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Equations with Time-Dependent Coefficients
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Abstract. A new class of fully discrete Galerkin/Runge-Kutta methods is constructed

and analyzed for linear parabolic initial-boundary value problems with time-dependent

coefficients. Unlike any classical counterpart, this class offers arbitrarily high order

of convergence while significantly avoiding what has been called order reduction. In

support of this claim, error estimates are proved and computational results are presented.

Additionally, since the time stepping equations involve coefficient matrices changing at

each time step, a preconditioned iterative technique is used to solve the linear systems

only approximately. Nevertheless, the resulting algorithm is shown to preserve the

original convergence rate while using only the order of work required by the base scheme

applied to a linear parabolic problem with time-independent coefficients. Furthermore,

it is noted that special Runge-Kutta methods allow computations to be performed in

parallel so that the final execution time can be reduced to that of a low-order method.

1. Introduction. In this paper, linear parabolic initial-boundary value prob-

lems with time-dependent coefficients are considered. Specifically, the goal is to

construct and analyze fully discrete approximations to the unique solution u(x, i)

of

!dtu=-L(t)u      infix [0,r*],

ti = 0 ondfix [0,<*],

z(x,0) = u°(x)    infl,

where
N

L(t)u = - 53 dXt(tlJ(-K,t)dx¡u) + i0(-K,t)u.
i,j=l

Here, U is a bounded domain in RN with dQ sufficiently smooth. Also, A?(x,t)

and ¿n(x, t) are assumed to be smooth. Further, on fi x [0, i*], the matrix {¿ij}^j=i

is symmetric and uniformly positive definite and ¿o is nonnegative. Also, the initial

data u° is assumed to be both sufficiently smooth and compatible, and precise

hypotheses on the required smoothness of the solution u are made as needed.

Now, for 1 < p < oo and integers s > 0, let Ws'p = WS'P(Q) represent the

well-known Sobolev spaces consisting of functions with (distributional) derivatives
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of order < s in Lp = LP(U). Also, let || • ||w».p denote the usual norm. Then, in

particular, take Hs = Ws'2 and denote its norm by || • ||s. In addition, let H¿ be

the subspace of H1 consisting of functions vanishing on <9Q in the sense of trace.

Further, let the inner product on L2 be denoted by (•, •), and the associated norm by

|| • ||. Next, given Hubert spaces H, Hi, and H2, 33(Hi,H2) represents the Hilbert

space of bounded linear operators from Hi into H2, and 33(H) = 38(H, H). Also,

for t2 > íi, Wl(\ti,t2],H) denotes the Banach space of operators, continuously

differentiable to order / > 0, from [íi, Í2] into H. See Adams [1] for more details.

Now for each t € [0, t*], let L(t) be extended to be Í2-selfadjoint with domain

H2 n H¿. Also, assume that for I > 0 and m > 0 sufficiently large,

L{t)e&l{[0,f], ^(Hm+2DHr],Hm))

so that

(1.2) \\L^(t)v]\m< c(l,m)\\v\\m+2   yveHm+2nH01,

where L^(t) = DltL(t). Note that here and throughout this work, c (sometimes

with a subscript) is used to denote a general positive constant, not necessarily the

same in any two places. Moreover, if in a given (in)equality there is a crucial

element upon which c is meant to depend, such dependence is indicated explicitly

as in (1.2). Next, introducing the L2-selfadjoint solution operator T(t) for which

T(t)L(t) = I on H2 ni7¿ and L(t)T(t) = I on L2, assume that for / > 0 and m > 0

sufficiently large, T(t) € Wl([0,t*\, 33(Hm,Hm+2 n H¿)) so that

(1.3) \\Tw(t)v\]m+2<c(l,m)\\v\\m   VveHm,

where T^(t) = DltT(t). Finally, assume that for sufficiently large I > 0 and m > 0,

the solution u and the data u° satisfy

(1.4) SUp     ||3iu(t)||m<c(m,0||li°||m+2|.
0<t<t'

For details connected with (1.2)-(1.4), see Sammon [17].

A rough description of the results now follows. For this, let h and k denote

spatial and temporal discretization parameters, respectively, and suppose that Ufi

is a fully discrete approximation to u(nk) obtained according to the base scheme

(1.32) described below. In Section 3, the error committed by (1.32) is shown to

satisfy

(1.5) max   \\U¡í-un\\<c(hr+ kti + hk'i-1/2 + h2k'i-1)\\u0\\a,
0<n<n*

where a = max(r + 1,2p + 2), p = min(i^, q + 1), q is the number of Runge-Kutta

stages, and r and v represent, respectively, optimal exponents characteristic of

the Galerkin method and the Runge-Kutta method upon which the fully discrete

scheme is based. Note that under the mild condition that either r < 2u or h2 < ck,

the above error is ff(hr-\-kß). Further, it is explained below that the methods which

are most easily implemented have the property that v < q + 1, which makes the

estimate optimal. It is also worth mentioning that inverse properties (associated

with the use of a quasi-uniform triangulation of 0) are never explicitly assumed,

and as explained after Proposition 3.3, the constructions of Section 2 are required

for this.
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Next, Section 4 deals with (1.39), a variant of the base scheme which incorpo-

rates a preconditioned iterative method (PIM) for the time stepping equations

(1.34). Specifically, these equations are solved only approximately at the nth

time level with, say, ln outer iterations (4.3) and jn inner (PIM) iterations (4.8),

and it is shown that the above convergence rate can be preserved while keeping

Yln=o lnjn/n* bounded independently of h and k. Hence, the order of work is

asymptotically as that for a linear parabolic problem with time-independent coef-

ficients. Additionally, in [15], semilinear and quasi-linear problems are considered,

and the latter are treated with methods such as those reported here to obtain

comparable results.

It should also be mentioned that the discovery of the methods described below

was fortuitous. Note that there are extrapolation options other than (1.28) which

are apparently more natural. For example, Dl could be replaced by Tl in (1.28)

since the latter is consistent with (1.33). This idea is considered together with

(1.33) in a computational section. However, under rather general conditions, (1.5)

is proved and demonstrated computationally only for (1.32) and (1.39). In fact, it

has been reported by many authors ([7], [13], [8]) that unless the solution to the

differential equation satisfies very restrictive conditions, a classical fully discrete

scheme fashioned after (1.16) cannot be expected to offer optimal order of con-

vergence. Furthermore, with regard to efficiency, (1.33) requires the formation of

q new stiffness matrices at every time step. On the other hand, (1-32) and (1.39)

require only the formation of a single such matrix per time step and, at the expense

of at most 100<7~1 % more storage, the recall of u — 1 of its counterparts formed at

previous time steps.

In [7], Crouzeix analyzes (1.33), and with Butcher's conditions C(p — 1) and

B(v), [5], he establishes the L2 estimate

max   ]\UJt-un\\ =cf(hr + kmin{p^).
0<n<n"

Since @(hr + kv) has not generally been observed experimentally, this suboptimal

phenomenon has been called order reduction. Note further that this L2 estimate

depends upon the assumption that the stages are computed exactly. On the other

hand, in [13], Karakashian considers approximating the stages with a PIM and

proves that the above estimate holds while the order of work is kept optimal. Also,

he constructs collocation type implicit Runge-Kutta methods (IRKM's) for which

p = v = c7+l. Nevertheless, such methods have limited stability for q > 3. In

fact, there is a general trade-off among IRKM's in the sense that the more stable

methods suffer more from order reduction while those which do not suffer so, are

not as stable. However, when (1.33) is modified as in (1.32), it is possible to achieve

high order even for very stable methods. For example, in Section 4, an algebraically

stable IRKM is used for a problem of the form (1.1), and optimal-order convergence

is obtained with (1.39) but not with a counterpart based on (1.33).

