have n¿+i |n¿, so all n¿ have the

common factor k = na. This implies f,+i 11/, and vs = 1. Since (6.6) is a nonrepet-

itive form, it follows that Pf has invariants V\,v<i,.■ ■ ,i/a; thus the copied rule Pf

is of rank m, where m is the largest value of t for which vt > 1 (or the largest value

of t for which nt > ns).    D

The following theorem is a converse.
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THEOREM 6.7. The ns-copy of an s-dimensional lattice rule Q having invari-

ants n\,n2,... ,ns is a lattice rule having invariants nn\,nn2,... ,nns.

Proof. From Theorem 6.4 the ns-copy of Q has invariants having an overall

factor n. Suppose these are npi,np2,... ,nps. Then Lemma 6.5 tells us that Q

itself has invariants p\, p2,..., ps. But since the invariants of Q are n\, n2,..., ns,

the theorem follows.     □

We close by remarking that the converse of Lemma 6.5 is not true. The situation

is that when form (6.5) is nonrepetitive, then as we have shown, so is form (6.6), and

Q is the fcs-copy of P. But when we start with a form (6.6) which is nonrepetitive

and construct (6.5), we may either find Qf to be nonrepetitive and to be the fc"-copy

of P, or find Qf to be repetitive and to have an abscissa set A(Q) C A(P^).
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