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On the Convergence of the p-Version of the

Boundary Element Galerkin Method

By E. P. Stephan and M. Suri

Abstract. We prove convergence for the p-version of Galerkin boundary element

schemes applied to various first-kind integral equations. We establish optimal error

estimates for the p-version in the Hll2 and H~ll2-noiias and also derive rates of con-

vergence in slightly stronger norms when the exact nature of the singularity of the

solution is known. Our results lead to a boundary element method for two-dimensional

screen problems in acoustics, which has twice the rate of convergence of the usual h-

version with uniform mesh. An application to three-dimensional exterior problems is

also analyzed.

1. Introduction. Over the last ten years there has been a spectacular increase

in research and applications of boundary element techniques. There has been an

explosion of books, as well as a series of international conferences [10], specially

dedicated to boundary element methods (BEM). The state of the art of asymp-

totic error estimates of the ft-version for BEM is described in several articles (see,

for example, [24], [25]). There, the theoretical framework for both first-kind and

second-kind integral equations is the theory of pseudodifferential operators. As

observed in [21], for strongly elliptic pseudodifferential operators one has conver-

gence of any Galerkin scheme with conforming boundary elements; also, there holds

quasioptimality of the Galerkin error in the energy norm.

Almost all work on BEM has been performed with the h-version, where the

degree p of the elements is fixed, usually at a low value, typically p = 0,1,2,

and the accuracy is achieved by properly refining the mesh. Only recently has

the p-version been introduced into the BEM [1], [2], [3], [26], The p-version fixes

the mesh and achieves the accuracy by increasing the degrees p of the elements,

uniformly or selectively. In the finite element method (FEM) the convergence of the

p-version has been thoroughly investigated for one- and two-dimensional boundary

value problems in a series of papers by BabuSka and others [4], [5], [6], [7], [12].

Meanwhile, convergence results have also been derived for the h-p version of the

finite element method, which is a combination of the standard /i-version and the

p-version [4], [8], [13], [14].

In this paper, we prove the convergence of the p-version for some Galerkin bound-

ary element schemes which use first-kind integral equations. In Section 2 we in-

troduce the function spaces and corresponding norms used later on. In Subsection

3.1 we show that the rate of convergence of the p-version is an optimal one in the

H1/2 and H~ll2-noxms, generalizing known results for H1 and L2-norms. In Sub-

sections 3.2, 3.3 we approximate singular functions by the p-version in the H1/2

Received June 16, 1987; revised March 21, 1988.

1980 Mathematics Subject Classification (1985 Revision). Primary 65R20.

©1989 American Mathematical Society
0025-5718/89 $1.00 + $.25 per page

31
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and jyr_1/2-norms, and we derive convergence rates which are twice the rate of the

/i-version with uniform mesh. In Section 4 we apply the approximation results of

Section 3 to the Galerkin BEM for several integral equations which are strongly

elliptic pseudodifferential equations. As examples, we consider the two-dimensional

screen Neumann and Dirichlet problems in acoustics, where sharp regularity results

for the solutions are available [22], [23], Furthermore, we give first-kind boundary

integral equations governing the exterior Dirichlet and Neumann problems of the

three-dimensional Helmholtz equation, and we present the convergence rates for

the p-version of the corresponding boundary element Galerkin schemes.

2. Notation. Let T be a simply connected, bounded, smooth, closed curve in

R2 and T be a connected subset of f. By C^AÀ), 0 < fc < oo (k integer), we

denote the space of all functions with continuous derivatives of order up to fc on f.

As in [18], the Sobolev spaces HS(T) are defined for s > 0 to be the restrictions of

#s+i/2(R2) t0 f and for s < o by duality,

HS(T) = (H-S(t))'

with H°(T) = L2(t). These spaces are used to define the corresponding spaces of

distributions on T, namely, for any real s,

HS(T) = {ue HS(T): suppu C T},

Hs(T) = {u\r:ueHa(t)}.

The above spaces are normed as follows. For u defined on T, let lu denote any

extension of u on t and u* denote the zero extension of u on V. Then

(2-1) Hl#.(r) = ll«lii.(f),

(2.2) ||«||H.(r) = inf{||HltfS(f): lu e H°(T)}■

Note that for s > 1/2, s ^ integer +1/2, HS(T) is the usual Hq(F) space, and

for -1/2 < s < 1/2, HS(T) = HS(T). For s < -1/2, s ¿ integer +1/2, we have

HS(T) = (H~S(T))'. We will be particularly interested in the cases s = 1/2 and

s = -1/2. For s = 1/2, the space H^2(T) is also denoted by H^2(T), with the

equivalent norm (see [18])

(2-3) H<v*(r) = IM¿./.(r) + IK1 ~ ¿r^WW)'

where for simplicity we have assumed T = (—1, +1) (the general case can be treated

by affine maps).and x denotes the arc length. In terms of duality, the following

relations hold

H-l'2(Y) = (Hl'2(T))',        H-l'2(T) = (Hl'2(T))'.