Douglas, Dupont and Ewing [10] have analyzed Galerkin/Crank-Nicolson fully

discrete approximations for a class of quasi-linear parabolic problems, proving an

optimal L2 estimate for a method which is second-order in time. Also, this rate

was shown to be preserved by an algorithm in which the time stepping equations

are solved only approximately with an optimal order of work. Then studying (1.1),
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Bramble and Sammon [3] have obtained similar results for some Galerkin/Obrech-

koff fully discrete approximations, proving optimal L2 estimates for methods up

to fourth order in time. Finally, note that in [9], Dougalis and Karakashian ana-

lyze Galerkin/Runge-Kutta fully discrete approximations for the Korteweg-De Vries

equation. In fact, they prove optimal L2 estimates for some modified IRKM's which

are up to fourth order. Hence, the spirit of their work is similar to that of the present

study.

In the remainder of this section, there is a presentation of material relevant to

the spatial and temporal discretizations considered here, which concludes with a

precise definition of the schemes for which the above claims are made.

1.1. Spatial Discretizations. To make the following machinery more definite,

consider the Ordinary Galerkin Method for the spatial approximation of the solution

to (1.1). Let D(t)(-, ■) be a bilinear form defined by

N

D(t)(v,w) = J2 (tij(t)dx,v,dX]w) + (¿0(t)v,w),        v,we H&.
i,J = l

Next, let S h represent a finite-dimensional function space consisting of continuous,

piecewise polynomials of degree < r - 1, vanishing on dU. Then, take Th(t) : L2 —*

Sh to be an approximation to the solution operator T(t), defined by

D(t)(Th(t)w,X) = (w,x)    Vu» £ L2, VX G Sh.

For more examples of Galerkin methods satisfying the assumptions enumerated

below, see Bramble, Schatz, Thomée, and Wahlbin [4], and Sammon [17], [18].

Depending on the Galerkin method used, let He be a linear space equipped with

a norm || ■ ||e and satisfying the following properties. Suppose H2 f) H¿ C He and

that

||u||i <c||uf|ß    VveHE,    and    \\v\\E < c\\v\\2    Vu € H2.

For example, for the method described above, take He = Hç\. Now let {S/Jooki

be a family of finite-dimensional subspaces of He satisfying the following for some

integer r > 2:

inf {||v - xli + h\\v - x\\e) < chs\\v\\s    VveH3nH¿, 2 < s < r.
xeSh

Then suppose that for each t G [0, £*], a family of operators {Th(t)}o<h<i is given

satisfying:

(i) Th(t): L2 —► Sh is selfadjoint, positive semidefinite on L2, and positive definite

onSh,

(ii) For 0 < h< 1, Th(t) S Wl([0,t*], &(L2,Sh)) for / > 0 sufficiently large,

(iii) For 2<s<r, 0<<<i*, and / > 0 as large as required in the sequel:

(1.6)    \\[T^(t) - 7f(i)H| + h\\[T^(t) - T{hl)(t)]v\\E < chs\\v\\s.2    Vi; € H°~2.

Hence, the restriction of Th(i) to Sh is invertible and its inverse is henceforth

denoted by Lh(t). Since Lh(t) is also positive definite and selfadjoint on Sh, both

Lh(t) and Th(t) have square roots, but it is also assumed that

c\\Th1/2(t)X\\ < c||Tfc1/2(i)xllE < llxll < llxll*

<c\\Lh/2(t)x\\<c\\Ll/2(t)x\\E    VxGSfc.
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Also, Lh(t) € §"([0,**], 3S(Sh)) for / > 0 sufficiently large and in fact, Bales [2]

has proved that for 0 < s, t < t*, and / > 0:

(1.8) ii^w3í°w^(tfen+ii^w4fl(*^wxii<'¿(oiixíi vxesh.
Then using the selfadjointness of these operators, the following are straightforward

consequences of (1.8). For 0 < s,t < t*,

(1.9) \\Tl'2(s)L]!2(t)x\\ + \\Ll/2(s)Th1/2(t)x\\ < e\\X\\   Vx € Sh,

(1.10) \(Lhl)(s)x,x)\<c(l)(Lh(t)x,x)    VX€5h.

In addition to (1.10), assume that for 0 < t < t* and / > 0,

\(Lhl)(t)x,<l>)\<c(l)\\x\\E\\<t>\\E   Vx,<^€Sh.

Next, defining the elliptic projection operator as Pe(í) = Th(t)L(t), it follows from

(1.6) and (1.2) that for 0 < t < t*,

(1.11) ||[7 - PE(t)]v\\ + Ä||[7 - PE(t)]v\\E < chs\\v\\s    VveHsnH0\2<s<r.

In fact, with u(t) = PE(t)u(t) and n(t) = u(t) - u(t), (1.2), (1.4), and (1.6) can be

used [3] to show that

(1.12) sup  {||n(')(i)|| + h\\r,M(t)\\E} < c(l)ha\\u°\\s+2l,        2<s<r.
0<t<t'

Finally, it can be shown that P0 = Lh(t)Th(t) is for every t € [0, i*] the orthogonal

projection of L2 onto Sh and that T/,(t) = Th(t)Po- Then, since I — Pq is majorized

by I — Pe in L2, it follows from (1.11) that

(1.13) ||(/-P0)«|| <c/is|M|s    VveHsnH0\ 2<s<r.

Now, (1.1) has the following semidiscrete formulation. Find u^: [0, t*] —► Sh

satisfying

,       . Í dtuh = - Lh(t)uh,

\uh(0) = u°h,

where u° 6 Sh is a suitable approximation to u°. In [18], Sammon analyzes approx-

imations of the form (1.14), and with assumptions comparable to those described

above, he proves an optimal L2 estimate

SUp    ||u(t)-Ufc(0|| <C/Ir||«°l|r.
0<t<t*

In the present paper, semidiscrete approximations are not analyzed. Instead, (1.14)

serves only as a source of inspiration for fully discrete approximations, and Uh does

not appear in forthcoming proofs.

1.2. Temporal Discretizations. For the temporal approximation of the solution

to (1.14), Implicit Runge-Kutta Methods (IRKM's) are now introduced. Given an

integer q > 1, a q-stage IRKM is characterized by a set of constants {ßij}ij-i,

{6j}'=1, and {r,}'=1, and it is convenient to make the following definitions:

As{oij}i<ij<qi    b=(bi,b2,...,bq)T,    B = diag {6¿},

M = BA + ATB - bbT,    T = diag {t,},    e = (1,1,..., 1)T.
l<i<q
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For the IRKM formulation used in this work, choose arbitrarily in. 6 R, yo G Rm,

F: Rm+1 -» Rm sufficiently smooth, and k > 0 sufficiently small, so that for

to < t < to + k, smooth functions y,y: R —► Rm are well defined by

(Dty(t)=F(t,y(t)),

\   y (to) = yo,
(1.15)

(1.16)

y*(«) =yo + (t-10) ¿ aijF{to + Tj(t - t0),yj(t)),      !<»*<«,

q

y(t) = yo + (t - t0)^2bi¥(to + n(t - t0),yl(t)).
i=l

The method is described as explicit if a^ = 0, * < j, and implicit if for any i,

an t¿ 0. Also, it is said to have order v if for every y and y defined as above,

Dlty(t0) = Dlty(to), 0 < I < v. Butcher [5] has developed simple conditions for

the above parameters which guarantee a given order; however, only the following

is explicitly required in this work:

(1.17) i!6TA'_1e = l,        1</<ia

To see the roots of condition (1.17), let (1.15) have m = 1, to = 0, yo = 1, and

F(y) = -y, so that y(t) = e_t. Then, from (1.16), y(t) = r(t), where r(z) is a

rational approximation to the exponential e~z given by

(1.18) r(z) = l-zbT(I + zA)'1e.

Expanding this expression shows that r(z) is a i/th-order approximation to the

exponential if and only if (1.17) holds. Next, with regard to stability, an IRKM is

said to be Ao-stable if

(1.19) ,|r(z)|<l   V2>0,

and strongly Ao-stable if

(1.20) sup |r(z)| < 1   Vz0 > 0.
Z>Zo

Also, a method is called algebraically stable if M and B are positive semidefinite.

However, if an algebraically stable method is irreducible (not equivalent to a fewer-

stage method), then

(1.21) B is positive definite, and M is positive semidefinite.

One other notion of stability which is useful here is that of dissipativity:

(1.22) -K-l + 6 <r(z) < 1    Vz > 0.

An-stability is required of all IRKM's considered in this work. However, in order

for the approximations to decay with respect to the time step, strong ^-stability

must hold. In fact, to guarantee decay, both (1.20) and (1.21) are assumed. Then

in Section 4, the iterative scheme (1.39) described below requires at least (1.22) in

addition to

(1.23) r(2)<i-c^L^    vz>0.
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This growth condition is extremely mild, and this author is unaware of any popular

IRKM which fails to satisfy it. Also, requiring (1.22) and (1.23) improves on a

related result of Karakashian [13] in which (1.20) is used. Next, note that the

spectrum of A, o-(A), is related to the poles of r(z), and in addition to the above,

it is assumed throughout this paper that

(1.24) ct(A)c{xER:x>0}.

Returning to the temporal discretization of (1.14), let a g-stage IRKM of order

v > 1 be given. Assume also that there exists a q x q matrix D satisfying:

(1.25) D[e; Ae',...\ A9'^] = [Ae;2A2e;... ;qAqe].

Again, this author is unaware of any well-known IRKM for which such a D fails to

exist. In fact, the so-called collocation type methods are those for which D = T.

Now with p = min(u, q + 1), it follows from (1.25) and (1.17) that

(1.26) IAD1~\ = Dle,        1 < / < p - 1,

(1.27) lbTD'-1e = l,        l<l<p.

Next, for 0 < n < n* — 1, n*k = t*, let the real values {6m}m~J0 be chosen distinctly

so that the q x q matrices {r^}^"l0 are well defined by

ß-i

(1.28) J2 r™(C)' = £',        0</<p-l,
m=0

as the computation of their components involves the inversion of the u x p Van-

dermonde matrix {(¿m)'}m_¿o- m addition, assume that these parameters are

bounded independently of n:

(1.29) max     (\6m\ +   max   |(r» )<,-|| < c.

Actually, it is clear below that the natural and computationally advantageous choice

for (1.28) is:

( m — n,        0 < n < u — 2,

(  - m, p-l<n<n-l.

In any case, define tn = nk and r^ = tn + 6^k, and for 0 < n < n* — 1, 0 < t < t*,

and 0 < s < k, let the following be defined on S^ = [Sh]9:

S?h{t) = diag{Lh(i)},       ^hn = 3h(tn),
qxq

^(8)=X;r^fc(i» + o),   &\=&\(k\
m=0

Now with

(1.31) U^il + kLl^Poil + kL^u0,

suppose that for 0 < n < n* -1 the approximation UJ¡ G Sh is given, where U% « un

and un = u(x, i"). Then, let C/£+1 w un+1 be given by what is henceforth called

the base scheme:

Í1321 í     Ünh=eU^-kÁ^nhTjnh,

\unh+i = (I-bTA^e)UZ + bTA-lTrh,
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where Uh 6 Sh is well defined provided [/ + kA^fh] 1S invertible. Here, AJz?h,

for example, is understood in the sense of composition of operators defined on Sh-

Note that if the temporal discretization of (1.14) were accomplished as prescribed

by (1.15) and (1.16), the following would result:

ïïl = djjt - kA¿hnK,

UZ+1 = (I-bTA-'e)UZ+bTA-'lTh,

where 3£ = diag {Lh(tn + fcr¿)}.

(1.33)

However, as discussed in the beginning of the Introduction, (1.32) is designed to

improve upon (1.33) with the indicated modification.

Now, with regard to iterative approximations, note that an efficient method is

needed for solving the time stepping equations

(1.34) [I + kA&lWl^eUZ-

According to (1.24), A can be transformed as follows:

SAS~l = A = diag {A,} + subdiag{0t},        A, > 0, 1 < i < q,
l<i<q 2<i<q

9% = 0 or 1, 2 < i < q.

Then Vln «a {/£ can be obtained by the (outer) iterations

(1.35) [/+fcA-2^n](5V7) = {SeUZ+kSAi^-^l)^} = R?,        1 < / < /„,

where

(1.36) V0n =       ¿      (-1)——1 (ßn + ^ÜJ?,        1 < n < n* - 1, Vo3 = eU°h,
i—à \n — m l

m=n—l—¡in

{p., n = 0,

p + l — n,        1 < n < p,

1, p + l<n<n*-l,
(l-ó,) (0, n = 0,

pn = <   n - 1,        1 < n < p,

p, p + 1 < n < n* - 1,

and (1.35) is started with V0 = V0n provided {Uhm}m~~Jn_1_lin are computed as

indicated below. Now consider the simple but important observation that if

(1.38) Xl ¿ Xj,        i ¿ j    and    9t = 0,        2<i<q,

then the block system above decouples into the following equations, which can be

solved in parallel:

[I + k\iL%)(SV7)i = (R?)i, l<i<q-

Then, to avoid having to factor new coefficient matrices at every time step, a

preconditioned iterative method is used to approximate V¡ with (inner) iterates,

say {Vj"}o<j<>n.   Further, it is shown that there exist integers {jn}™^1 sucn
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that Yln=o lnjn/n* < c while the convergence order (1.5) is preserved for what is

henceforth called the iterative scheme:

{fjn _ t/n

[/«+i = (/ _ bTA-le)UZ + FA-iUj;.

Finally, let the initial approximation for this scheme be given by (1.31) also.

2. The Product Space Operators. In this section, the machinery elaborated

between (1.2) and (1.13) is generalized to analogous operators defined on products

of spaces on which their precursors are defined. Also, certain technical lemmas

are established for later use. Now, in addition to S/,, define the product spaces

L2 s [L2]9, H¿ = [Ho1]9, HE = [HE]9, and HTO = [Hm]9. Also, on these spaces

define
(   q \V2 (1 1 1/2

||*||Ê=Vn^lll     ,   ||«iu = \T\\Um\    ,

9

(•,*)=£(&,&),       ||*|| = ($,*)J/2.

i=l

Then, for 0 < n < n* — 1, 0 < t < t* and 0 < s < k, let the following be defined on

H2Í1H¿:

&{t) = diag{L(i)},        &n=&{tn),
qxq

T(s) = £ Tnm5f(tn + 6%s),       T='^n(k).

m=0

The first step is to construct, for 0 < n < n* — 1 and 0 < s < A;, operators !T (s)

(ST* =&*(!<:)) satisfying

i^n(s)T\s) = I   onL2,

\ T"\a)^n{a) =1   on H2 n H¿.

Note that with 9~(t) = diagqxq{T(t)} and !Tn = F(tn) defined on L2 for 0 < t <

t* and 0 < n < n* — 1, ¿7" (s) cannot be taken as a combination of such operators.

LEMMA 2.1. For0<n<n*-1, 3F"(s) e 8" ([0,fc], ̂ (Hm+2 n H¿,Hm)),

where l, m > 0 are as in (1.2). Also the following hold for all v € Hm+2 n H¿,

0 < s < k, and 0 < n < n* - 1:

(2.2) ||3i^(8)v||m<c(i,m)||v||m+2,

(2.3) \\C^"(s) -Sfn]v\\m < c(m)k\\v\\m+2.