Let T be of length 27r; then HS(T) may be considered to be spaces of 27r-periodic

functions. For u € HS(T), we may then write

oo oo

(2.4) u(0 = Y ai cos3t + J2 bi sin^'
j=0 j=l
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so that the Hs(t)-noxm may be equivalently defined by

1/2

(2.5) ||u| H°(r)
j=0 j=l

For / a smooth open arc, we will define £PP(T) to be the set of all algebraic

polynomials of degree less than or equal to p in x, the arc length parameter. £Pp(I)

will denote the subset of polynomials vanishing at the end points of J.

Let us now subdivide f into N pieces, f = (Ji=1 T¿, such that T¿ is a smooth

open arc with end points A,_i, A, (A0 = An). Then, for p > 0, 5p(r) will denote

the set of all functions u defined on f such that the restriction u\tí to r¿ belongs

to áPp(Ti). Moreover, we set for p > 1,

vp(f) = sp(f)nc^(f).

We may assume that T is partitioned analogously and define SP(T), VP(T) as above.

Then Sp (r), Vp°(r) will denote the subsets of functions that vanish at the end points

ofT.

Note that 5p(f) (Sp(r)) is a subset of H-WÇJC) (H'1/2^)), while Vp(f) (VP(T))
is a subset of H1'2^) (Hl/2(T)), and Vp°(r) is a subset of Hl'2(T).

So far, we have dealt with the one-dimensional case. We will also be interested

in a simply connected, bounded, smooth, closed surface f C R3. The definitions

of HS(T) are analogous to the previous case. We now assume that f is partitioned

into curvilinear quadrilaterals and triangles, i.e., T = UÍLi ^¿- Let Q ano- ^ be tne

reference square and triangle, respectively; then, Tt = &¡(Q) or &i(T), where &[ is

a smooth bijective mapping. We assume that the intersection of any two distinct

Y i 's is either the empty set or a common vertex or a common side.

By APp (T) we will denote the set of all polynomials of total degree < p on the

triangle T. &P(Q) will denote the set of all polynomials of degree < p in each

variable on Q. We define

(2.6) 5p(f ) = {u : u\r,(^¡(0) e 3°P(T) if Tt is a triangle and

wlr,(^(0) € â°p(Q) if Ti is a quadrilateral}

and

(2.7) Vp(f) = 5p(f)nC(0)(f).

3. Approximation Theorems. In this section we will be interested in ob-

taining estimates for the approximation of functions in HS(T), HS(T) and Ha(T)

by piecewise polynomials belonging to the polynomial subspaces introduced in the

previous section.

3.1. Approximation of Functions in Hs. We first present some results for the

case when u, the function being approximated, is known to lie in Hs. These will

be used in the next section for approximating problems on closed curves and closed

surfaces.

In what follows, T will denote either a closed curve or a closed surface.
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THEOREM 3.1. ¿e¿7 = r or T. LetueHs(^), s > 1/2. Then for p= 1,2,...

there exists up 6 Vp(^) such that

(3.1) ||«-up\\HU2{l) < Cp-^-^Wuy.^,

where the constant C is independent ofu andp, but depends on s and the partition

on 7. Moreover, for u e HS(T),

(3.2) ||U - «p||ÄI/2(r) < Cp-^-^'log^plMI^.

Proof. The estimate (3.1) follows by interpolating the approximation estimates

for the p-version obtained in the H° and H1-noxxa (see [6]). In [7, Theorem 3.2],

an alternative proof (for closed curves), using Chebyshev expansions, is provided.

Moreover, (3.2) is also proved in this theorem, the procedure being similar to our

proof of Theorem 3.3 in Subsection 3.2.     D

The above theorem provides estimates for the error of the best approximation

in the H1!2 and //1,/2-norms. The next theorem provides estimates in the H~x/2-

norm. It has been proved in [9] for 7 a closed curve, and it is included here for

completeness.

THEOREM 3.2. Let 7 = f or T,u e H3(-y), s > 0. Then for p = 1,2,3,...

there exists up € Vp (7) such that

(3-3) ||u - Up||Ä-,/,w < Cp-^+1^\\u\\Hsh),

where the constant C is independent of u and p, but depends upon s and the grid

on 7.

Proof. Let up G ̂ (7) satisfy

(3.4) /  upu)dtl= /  wwcic;    for all u e Vp(i).
J-t J7

Here, up is the best L2-approximation to u in Vp(7), i.e.,

IK - ulUîh) = J,nf, , \\v - wIU2(i)-

Therefore, with e = u — up, we have (see [13])

(3.5) \\e\\Hoh)<Cp-a\\u\\H.h).