Proof. The crucial observation is that by (1.28) with / = 0:

M-l M-l ft"+6?s

!F(s)-S?n = J]rn^(ín + ö,ns) -^n] = XIr" /       ^w(t)dt,
i=0 i=0      Jt"

and (2.3) follows with (1.29) and (1.2).    Also,  (2.2) follows using (1.29) and

(1.2).     D
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THEOREM 2.1. Let m,I > 0 be as in (1.3). Then for k small enough, and

0 < n < n* - 1, there exist operators F"(s) e £"([0,*], ^(Hm,Hm+2 n H¿))

satisfying (2.1) and

(2.4) ||^F"(S)v||m+2<c(¿,m)||v||m    Vv6Hra

Proof. The details appear in [14]. However, the key idea is to use (2.3) to show

that with v e Hm, 9~u = ^n{\ + [2"1 - ^"(s)]u} is a global contraction on

jjm+2 n jj¿, provided k is small enough. Then the unique fixed point is taken to

be 3~ (s)v, and (2.4) is established inductively.    G

The next step is to construct for 0 < n < n* — 1 and 0 < s < k operators ¿Th (s)

(^h = ^h(k)) satisfying

, {2¡nh(sWnh(s)=&o   onL2,

\Tnh{aj&nh{8) = I      onSh,

where &>Q = diaggxg{P0}.   Note that with ^(t) = diag,x,{rh(i)} and ^n =

^h(tn) defined on L2 for 0 < t < t* and 0 < n < n* — 1, £7h(s) cannot be taken as

a combination of such operators.

Now let {Dh(t)(-, )}o<t<t* be a family of bilinear forms defined on He x He so

that

Dh(t)(x,<t>) = (Lh(t)x,<l>)    Vx^GSfc.

More specifically, with Dhl)(t)(-, ■) = D[Dh(-, ■), assume that for 0 < t < t*, I > 0,

and 2 < m < r,

\Dhl)(t)(v,w) - (L^(t)v,w)\ < c^h^'WvWmWw - u\\E

VveHmnH¿, Vu; € H2 n H¿ + Sh, Vu € H2 n H¿,

\Dhl)(t)(w,v)\ < c(1)\\w\\e\\v\\e Vw,ve HE,

c||xllï;<Ak(i)(x,x) vxeSh.

For example, these assumptions are readily verified for the Ordinary Galerkin

Method mentioned in the Introduction. For additional examples, see Sammon

[17], [18]. Next, for 0 < t < t*, 0 < n < n* - 1 and 0 < s < k, let the following be

defined on He x He:

^(í)(w,v)=¿^(í)(u.„Wt),        ^(s)(w,v)= J2^(tn+6^s)(T^W,y).
i=l m=0

Discrete counterparts to Lemma 2.1 and Theorem 2.1 appear next.

LEMMA 2.2. For 0 < n < n* - 1, Jz^(s) € ^l([0,k], 33(Sh)) where I > 0 is

as in (1.8). Also, the following hold for all f € L2, 0 < t,ti,t2 < t*, 0 < s < k,

0<n<n* -1:

(2.6) \\^l2(t)dlXh(^h'\tYII < c(/)||f||,

(2.7) K1/2(í)[^(í2) -¿¿>h(tiWh1/2(t)f\\ < c\t2 - <i| ||f||,

(2.8) ||^1/2(i)[:^(S) - ^]^>\t)î|| < cfc||f||.

Proof. The manipulations required are similar to those needed for Lemma 2.1,

except that (1.8) is used instead of (1.2).    D
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THEOREM 2.2. Let I > 0 be as in (1.8). Then for k small enough, and 0 <

n < n* - 1, there exist operators !7\(s) E Wl([0, k], 33(L2,Sh)) defined by

(2.9) Z^(s)(^(s)f,X) = (f,X)    Vf €L2, VXeSfc, 0 < s < fc,

and satisfying (2.5) and, in addition, for all f S L2, for a!/ X e St, 9i,92 = 0, \,

0 < t < t*, 0 < s < k, 0 < n < n* - 1,

(2.10) ll^(S)fb<c(0||f||,

(2.11) ||^í)¿^(45f (i)X|| < c(0l|X||.

Proof. The details appear in [14]. However, that -7~h(s) is well defined by (2.9)

follows once 2h(s) is shown to satisfy the hypotheses of the Lax-Milgram Lemma

[6]. Then, (2.10) and (2.11) are established inductively using (1.7), (1.9), (1.28),

(1.29), (2.6), and (2.8).    G

Finally, a generalization of (1.6) is required for the proof of Lemma 3.3.

THEOREM 2.3. For k > 0 small enough, the following holds for 0 < n < n* -1,

0 < s < k, I > 0, and 2 < m < r:

\\dls[Tl(s)-Tlh(s)]y\\+h\\dls[Tl(s)-Tlh(s)]y\\E < c(l)hm\\v\\m-2   Vv 6 H—2.

Proof. See [14].    G

3. The Base Scheme. In this section, the base scheme (1.32) is analyzed for

the approximation of the solution to (1.1), and (1.5) is established. That the stages

are well defined depends on the next lemma.

LEMMA 3.1. Provided (1.24) is satisfied, [I + kAS?hn] is invertible, and for k

small enough, [I + kAJz?h] is as well. Also the following hold for all X € S/j,

0<9< 1, 9i,92 =0,\,9X = -92 = ±\, 0<n<n*-l:

(3.1) \\(k^hn)e[I + kA^hn]-lX\\<c\\X\\,

(3.2) \\(kS?hn)6i\I + kA&l]-\k2'hn)e*n <c||X||.

Proof. The invertibility of [/ + kA5Chn] and the estimate (3.1) involve a spectral

argument after A is transformed to Jordan form, and the details are provided by

Karakashian [13]. Now set

Ei = [I + kA2?\-lkA{2? -&l)    and   E2 = kA(2Chn - ~&\)\I + kA2?\-x,

so that

(5?hn)1/2[I + ItA^lWh")1'2 = [I-rkA^hn][I-(^hn)1/2Ei(^hn)1/2],

(JhnYl2\I + fc^](-2T)1/2 = [/ - (^hn)1/2E2(^hn)1/2\[I + kAS?hn]-

By (3.1) and (2.8),

||(-2T)1/2£i(.V)1/2x|| + \\(^r)li2E2(^hn)l,2n < c*||x||  vx g sfc.

Hence, for A; small enough, [/ + kAJîfh] is invertible. Next, for 92 = 0, ±|,

(k&fY'^i+kA&l)-1^?)6*
= [I- (&hn)xl2Ei(?hn)l'2rl(k3'hn)B2+ll2[I + kA2'hn]-1
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and (3.2) follows for 0j = ¿. For 0, = 0, ±§,

(fc5T)*1[/ + *^]-1(fc2!?,)1/a

= (fc^n)"1+1/2[/ + kA2F)-l[I - (3rhnY,2E2(.S'hn)i,2}~1

and (3.2) follows for 92 = \- Now, for the case 9i = 62 = 0, with X G S/! chosen

arbitrarily,

||X||2 < 111(7+ fcA^]X||2 + i||X||2 + fc|(A^X,X)|.

Then, with * s (^n)1/2X, by (2.8),

|(A^X,X)| < \(A*,9)\ + K^")1/2^ -^»K^)1/2*,^*)!

<c(l + fc)(^,nX,X).

Also by (3.2) with 0j = §, 92 = 0,

||(L2T)1/2X||<c||[I + fc^]X||,

and the remaining case for (3.2) follows after combining the last three inequali-

ties.    G

Now, for the sequel, let the following be defined:

£n _ jjn _ wn] nn = Un - Un,

rJJ = J - kbTS?hn[I + kA^hn]-le, 3lhn = I - kbT^l\I + kA&l]-le,

^n(s) = Td=oDiedtunl\       (0<s<k),     ün = ün(k),

Qn(s) = J^(s)^n(s)un(s)    (0 < s < k),    Qn = G)n(k).

After some straightforward calculations, the following error equation is established:

r+1 =3?Ze + kbT&l[I + kA&í]-1 i¿D" -ewn -kAj2 r»e3tW(r^)l
I m=0 J

- kbTA-x[I + kA&lr'A&o £ C^(C)[ñ" - eu(C)]
m=0

H-l

(3.3) -feb^-MZ + fcA^]-1^ J2 r£e3t{[PB(r»)-Po]u(C)}

_ J w«+i _ W" _ fc6r £ r^e¿9tW(C)|
I m=0 J

4

= ^nr + X!^n=^n^n+^n'        0<n<n*-l.

¿=i

Now, since it is required in Section 4, stability and consistency are established

in the following norms, which according to (1.7) are well defined for 0 < n < n*:

|x|nEE{(x,x) + fc(£Ex,x)}1/2,      xeSh.

Also, from (1.10) with I = 0, it follows that these norms are equivalent:

(3.4) dlxlllm < Ixllln < c2|x|m    VX G Sh, 0 < m,n < n*.

As in Section 2, for X G SÄ1 take |X|n = {£?=i fflx.ll2,}172-
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In the next two propositions, two classes of IRKM's are considered in order to

obtain the following stability inequality for (3.3):

(3-5)        ¡r+1«2+i < (1 + ck)Unil + ck-lirtl        0 < n < n* - 1.

PROPOSITION 3.1. Suppose c;n+1 = &?Çn + i>n, and let (1.19) be satisfied.

Then there is a constant c such that (3.5) holds. In fact, c < 0 if (1.20) holds and

c(l) of (1.8) ts small enough.

Proof. Triangulating with r££", one obtains

«r+1|2 < {IIW - rnh]Cin + KCÍn + ¡r¡nMn+1ín

< mnl + èlir+1H2(1 + ek) + c(ek)-1{^[<%£ - rïïCil + »</>n|!2}.

By some straightforward calculations,

&£ -rhl = bTA-1[I + kA&lr^k&h)1'2

x A(^)xl2(^hn -^hmn1/2(k&hn)1/2ii+1*^]-^,

so that with (2.8), (3.1), and (3.2), it follows that for 0i,02 = 0, ±¿

(3.6) \\(kLir W - rZWW'xW < ck\\x\\   VX G Sh.

So, there is a cj > 0 such that

(i - ernenn < Km+e-'ciku»ii2+ck-^rii
Since (3.6) depends on (2.8) and hence (1.8), the smallness of ci is determined by

that of c(l) in (1.8). Now by (2.7), with xn+1 = (£2)1/2fn+1,

ir+1||2+i = lir+1|2 +k((T^/2[Lnh+1 -¿SKîT)1/2^1,^)

<(l + c2k)Mn+1il

where again the smallness of c2 is determined by that of c(l) in (1.8). Hence,

according to the above, there is a C3 > 0 such that

(3.7) (1 - c3A;)ir+1||2+1 < KCîl + e-'cikUn]]2 + ck^inl-

Now, since v > 1, r(0) = 1 = -r'(0). So let zi,0 > 0 be chosen so that |r(z)| <

1 - 0z, 0 < z < zx. By (1.7), o(kLl) C [0_1coA;,oo) for some c0 > 0. Thus, using

a spectral argument, it follows that for k small enough, there is a c G \—cq, 0] such

that

(3-8) ||r£x||<(l + cfc) M    VXGS„

and c < 0 if (1.20) holds. Finally, (3.5) follows with (3.7) and (3.8), and c >

c + c3 + e~1ci.   G

The conditions of the following proposition guarantee that c < 0 in (3.5), and

hence the approximations decay.

PROPOSITION 3.2. Suppose £n+l = 3lJ^n + xpn and let (1.20) and (1.21) be

satisfied.  Then there is a constant c < 0 such that (3.5) holds.

Proof. Suppose it has been established that for some ei > 0 and c < 0

(3.9)     ii^rn2 + (i+£i)ii(^rl)1/2^nrii2 < (i+cfc)nni2.
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By (1.7) and (3.4),

(C+l,C+1) + (i + si)(kLnh+1c+1,C+1)

= {&ze, r+1) + (i+£i)((fcL£+1)l/2^nr, (^+1)1/2en+1)

+ ((kLi^1)-1'2^, (JtL^+i)i/2en+1)

+ (1 + ei)((kLnh+lY'2r, (*L5+1)1/2€"+1)

< Hiwn2 + (1+ei)||(*LÏ+1)1/2^Br II2}

+ è{|ir+1n2 + (i+^i)ii(A;Lrl)1/2r+1!i2}

+ ceïïk-1irîl + he1\\(kLÏ+1)1>*e+1\\\

and (3.5) follows after combining the above inequalities. Now for (3.9), the following

are required:

(3.10) iwr f < uni2 - C|i(fc-%n)1/2rn2,

(3.11) \\^c\\2+c2\\(kLnh)^2^c\\2 < nrii2+ciii(^)1/2rii2,

(3.12) ukLiy^zew2 < (i+C3fc)ii(^)1/2ni2,

where £" = [I + feA^]-1^" and c2 > a > 0. For (3.10), note that «^*fn =

£n - kbT&lc1, and hence

iwni2 - uni2 - 2fc(er,p^!ên) + *2(6T^r.eT^r)

= iirii2-2fc([/+fcA^]r,p^ñ + fc2(66T^en,^ñ

= um2 - 2fc(pr,^r) - e^^ie^e)-
The last term can be ignored since by (1.21), M is positive semidefinite. Also, for

X G Sfc and * = (^hn)1/2X, by (1.21) and (2.8),

(px,^x) = us1/2*!!2 + (P*,(^")1/2[^ -^"](^")1/2*)

<c(i-*)n(j2r)i/axiia.

Hence, (3.10) is established. Next, for (3.11), write ¿?££n = (/ - bT - A^e)^ +

bTA~lln and note that by (1.18) and (1.20), r(oo) = 1 - bTA~xe G (-1,1). So,

using (3.10),

\\W*&î?t = r(œ)((Lnh)1/23?ZC, (Lnh)1/20

+ ((Lif23i¡:cy A-i(^hn)1,2in)

< èir(cc)|{|i(LX)1/2^nrna + ii(^)1/2ni2}

+£2iK^)i/X"rii2+c4£2-1A:-l{iirii2-iwrii2},

and (3.11) follows if e2 > 0 is chosen so that c2 = (I - e2 - \\r(oo)\)e2c~ll >

§|r(oo)|e2cr! = cx. Finally, (3.12) follows after using (3.6) and (1.19) in

IKfcL^/^ril < W[(kLnh)l/2(^-rnh)(kLnhr^2](kLnh)1/2C\\

+ M(kLt)i'2ei

Next, (3.11) and (3.12) are used to obtain (3.9). Suppose that e2 is small enough

that c2 < 1. Then, assume that fc0 > 0 is small enough that if 0 = (1-Ci)/(1+C3fc0),
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then c2 + 0 > 1.  Next, multiply (3.12) by 0 and add the result to (3.11).  With

c5 = c2 + 0 - 1 > 0, and 0 < k < ko,

iwrii2+(i+c5)ii(^)1/2^nni2 < in2,.

By (1.7), there is a C6 > 0 such that

cek\mC\\2 < icslKfc^)1/2^!2.