Now, if 0 ¿ v e H1^), then by (3.4),

J^evdÇ = Jie(v-y)dt:      \\e\\Ho{l)\\v - y\\Hoh)

\M\hh-i)       IMIhmt) ll«llff>h)

< Cp^Mao^),

where y e Vp(i) satisfies

Wv-vWh»^) <c?p"1|HU»(7)-

This yields

(3.6) \\e\\{HHl)y<Cp-^+^\\u\\Hsh).
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We obtain (3.3) by interpolating (3.5), (3.6) and using the fact that

H-Wb) = (i/1/2(7))' = ((//0(7),^1(7))i/2)'

= (H°(1),(H1(1))')1/2,

which follows from Theorem 6.2 in [18].    G

Remark 3.1. For 7 = f, we have Hk(T) = Hk(T). For 7 = T, we have

II ' ll/f-i/2(r) - II ' llir-i/2(r)- Hence, in either case, (3.3) yields

(3-7) ||u - ttpllH-.Ah) < Cp-('+1/2)||«||lf.(-7)-

Remark 3.2. Since Vp(7) C Sp(i), we see that (3.3) and (3.7) also hold for some

Up e Sp(f).

Remark 3.3. So far, we have assumed that T and T are smooth. The above

theorems may also be modified to the case when T and T are only piecewise smooth.

3.2. H1/2 -Approximation of Singular Functions. We are interested here in ap-

proximating functions that are defined on the curve T and have square root sin-

gularities at the end points. For simplicity, we consider a function u defined on

/ = [-l,+l]by

(3.8) u(x) = (x + lY'2x(x),

where x is a C°° function satisfying

X(x) = l,        -1 < * < -1/2,

= 0,        1/2 < x < 1.

We consider the approximation of u in the H1/2(I)-norm by functions in £Pp(I).

Let / = [—ix, it}. (We may consider / to be a closed circle.) Let u be transformed

to the periodic function û on / by the mapping x = cos£, i.e., û(£) = u(x). Then

we see that

(3.9) û(0 = (1 + cos O1/2x(cos f) = véteos Ç)(C0S(Ç/2)).

The following lemma is taken from [7].

LEMMA 3.1.   One has \\u[\H¡/2^ «s ||û||iii/2(/) for any u e HX/2(I).

The main theorem of this section is the following.

THEOREM 3.3. Let u be defined by (3.8). Then for p= 1,2,... there exists a

polynomial up in APp(I) such that

(3.10) ug(±l) = u(±l)

and

(3.11) \\u - u°p[\ñl/2(I) < Cp-lW2p.

Proof. We first consider the image û of u, which (being even) may be written as

00

(3.12) U(0 = YakCOskt-
fc=0

Define

(3.13) up := up +û~,
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where up e &P(I) is defined in terms of the Chebyshev polynomials Tk(x) =

cos(fccos_1:r) of degrees less than or equal to p by

p p

(3.14) ûp := Y ak cosfcf = Y akTk(cos £),
A;=0 fc=0

and where t! is a linear function such that u® satisfies the condition (3.10), i.e., such

that

(3.15) S(±l) = (u - up)(±l) = (û - ûp)(cos_1(±l)).

We now estimate the coefficients ak in (3.12). We have

a/fc = C /   ûcosfc£d£ = C/    x(cos0cos ( 9 ) cos k£d£

= Cj\(cos0 [cos ((^f1) t) +cos ((^) f)] cfí.

Here, C may represent different constants. Integrating by parts gives

-°'{['«-o(*((^i)«)-aTî+-»((!Ti)<)-5b)];

+jf«'<-0*<h((lTi)«)-.HTÎ
+sin MihW

Using x'(il) = 0, further integration by parts yields

M^{¿+irx'(cos°[cos((fc-0^2fc+-i

- cos ((* + |)€)5EVï

+ cos((fc-0e)¿T

-co8((*+l)0¿i]H)
_/l      If   ,,      Év .   e \    sin(fc-i)e sin(fc+|)e
-C\k2~ + \JoX (COSe)Sme[(2fc + l)(2fc-l)-(2fc + l)(2fc + 3)

^14sin(fc - |)e sin(fc + ±)£

(2fc - l)(2fc - 3)      (2fc-l)(2fc-

Now, since x" and all the sine functions are bounded independent of fc, we obtain

(3.16) i    i«r Ckl < F.
We now estimate Hu-Upll^i/jjj). By Lemma 3.1, (2.5), (3.12), and (3.14), we have

■lPllfll/2(/)   —   II" "pll//l/2(/)

00    Í1 J- i-2^1/2<^E

c e «2a+*2)1/2
fc=p+l

P+l
fc4
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which behaves like

Hence,

f°°   C   .        C

(3.17) ||u_Up||ffl/2(/)<£.

Next, we estimate ll^lljyi/a(7-)• Since u~ is linear,

(3.18) INIk./î(/)<C{|u(+1)| + |u(-1)|}.

Now for any 1, by (3.12), (3.14),

(3.19) |(«-«p)(*)|<   E   l°*l^   E   fc2^--
fc=p+l fc=p+l p

Using (3.15), (3.19), and (3.18), we see that

(3.20) N|tf./2(/) < -,

which combined with (3.17) yields

(3.21) m«-«°iih,„(/)<£.

By (2.3), we know that

(3.22) ||« - u°p[[ñm(I) < [\u - u°p\[Hu2{I) + ||(1 - x2)-l'2(u - u°p)[[H0(I).

Hence we must bound the second term. We have

r+i

/     (l-x2)"1^-^)2^

(3-23) / ,i/P      r-i/P      r     \
= [ + + (â-û^sinfl-1^.

\J0 Jl/p Jn-l/pJ

Now l/sin£ is bounded on [1/p, ix - 1/p]. Hence, using (3.19),

rir-l/p p    r*-i/p

/ (Û - â°)2(sin E)"1 df < ^ / (sin it)-1 df
(3.24) 1/p P     l/p

< ^logp.

Also, let [a] denote the integral part of o. Then it may be verified that with

00 00

û:=      E      °2i+      E      02¿+icos£

j = [(p+2)/2] J=[(p+l)/2]

we obtain with (3.13)

00 00

«(0-«S(0=      E      a2j(cos2jf-l)+      Y      a2j+i(cos(2i + l)e-cosO,
J = [(P+2)/2] i=[(p+l)/2]

which satisfies

(û-û°)(cos-1(±l)) = 0



38 E. P. STEPHAN AND M. SURI

as required in (3.10). Hence,

(û-û°p)2<C{ Y      a2¿(cos2¿£-l)

Lj=[(p+2)/2]

\

+ |       E      a2j + i(cos(2y + l)e-cose)
^=[(P+l)/2]

<cl Y      a2jSÍTí2jt:

lÍ=l(P+2)/2]

2Ï

+ (      E      a<2j+1sm(j + l)ÇsinjÇ

lí=[(p+l)/2]

so that

/^(û-â^sinO-1^
Jo

(3.25)
<Cl

+

E      a2]sin2jf. J   (sin O   1 d£

3 = [(p+2)/2]

a2j+1sixi(j + l)£sinj'c;      (sine)   * dt¡

Now, sin ye ^ i£i so that for any e > 0,

sin2i£ < |sinye|£|sinye|2"£ < UO*    for 0 < e < 1/P-

Hence, using (3.16), the first term on the right side of (3.25) is bounded by

/.'"( E
¿=[(p+2)/2]

-2e

sinÇ

- pa(i-e)
-2e       C

P        =3-

The second term may be similarly bounded, as may the term

f  (û-û^siner1^.
J TV— 1/p1/p

Using this with (3.23), (3.24) gives

[\(l-x2)-^2(u-u°p)\\HotI)<
Clog1/2p

which combined with (3.21)-(3.22) yields (3.11).    D

In Section 4 we will use Theorems 3.1 and 3.3 to bound the error made when a

function that is smooth in the interior of T and behaves like (3.8) at the end points

is approximated by functions in Vp(r).
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3.3.   H'1?2 -Approximation of Singular Functions.   In this section we consider

the approximation of functions u defined on J = [-1, +1] of the form

(3.26) u(x) = (x + l)-l'2x(x),

where x is as before. We are now interested in approximating u in the H-1/2^)-

norm by functions in â°p(I). To this end, we first prove the following lemma.

LEMMA 3.2.  Let feH1'2^). Then f e H~^2(I) and

(3-27) Wf%-U2{1) < C||/Htf»/*(/)-

Proof. Let ip 6 Cg°(-1,1). Define ip* to be the extension by 0 of ip to R. Then

it may be easily seen that ip" = ip'*, so that

\m\H-u2(I) = w\\h-v2{r) = ihnu-./.(m

<CW*\\hv2(r)<C[\iP\\h1/2(i),

since ip e Co°(-l, 1). (The inequality (3.28) can be verified taking Fourier trans-

forms, for instance.)

Now let / € Hll2(I).    We use the following definition, from [11], for the

H-^2(I)-noxxn:

Hence, with

we obtain

t/>ec°°(-i,i)   l|V||#i/2(/)

U',iI>)l*{i) = -</.^'>L2(I)!

I</.^)l»(/)1
I /f-1/2 (n —       sup

IMI/fV>€C°°(-1,1)    ll^|liii/2(/)

ll/llffi/ï(/)llV''llA-'/a(/)
<       sup       -

vecg°(-i,i) HV||/ii/2(/)

< C||/||Äi„(/)
by (3.28). This proves the lemma.    D

With Lemma 3.2 we obtain the following analog to Theorem 3.3.

THEOREM 3.4.   Let u be defined by (3.26).  Then there exists a polynomial up

in £Pp(I) such that

(3-29) ||u - up||Ä_l/2(/) < Cp-Mog1^.

Proof. Let

w= Í   u(t)dt = 2(x + l)1/2X(x)-2 j   (t + l)1/2x'(t)dt = w1+w2.