Also, by (2.7), with x" = (kLl)1/2^^,

\\(kLl+lY'23lj:C\\2 = \\xn\\2 + ((T^)1/2[Lnh+1-Ll](Tj:)1/2xn,Xn)

<(l + c7k)\\(kLlY/2^C\\2-

From the last three inequalities it follows that

(1 + cek)\\^C||2 + (1 + ¿c5)(l + c^-^kL^^^CW2 < in2-

So assume that fco above is also small enough that

(1 + ±c5)(l + c6fco)_1(l + c7fco)_1 > 1 + eu

for some ei > 0. Then (3.9) follows for some c G (-C6,0).     G

The next two lemmas are useful in subsequent consistency estimates.

LEMMA 3.2. Fix integers l,m>0, and let to,ti,t2 G [0, t*] with \t2 —ti\ < ck.

Then

(3.13) sup   ||^(í0)^o;(í)||<C(Z)||u0||2(i+1),        0 = 0, i.
o<t<t*

Also, with E = ¡t2 (t2 - t)mdltüj(t) dt, there exist Ei and E2 such that E = Ei + E2

while

(3.14) ||[fcLh(ío)]1/2í;i||<c(0^m+1/2+'||uo||2(¡+í),        ¿ = 0,1;

(3.15) \]kLh(to)E2\\<c(l)km+1+l\\u°\\2{l+l),        i = 0,1-

Furthermore, for 0 < n < n*,

(3.16) \\E\n < c(l)(km+1 + hkm+l'2 + /i2fcm)||u°||2i.

Proof. See [14].    G

LEMMA 3.3.   The following holds for 0 < s < k and 0<t<t*:

(3.17) \\d^n(s)\\ + h\\^h1/2(t)d^(s)\\ < ch2\\u°\\2tl.

Proof. See [14].    G

The order of consistency is established as follows.

PROPOSITION 3.3.   The term xpn in (3.3) satisfies

(3.18) |^B|„ < ck(hr + *" + hk»-1'2 + ft2fc'J-1)||u0||2(/J+1).

Proof. First, consider ipn. By differentiating 3^(s)wn(s) = 3s0^n(s)ün(s) and

using (1.28), it can be shown inductively that dlsuin(0) = Dledltun, 0 < I < p - 1.

Therefore,

"_1 kl 1        fk
û>n-ewn = J2Dledt(jnj + E'        E-      _iv /   (k-sr~1d^n(s)ds.
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Next, by (1.28) and (1.26),

kA ¿ r» CdtW(r» ) = £ Dled\"nj + *",

m=0 1=1

^ ~ ¿^! m=0 •/*"

Now ip? = É-F, with

p. = jfc1/2^^-1!/ + ^i-'f^")11^^")1^^")1'2!^")1^.

+ &T^-1[/ + fcA^]-1(fc^h")1/2ylpXn)1/2fi]

+ bTA-1[I + JfcA^]-M[JL^BP2],

where P = Pi +P2 is the splitting guaranteed by Lemma 3.2. The estimate required

for V" then follows using (3.2), (2.6) (3.17), (1.29), (2.8), and inequalities of the

form (3.14)-(3.16). Now consider V2- After differentiating v(s) = 5C (s)ün(s),

with (1.28) and (1.1) it can be shown that dlav(0) = -Dled\+1un, 0 < I < p - 1.

Hence,

IT1*" = - £ Dled't+1unj + ̂ 4ljj /o V - i)*"1 W«) da.

Then, by (1.1) and (1.28),

- £ r^(C)eu(r») = ¿2Dled't+1u»kj
m=0 1=0

p-1

+ühsi Erm«/T,n(c-o'4-1arl«(í)dí-
*" '   m=0 *"

So the required estimate for t/>£ follows with (3.2), (2.2), (1.4), and (1.29). Next,

the estimate required for i/>$ follows with (3.2), (1.29), (1.12), (1.13), and (1.4).

Finally, consider ip%. First,

un+1-un = Y^dlt"n^ + G,        G=    \i        (tn+1-t)»dÇ+1u(t)dt.

By (1.28) and (1.27),

kbT ¿2 T^edMrm) = £3{w»£ + H,
m=0 ¡=1

h = 7-S-jï £ ¿>Tr> rm(C - í^a^VO*-

Hence, x/j" = -G + H, and the estimate required for V" follows after apply-

ing Lemma 3.2 to G and H, and using (1.29) to obtain inequalities of the form

(3.16).   G
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With the consistency complete, it is now appropriate to discuss the development

of the techniques used. First, it is possible to construct an error equation alternative

to (3.3) which circumvents the constructions of Section 2. However, this requires

inverse properties. For example, one option involves the following replacements:

ÜIÍ kl
^^^D'edi^j,

1=0

r2 - kVA-\l + kÄ&lVA £ r«(C)[û," - ew(i*)].
m=0

Then in the above proof, v(s) is changed to J¿?h(s)wn(s), and bounding derivatives

of the latter involves bounding products of the form Lh (s)T^'(t). This can be

accomplished using inverse assumptions as demonstrated by Bales [2].

Also, the original idea for overcoming the suboptimal convergence rates men-

tioned in connection with (1.33) was to find q x q matrices {D¡}"~¿ with which the

following would lead to optimal convergence estimates:

u-l

£r£(o' = A,     o<*<"-i;
m=0

TK s £ r^(f" + 6»k) * £D^hl)(tn)j-

m=0 i=0

However, attempts to prove an optimal order of consistency have repeatedly led to

the following conditions for the matrices {Di}"~01:

Doe = e;    DiD^e = Dl+}e,        0 < i,j,i + j < v - 1;

lAD^ie = Dte,        1 < I < v - 1.

To see this, consider for example adapting the estimate for V"-   Unfortunately,

even though the number of unknowns matches the number of constraints in the

equations above, it is shown in [15] that they can be solved only if v < q + 1.

Now, (1.5) is established in the following for (1.32).

THEOREM 3.4. Under the conditions of Lemma 3.1 and either Proposition 3.1

or 3.2, {£/£}"_o are well defined by (1.31) and (1.32), and the following holds:

(3.19) max   \\UJ¡ - un\\ < c*(hr + k» + hk^'1'2 + Ä2^-1)!!«0!^.
0<n<n"

Also, unless c < 0 in (3.5), c* depends exponentially on t*.

Proof. Set P = \(hr + fc" + hk^1/2 + /i2^-1)^0^]2. Then, combining (3.5)

and (3.18) for (3.3),

len+1»2+i < (1 + ck)lCfn + cikE,        0 < n < n* - 1.

After dividing this by (1 + ck)n+1 and summing, the result is

If J2 < (1 + cA:)"||Ç0|2 + Cl|c|-X|l - (1 + ck)n\E,        0 < n < n*.



578 STEPHEN L. KEELING

Now, according to (1.31), [I + kL°h]Ç0 = [P0-Pe]u°. So with (1.13), (1.11), anda

spectral argument, it follows that

(3.20) |£°|2 < c||[Po - PE]u°\\ \\[I + kLhl'lPo - Pg]«°|| < cÄl«°||r.

Then, (3.19) follows with (1.12) and the last two inequalities.    G

4. Iterative Approximations. In this section, the iterative scheme (1.39) is

analyzed for the approximation of the solution to (1.1), and (1.5) is established.

First, a brief discussion of Preconditioned Iterative Methods (PIM's) is given. See

Hageman and Young [11] for more information.

Let H be any finite-dimensional Hilbert space equipped with an inner product

(-,-)h and an associated norm || • \\h- Also, let Q: H —> H be i7-selfadjoint and

positive definite, and suppose that an approximation is required for the solution x*

to Qx* = b. Then, suppose that Q0: H —► H is P/-selfadjoint and positive definite,

and that solving Qqx = b is relatively inexpensive. Furthermore, assume that Q

and Qo are equivalent in the sense that

(4.1) Pi(Qox,x)H <(Qx,x)H <p2(Qox,x)H   Vx G H.