By Theorem 3.3, there exists vp e £PP(I) satisfying

IK -vI\\hu2{i) < Cp_1log1/2p.

Also, since x(x) is smooth, w2 lies in H2~£ for any e > 0. Applying Theorem 3.1,

there exists v2 € â°v(I) satisfying

II«* - ^llÄ./2(7) < Cp-^-"2Aogll2p\[w2[[H2-SII)

< Cp-llogl/2p.
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Taking vp = v* + v2, we have

Ik - Vp\[Hl/2(I) < Cp_1log1/2p.

Finally, using Lemma 3.2 and taking up = v'p, we obtain (3.29).    D

4. The p-Version for Boundary Elements. Before we apply the approxi-

mation results of Section 3 to the Galerkin solutions of some integral equations of

the first kind, let us recall some basic facts on the Galerkin method. The key to

the error analysis of Galerkin's method is the following result by Hildebrandt and

Wienholtz [15] (see also [11], [21]).

LEMMA 4.1. Let H be a Hubert space with dual H' (not necessarily identified

with H), and let A be infective and continuous from H into H' satisfying a G&rding

inequality. Let u e H denote the solution of

(4.1) Au = f,

where f e H', and let un e Sn C H denote the solution of the Galerkin equations

(4.2) (AuN,v) = (f,v)    for all v e SN C H.

Furthermore, assume that for any <p € H there exists (¡>n €E Sn with <p = limjv-»oo <Pn

in H. Then, for N large enough, the Galerkin equations (4.2) are uniquely solvable

and with a constant C independent of u, un and N, there holds the error estimate

(4.3) ||u - «Ar|| < Cinfdl« - vn[\ ■ vN e Sn},

where || • || denotes the norm in H.

Next, we list several boundary value problems which can be reduced to strongly

elliptic integral equations, i.e., the corresponding integral operators satisfy a

Garding inequality in appropriate Sobolev spaces. Therefore, by Lemma 4.1, the

corresponding boundary element Galerkin methods converge, and the quasioptimal-

ity (4.3) holds, which together with the approximation results of Section 3 leads to

error estimates for the p-version.

The Neumann screen problem in acoustics describes the scattering of a plane

wave at a hard obstacle T. Here, T is given by an oriented open arc, being a

finite piece of a smooth curve in R2. The orientation defines the normal vector n

pointing to the side T2 (see Figure 1). The opposite side of T will be denoted by

Ti. The scattering problem gives rise to the problem: Find the pressure amplitude

field u e -if1 (fir n K) for every compact subset K C R2 satisfying

(A + fc2)« = 0  in nr = R2\r,

(4.4)        du

dn

du

p dn
11

-92- 1_
ir2

Figure l

Here, fc ^ 0, Imfc > 0, and gi,g2 G //_1/2(r) are given with g ■= gi — g2 e

/f-1/2(r). In addition, we require the Sommerfeld radiation condition

(4.5) —-iku = o(r~1'2)    and   u = 0(r~1'2)    as r = \x[ —» oo.
or

From [23] we know that for Imfc > 0, fc / 0, the problem (4.4), (4.5) has no eigen-

solutions, and furthermore it can be reduced to a hypersingular integral equation

onf.



p-VERSION OF THE BEM 41

THEOREM 4.1 [23]. Let gi, g2 and fc be given as above. Then there holds: (i)

u e H1(ür DK) for every compact subset K C R2 solves (4.4), (4.5) if and only if

the jump [«]|r e HX/2(T) satisfies the integral equation

(4.6) D[u](z) := -2JW(ö-^-*(z,c)dsc = f(z),        z e T,

with

(4.7) /(*) := 9l(z) + g2(z) + 2 J (9l(ç) - g2(c))^(z, ç)ds(,

where

(4.8) *(z,ç):=^.Hi'Hk\z-(\)

and Hq ' is the Hankel function of the first kind and order zero, (ii) There exists

exactly one solution ip € Hll2{T),ip = [«]|r of (4.6).

The proof of the assertion (ii) in [23] hinges on the fact that D is a strongly

elliptic pseudodifferential operator of order 1. Therefore, there exists a constant

7i > 0 and a compact mapping C\ : iT1/2(r) -* H~1/2(Y) such that

(4-9) M(D + C1)iP, fP)L2{r) > 7iMl 1/2(r)

for every ip e Hl/2{T). This yields that D is a Fredholm operator of index zero,

and the bijectivity of D thus follows from its injectivity, which is guaranteed by

the above assumptions on the wave number fc. Note that the assumptions on </i, g2

imply feH~l/2(Y).

Using localization and Mellin transformation, Stephan and Wendland derive in

[23] the following explicit regularity result for the solution of (4.6) near the end

points z\,z2 of T.

LEMMA 4.2 [23]. For 0 < a < 1/2 let g, e H^2+a(T), j = 1,2, be given.

Then the solution [«]|r € Hll2{T) of the integral equation (4.6) has the form

2

(4.10) [«]|r = E a*p\'2Xi + vo    with »o e H3/2+°(T), an e R.
¿=i

Here, pi denotes the Euclidean distance between z € T and the end point Zi ofT.

Xi is a C°° cutoff function with 0 < x¿ < 1 o.nd Xi = 1 near to Zi, Xi = 0 at the

opposite end point, i = 1,2.

The p-version Galerkin method for the hypersingular integral equation (4.6)

reads: Find vp e Vp°(T) such that, with f e i/_1/2(r) given by (4.7), for all

cpp e Vp°(T) there holds

(4.11) (Dvp,(pp)L2(v) = (f,cpp)L2(v).

Here, Vp°(r) denotes the set of continuous, piecewise polynomials of degree < p

which vanish at the end points of T, as introduced in Section 2. Note Vp°(r) C

/z"1/2^). There holds the following convergence result for the Galerkin scheme

(4.11).
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THEOREM 4.2. Letp be sufficiently large. Then the Galerkin equations (4.11)

are uniquely solvable and for the error between the exact solution [u]\r e H1/2^)

of (4.6) and the Galerkin solution vp € Vp°(r) we have

(4.12) IM-VpW^^KCp-Aog^p,

where the constant C depends on u but is independent of p.

Proof. We observe that the operator D in (4.6) fulfills the requirements on A in

Lemma 4.1 with H := #1/2(r), and H' = H~l/2(T) since D satisfies the Garding

inequality (4.9) and D is bijective from H1/2^) onto H~l/2{Y) by virtue of Theo-

rem 4.1(ii). On the other hand, {V^fT")} is a sequence of approximating subspaces

of HX/2{T) as p —► oo, and therefore Vp°(r) is a candidate for the subspace Sn in

Lemma 4.1 with p instead of N. Thus, the convergence of the p-version for the

Galerkin procedure (4.11) is an immediate consequence of Lemma 4.1. The rate of

convergence in (4.12) follows from the quasioptimality (4.3) together with the reg-

ularity result (4.10), where the approximation result (3.11) is used to approximate

the singular part in (4.10), and Theorem 3.1 is used to approximate the regular

part t>rj.    ü

Remark4.1. (i) The decomposition (4.10) shows that the exact solution ip = [«]|r

of the integral equation (4.6) belongs to /71-£(r) for any e > 0. Therefore, the

/i-version of the Galerkin procedure for Eq. (4.6) gives only an estimate of order

0(hll2) for the Galerkin error, if a uniform mesh is used.

(ii) Application of the estimate (3.2) to the quasioptimality estimate (4.3) gives,

with ip € H'-'iT),

H - «Vta«/»(r) £ Cp"1/2+£ Wpimfr-py

The better estimate (4.12) follows from Theorem 3.3.

The Dirichlet screen problem in acoustics describes the scattering of a plane wave

at a soft obstacle T. With T being an open arc as introduced above, the scattering

problem becomes: Find the pressure amplitude field u e Hl (fir n K) for every

compact subset icR2 satisfying

(4.13) (A + fc2)« = 0    in nr = R2\r,        u = g    onT,

together with the radiation condition (4.5) for given g e Hl/2(T)  and k ^ 0,

Imfc> 0.

We know from [22] that with the above restrictions on the wave number fc the

Dirichlet problem (4.13), (4.5) has no eigensolutions. Furthermore, this Dirichlet

problem can be reduced to a weakly singular integral equation on T [22].

THEOREM 4.3 [22], Let g e H1'2^) be given and k ¿ 0,lmfc > 0. Then there

holds: (i) « e H1(Ur C\K) for every compact subset XcR2 solves (4.13), (4.5) if

and only if the jump [du/dn][r e H'1/2^) satisfies the integral equation

'du]
(4.14) V dn «—-jCfdn

(ç)$(z,ç)dsç=2g(z),        zer,

where $ is given in (4.8).

(ii) There exists exactly one solution ip e H~ll2(T), ip = [dn/dn]\r of (4.14).
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(iii) Let g e íz"3/2+<T(r),0 < cr < 1/2, be given. Then with the notation of Lemma

4.2 the solution [du/dn}\r e #-1/2(r) o/(4.14) has the form

(4.15)
du

dn
= Y a*Pi 1/2x« + ^o   with ipo e tf 1/2+<T(r), ai e R.

r     i=i

The proof of assertion (ii) in [22] uses the fact that the single-layer potential

operator V is a strongly elliptic pseudodifferential operator of order -1. Therefore,

there holds with a constant 72 and a compact operator C2: H~l/2{T) —► i/1,/2(r)

the Garding inequality

(4.16) Re((V + C2)iP,iP)L2{r) >72||V'|||-1/2(r)

foranyt/»G^-1/2(r).

The decomposition (4.15) is obtained in [22] by localizing the weakly singular

integral equation (4.14) and applying the Mellin transformation. The explicit form

(4.15) of the solution near the end points Zi, i = 1,2, allows us to derive optimal

error estimates for the Galerkin solution.