The operator Q0 is called the preconditioner and the PIM's of interest in this work

are those with the following properties:

(i) If {xj}j=0 are given approximations to x*, the solution of Qx* = b, then

calculating xj+i only involves computing Qx,Q0x,(Qx,x)h, and (Qox, x)h for

certain x G H, and solving equations of the form Q0x = b.

(ii) There is a smooth decreasing function a: (0,1) —► (0,1) such that o(l) = 0

and, if (4.1) holds, then

(4.2) ||Q0/2[x* - x3]\\h < c\a(pi/p2)Y\\Qy2[x* - x0]\\h-

For example, the Preconditioned Conjugate Gradient Method satisfies the above

properties, and it is popular for having a(s) = (1 - y/s)/(l + s/s) as opposed to,

say, (1 — s)/(l + s), which is offered by various other PIM's.

Now, the rough discussion prior to (1.39) is expanded with more details. First,

suppose that for 0 < n < n* - 1, {t/™}^=0 and {¿/™}£,10 have been computed

using methods described below, and recall that an efficient procedure is needed for

computing Uh defined by (1.34). Next, let V0n denote an initial approximation to

Uh given as indicated in (1.36). Now, instead of actually computing {Vl }o<i<l„ as

suggested by (1.35), proceed as follows. Let a sequence of positive integers ijrJiUö1

be specified. Then, suppose in an inductive fashion, that for I > 1, Vj" í ¿ has been

computed from jn PIM iterations as prescribed below, and let V" be defined by

the outer iteration:

(4.3) [/ + kJLSrhn]{SVn = {SeUÏ + kSA{&hn - ^)V£1>Jn},        1 < I < ln,

with the understanding that V0njn = V0n- Letting n and I be fixed, (4.3) can be

written in the form

(4.4) [I + kXtL^t = d>i - k9,L^i-i,        l<i<q,

where tp0 = 0, V« = (SVjn)¿, 1 < i < q, and according to (1.28) with I = 0,

(4.5) <f>% = SeUZ + kAS £ r^" - 3k{TZl)W'Llijn
m=l
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The natural preconditioning for (4.4) involves [I+kL^] which, according (1.10) and

(1.24), is equivalent to the operators of (4.4), i.e., for 1 < i < q and 0 < n < n*,

(4.6) Pi([I + kL0h]x,x)<([I + KLnh]x,x)<P2([I + kL°h]x,x)   VX G Sh-

Now, to cover the case that A is not diagonalizable, define ipi with

(4.7) [/ + kXiL^i = cj>i- k0iLnh4>i"_v        l<i<q,

where ^¿" = 0. Also, to obtain ftf for 1 < i < q, set x¡)° = (SV£_ljn)i and let

iterates {ip¡}o<j<]„ be given by a PIM with preconditioner [J + fc£°J. Then as

(4.2) follows from (4.1), from (4.6) it follows that

Ñi-$h<c[c(piiP2)mi-$h.

Finally, take * = (ipuip2,... ,%)T and *J = ($,$, ■ ■ • ,&q)T, so that Vtn =

S-1^ and inner iterates for (4.3) are defined by

(4.8) V»0 = vr_ljn,       VTjsS^V,       l<j<jn.

It is shown in [14] that

lK - VfcJo < (<* + c[o(pi/p2)]^)lUl - V£1Jb|o,       I > 1.

So, given some eo > 0,jn is chosen so that

(4.9)       m - v,nJnb < ßniüi - vr-i,jnb,   i < / < /„,

where

„      f ck2, 0 < n < u,

(41°) #M      ,«+l nZ     Z   .     1( £ot      ,        0 < n < n* - 1.

Finally, U% and U^+1 are given by (1.39). From the last three inequalities, it

follows that the integers {jn}"^1 may be chosen so that Z)™=0 lnjn/n* < c as

claimed in the Introduction.

The next objective is to show that the convergence rate (1.5) can be preserved

even when {jn}"^1 are chosen so that (4.9) and (4.10) hold. So additional stability

and consistency results follow. First, define c" = UJ¡ — u)n and ipn = JftV-ii/n+1,

where ipn is as in (3.3). Now, according to (1.39) and (1.32), t/£+1 - &pU% =

-fA-HTJl-UZ). Thus,

(4.11) ç"+1 = &fcn + r- bTA-1(Ünh - &?).

By (4.9) and (1.39), (t/£ - ÜJ¡) can be estimated in terms of 0"h - V0n). So, the

error equation (4.11) is supplemented with the following one, which is obtained
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from (1.34) and (1.36) after some straightforward calculations:

= e (-i)--m(^_+ro1)[/+*A^:]-i*A(^-^)
m=n—1—n„ '

l„*mx [I + kA2fh]-1ec

+ '[/+kA&ir1   £   (-i)-*-1 (n _^ _ \ ir+i - n
m=n—l—p.„ ^ '

m=n— 1—¡in

£   (-i)"-m (^B_+m1) [/+kÀTh]-'kA(Th - -&Z)
m=n—1—fi„

x [/ + kÂ^lY1 J ¿>m - ewm - *A E I?«0tw(»D |

(4.12) -fc      Y"      (-l)n-mf/ln + 1,\[/ + *y4^,]-1A^)

m=n—1—fin

M-l

xErr^(rD[öm-eu(rr)]
t=0

-fc   e   (-ir^t^iz+fc^^T]-1^
m=n-l—/i„

x£rr«.{[ft(rr)-fl»]tt(tr')}
¿=0

m=n—1—/in v '

-i^*^-1 e (-i)n_m(nn-+m1)
m=n— 1—fin ^

x l û!m - ewm - kA E r^eatwirT*) i .

Before analyzing these error equations, a few adjustments must be made in Propo-

sitions 3.1 and 3.2 for the following stronger stability inequality:

«fn+1^+i < (1 + 5fc)|kl2 - Co|[/ - r"]1/2?!2 + ck-'lUl - Uni

(4.13) + ck[(hr + k» + hk»-1'2 + ^fc^-1)!!^0!!«]2,

0 < n < n* - 1.

PROPOSITION 4.4. Let (1.22) 6e aatiafied. Then there are constants c0 > 0

ande such that (4.13) holds. In fact, c < 0 1/(1.20) holds andc(l) of (1.8) is small

enough.
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Proof. See [14].     G

As with Proposition 3.2, c < 0 is guaranteed for (4.13) by the following

PROPOSITION 4.5. Let (1.20) and (1.21) be satisfied. Then there are constants

Co > 0 and c < 0 such that (4.13) holds.

Proof. See [14].     G

Now, the terms of (4.12) are estimated as follows.

PROPOSITION 4.6.   The terms of (4.12) satisfy

ml - Vol« <   £   die - ¿au + nr+1 - nu
m=n—1—/in

(4-14) +ck   £   ¡ru
m=n—l—¡xn

+ ck(hr + fc"» + hk»-1'2 + h2^-1)!!«0!^,

1 < n < n* - 1.

Proof. The techniques required are similar to those used for Proposition 3.3. See

[14].    G
Next, (4.14) is combined with (4.9) for the estimation of the term A; x|i/£-t/£|2

in (4.13).

PROPOSITION 4.7. With \Th defined by (1.34) and t/£ by (1.39), the following

hold:

k-'îK - ml < ck-lßi   £   {|tc - « + ikm+1 - rn2»}
m=n—1—fÀn

(4.15) + cfc/?2       E       lfralm
m=n—1—;!„

+ cfc[(/ir + k» + /iF-1/2 + a2*"-1)!!«0^]2,

1 < n < n* - 1,

(4.16) l^-^lo<cfc"||«0||a-

Proof. By (1.39), (4.9) and (3.4),

IK - £tf|B < cfalUl - VrTUn,        0 < n < n* - 1.