The p-version Galerkin method for the weakly singular integral equation (4.14)

reads: Find ipp e SP(T) such that with g e H1/2(T)

(4.17) (VipP,<PP) = (2g,<Pp)   forall<PpeSp(T).

Here, SP(T) denotes the set of piecewise polynomials of degree < p subordinate to

a partitioning of T as introduced in Section 2. Note 5p(r) C ^_1/2(r).

THEOREM 4.4. Let p be sufficiently large. Then the Galerkin equations (4.17)

are uniquely solvable, and the error between the exact solution ip of (4.14) and the

Galerkin solution tpp e SP(T) of (4.17) satisfies

(4.18) W-ipp[\H-v2ir)<Cp-llog1/2p

with a constant C independent of p.

Proof. Owing to the Garding inequality (4.16), application of Lemma 4.1 yields

for the choices A = V and H = H'1/2^) with H' = Hl'2(T) the convergence

of the Galerkin scheme (4.17). Note that {Sp(r)} as introduced in Section 2 is a

sequence of approximating subspaces for H~ll2(T) as p —* oo. The estimate (4.18)

follows from the quasioptimality (4.3) together with the regularity result (4.15),

where (3.29) is used to approximate the singular part in (4.15), and Theorem 3.2

is used to approximate the regular part ipo-    O

The exterior Neumann (Dirichlet) problem in acoustics describes the scattering

of a plane wave at a hard (soft) obstacle given by a bounded domain fi in R3. For

simplicity we assume that the boundary T of f2 is a closed, smooth, simply connected

surface. Then the scattering problem leads to the problem: Find u e HXoc(R3\f2)

satisfying

(4.19) (A + fc2)« = 0    in R3\H,

du -
(4.20) —— = g    onT (Neumann)

or

(4.21) u = f    ont (Dirichlet)
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for fc t¿ 0, Im fc > 0, together with the radiation condition

(4.22) -^ -iku = o(r~1),        u = 0(r~i)    as r = \x\ -+ oo.

Here we make the general assumption:

In the exterior Neumann (Dirichlet) problem in R3\fi let fc2 be

(4.23) different from the eigenvalues of the interior Dirichlet (Neumann)

problem in f2.

The restriction to the three-dimensional case is only for simplicity. Of course,

we can derive analogous results also for the corresponding 2-D problems. Easy

modifications of the procedure in [16], [20] lead directly to a boundary integral

equation method for the Neumann and the Dirichlet problem. One immediately

obtains existence and uniqueness results analogous to Theorems 4.1 and 4.3. Let

us first consider again the Neumann problem (4.19), (4.20), (4.22).

THEOREM 4.5. Let g e H~1/2(f) be given with fegds = 0. Then, with k as

above, there holds:

(i) u e H^R^Q) solves (4.19), (4.20), (4.22) if and only if u e ii1/2(f)

satisfies the integral equation

(4.24) Du(z):=-2Ju(ç)-^-^$(z,c)dsz = ~g(z),        zeT,

where

eik\z-(\

(4.25) *(*,?)==
-47r|z - c|

and

r ft
(4.26) ~g(z) = g(z)-2j_g(ç)—<l>(z,ç)ds<.

(ii) There exists exactly one solution u e H1^2^) of (4.24).

(iii) Let g e Hs(f), s > -1/2, and f be C°°.   Then the solution « of (4.24)

belongs to Hs+1(t).

Correspondingly, using the direct approach of [20], [22], one obtains for the

Dirichlet problem (4.19), (4.21), (4.22):

THEOREM 4.6.  Let f G H1/2(t) be given. Then, with k as above, there holds:

(i) « e ir/oc(R3\n) solves (4.19), (4.21), (4.22) if and only ifdu/dn e H~l'2{f)

satisfies the integral equation

(4.27) V^(z):=-2j^(çMz,ç)dSi = f(z),        zeT,

with $ as in (4.25) and

(4.28) /(*) := f(z) + 2 j «(c) ̂ U(*, ?) das.

(ii) There exists exactly one solution dujdn G H~X/2(T) of (4.27).



p-VERSION OF THE BEM 45

(iii) Let f e Ha(f), s > 1/2, and f be C°°. Then the solution du/dn of (4.27)

belongs to H"-1^).

Proofs of Theorems 4.5 and 4.6. For brevity we sketch only the main steps. The

equivalence (i) between the boundary value problems and the integral equations

is standard and follows immediately from Green's formula (see [16], [20]). The

existence and uniqueness results (ii) in Theorems 4.5 and 4.6 are based on the

strong ellipticity of the pseudodifferential operators D and V, i.e., with constants

7i,72 > 0 and compact mappings Ci : #1/2(f) -> iJ-1/2(f) and C2: i/-1/2(f) -»

H1^2(T), there hold the Garding inequalities

(4.29) Re((I? + C1)t;)t;)L2(f)>71||t,|^1/a(f),

(4.30) Re((V + C2)iP,ip)     .   > 7,L2(f) -     'imi*-i/.(f)

for all v e //1/2(f) and ip G ff-^íf). Hence, D: H1/2^) -» #-x/2(f) and

V7: i/-1/2(f) -» //1/2(f) are Fredholm operators of index zero. Under the as-

sumption (4.23) we have for fc ̂  0, Im fc > 0, that the integral equations have no

eigensolutions. Hence, the above mappings D and V are bijective, yielding assertion

(ii). The regularity results (iii) in Theorems 4.5 and 4.6 follow in a standard way

from the ellipticity of the pseudodifferential operators D and V (see for example

[19], [20]).    D
Finally, we consider the Galerkin equations for. the integral equations (4.24) and

(4.27) and show the convergence of the p-version.

The Galerkin method (p-version) for the integral equation (4.24) reads, with

Vp(f) defined by (2.7):
Find Vp e VP(T) such that, with g e i/_1/2(r) given by (4.26), there holds for

all <pp e Vp(f)

(4.31) (Dvp,cpp)L2{f) = (g,4>P)L2{ry

Correspondingly, the Galerkin method (p-version) for the integral equation (4.27)

reads, with SP(T) given by (2.6):

Find ipp e Sp(f) such that, with f G Hx'2(t) given by (4.28), there holds for all

</>p G Sp(f)

(4-32) (V^p,<f>P)L2(t) = (f,<Pp)L2{fy

THEOREM 4.7. Let p be sufficiently large and g G Ha(t), s > -1/2. Then

the Galerkin equations (4.31) are uniquely solvable. Let u G Ha+1(T) be the exact

solution of (4.24) and vp G VP(T) be the Galerkin solution. Then we have for

s > -1/2

(4-33) ||« - «p||i/1/2(f) < Cp-(s+1/2>|M|„s(f)

with a constant C independent of «, g and p.

Proof. Obviously, since Garding's inequality (4.29) holds, the assumptions of

Lemma 4.1 are satisfied if we choose A = D, H = i/1/2(f ), H' = H-^2(f) and

SN = Vp(f) C íí"1/2(f).   Note that f is a closed, bounded, C°° surface.  Thus,
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for p large enough, Lemma 4.1 guarantees the unique solvability of the Galerkin

equations (4.31) and the quasioptimal estimate for the Galerkin error

(4.34) ||u-Up||tfi/2(f) <Cinf{||«-Wp||H,/sl(f): wpeVp(T)}.

From Theorem 4.5 (iii) we know that for s > -1/2, with a constant C,

(4-35) IMI*.+.(f) < CMbW

Therefore, we can apply the approximation result (3.1) of Theorem 3.1 to (4.34)

and obtain (4.33) by using (4.35).    D

THEOREM 4.8. Let p be sufficiently large and f G Hs(t), s > 1. Then the

Galerkin equations (4.32) are uniquely solvable. Let du/dn G HS~AA) be the exact

solution of (4.27) and ipp G SP(T) be the Galerkin solution. Then we have for s > 1

d£-^     - ^p-(a-1/2)ii/ii*.(f)
an tf-i/2(r)

with a constant C independent of du/dn, f and p.

Proof. Again, application of Lemma 4.1 gives the assertion if we take A = V,

H = H~1/2(f), H' = Hll2(t) and SN = Sp(f) C H-^2(f), since the Garding

inequality (4.30) holds. Note again that T is a closed, bounded, C°° surface. From

Theorem 4.6 (iii) we know that for s > 1, with a constant C,

<C\\f\\H.{fy

(4.36)

dn(4-37)
H'-l(t)

On the other hand, Lemma 4.1 yields

(4.38)
du

5T*
du

H-'/2(r)

<Pesp(f)<Cinf
H-U2(f)

Therefore, by applying Theorem 3.2 and Remark 3.1 to (4.38) we obtain with (4.37)

the desired estimate (4.36).    D

Remark 4.2. Theorems 4.7, 4.8 show that for the p-version, the rate of conver-

gence obtained depends only upon the smoothness of the data. Hence, when / and

g are arbitrarily smooth, one obtains arbitrarily high rates of convergence. This

is in direct contrast to the h-version, where the rate of convergence depends in

addition upon the degree of polynomials used, and is therefore not very high, even

for smooth solutions.

Finally, we remark that results analogous to those above can be shown for two-

dimensional crack problems in linear elasticity, since these problems can be reduced

to first-kind integral equations like (4.6) or (4.14) for the components of the jumps

of the displacement or traction across the crack line T. Regularity results analo-

gous to (4.10) and (4.15) hold for the solutions (see [17], [22], [23]). Hence, the

Galerkin schemes corresponding to (4.11) and (4.17) will lead componentwise to

error estimates like (4.12) and (4.18) with obvious modifications.
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