From (4.10) and (1.37) it follows that

ß^k»" <ck>*,       0<n<n*-l.

Finally, (4.15) follows after combining the last two inequalities with (4.14). Also,

by (3.2), (3.20), and (3.13),

iK - Vo°llo < c|Ph°fflo < c|?°|o + c|a;0||o < c||u°||Q

and (4.16) follows after combining this with the two estimates above.   G

Now, (4.15) demands an estimation of the differences |cn+1 - çn|n, and this is

the content of the following proposition.



582 STEPHEN L. KEELING

PROPOSITION 4.8.   If (1.22) and (1.23) are satisfied, then the following holds:

cikn+1 -rîl + î[I -rnh+1]1/2Çn+1l\l+i

(4.17)     < C2fc2im2+cprh - uni+a+^iit/ - w^ni

+ ck2[(hr + fc" + hk»-1'2 + ft2***-1)!!«0!!*]2.       0 < n < n* - 1.

Proof. See [14].     G

Finally, the convergence result (1.5) is established for (1.39) as follows.

THEOREM 4.5. Let the conditions of either Proposition 4.4 or 4.5, in addition

to those of Lemma 3.1 and Proposition 4.8, be satisfied. Then {jnJÎUô1 can be

chosen so that (4.9) and (4.10) hold and provided £o > 0 is small enough, the

approximations {Uj¡}"'=0 obtained by (1.31) and (1.39) satisfy

(4.18) max   \\UJ¡ - un\\ < c*(hr + Jfc" + hk"~1/2 + /k2*:*-—1)||«*°||oe.
0<n<n*

A/so, unless c <0 in (4.13), c* depends exponentially on t*.

Proof. Add ci|{/£ - t/£|2 to both sides of (4.17) and multiply the resulting

inequality by sfc-1fn+1. When this is added to (4.13), the result is

lkn+1|||^+i + ciek-Hn+1{¡tn+1 - f»|2 + m - Uni)

+ efc-1in+1|[J-rr1]1/2?n+1|â+i

< (1 + ck + c2ektn+1)¡cn\H + ck-'iul - Uni

+ ck[(hr + *" + ft*"-1/2 + /i2ifc'i-1)||u0y2

+ [ek-Hn+1(l + c3fc) - o]|[I - ^]1/2cnI2,        1 < n < n* - 1.

Now, for the compression of this inequality and others below, let the following be

defined:

zn = ¡m, £n+i = ikn+i - ç»i2 + ml - uni,
sn = |[/ - i-fl1/2?»!2,     e = [(hr + *" + M''-1/2 + a2*"-1)!!«0!!«]2.

With this notation, the following results after estimating cfc-1|f/fc - P£|2 with

(4.15):

Z'+1 + c1k-1et,+1Dl+1 + e*r1i,+1S,+1

¡-i

<(l + c-k + c2ekt*)Zl + c4ß?     £     [fc-1Dm+1 + fcZ"*]

»n=i— 1—hi

+ cfcP + [eArV + e(l + c3i*) - c0]Sl,        1 < / < n* - 1.

Now, assume that e > 0 is chosen small enough that e(l + c^t*) < cq- In fact, if

c < 0, suppose that 1 + ck + c2ekt* < l + ck for some c < 0. Otherwise, take c > 0

in the following. Then, after summing the last inequality over I < I < n < n* — I,

one gets

n

{Zn+l - Z1) + eA;-1(in+1S"+1 - i1^1) + ciek~l ^V+1£>,+1

i=i

<cfc£^+c4£/?2    £   [fc^ + fc-1/^1]

1=1 1=1        m=l-l-p.i

+ ct*E,        l<n<n*-l.
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By (4.10) and (3.20), for 1 < n < n* - 1,

n n I—1 n

cifcE Zl + c4fc£ßf     E     Zm <(c + c4eo(u + l)t*)k52zl + ckZ°
1=1 1=1       m=l-l-ni 1=1

n

<cfc£z' + cfcP,
1=1

where c < 0 if c < 0 and £o > 0 is small enough. Otherwise, take c > 0 in the

following. Next, since (/ + l)/(m + I)<p + 2if0</-l-u¡ < m < I - 1, it

follows, using (4.10), that for 1 < n < n* — 1

c^tß?     £     Pm+1<c4fc-£o£     £     ^tm+1D^

i=l       m=l—1—¡ti 1=1 m=l—l—m

Kcseok-'^t'+'D'^+cD1.

t=i

Combining the last three inequalities, one obtains for 1 < n < n* - 1

n

Zn+1 + ek-Hn+1Sn+1 + (ae - c5£0)fc_1 £ í¡+1Dí+1

¡=i
n

< (Z1+£S1+cP1) + cí*P + cfc£zí.

i=i

By (3.4), (4.17), (4.16), (1.19) and (3.20), Z1 + S1 + D1 < cE. Now, assume that

£o > 0 is chosen small enough so that

lfB+1l»+i < ct*[(hr + p + /IF-1/2 + A2fc"-1)||u°y2

n

+ e*Elf'l?'        0<n<n*-l.
¡=o

If c < 0, ignore the last sum, and (4.18) follows after (1.12). If c > 0, then

(4.18) follows with the discrete Gronwall Lemma and (3.20), but with c* depending

exponentially on t*.    G

5. Examples. The principal aim of this section is to present some computa-

tional results showing the strength of methods analyzed in this work. However,

it is appropriate to first indicate that the set of IRKM's which satisfy the many

conditions imposed in foregoing proofs is by no means vacuous. For example, in

[16], it is explained that there exist ç-stage methods of order q + 1 and satisfying

(1.20), (1.21), (1.24), (1.25), and (1.38), provided o = 1,2,3, or 5. Furthermore,

[16] gives explicit constructions of families of such methods for q = 2 and 3. On

the other hand, it is shown in [16] that for every positive integer q there exists a

collocation type IRKM satisfying (1.20), (1.24), (1.25), and (1.38).

As mentioned in the Introduction and more carefully in [16], the preferred meth-

ods in a parallel environment are those for which the eigenvalues of A are distinct.

These have been referred to as multiply implicit (MIRK) methods. Further, they

are called real if cr(A) C R, and otherwise complex. While the latter case has not

been studied here, it is discussed in [16]. By considering that discussion together
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with the results of Bramble and Sammon [3], it can be seen that complex MIRK's

can be analyzed using quadratic preconditioning and hence inverse assumptions.

In contrast to MIRK's there are the well-known methods for which the eigen-

values of A are identical and real, [12]. As seen in (4.7), these so-called singly

implicit (SIRK) methods offer a computational advantage on serial machines since

at each time step, they require the formation of only a single new matrix with the

dimension of Sh- A selection from this set of methods was made for the example

considered below.

The following problem is of the class defined in the Introduction:

' dtu = -L(t)u       in (-1,1) x [0,.l],

<   u = 0 on {-1,1} x [0,.l],

. u(x,0) = l-x2    in (-1,1),

where

L(t)u = -dx(ii(x, t)dxu) + lo(x, t)u,

JLlog^)(3-*2]_
tl[X,t)- (2 + x2) + t(l-x2)(¿ + X >     '

¿o(x, t) = log(2 + x2) - | log(2)(2 + x2)'.

The solution is given by

U(X'Í)=(2T^-

For the spatial discretization, the Ordinary Galerkin Method was used and Sh was

constructed of smooth cubic splines defined on a uniform mesh. For the temporal

discretization, the well-known three-stage diagonally implicit (DIRK) method was

used, as it satisfies (1.20), (1.21), (1.24), and (1.25). ([8], [15])

TABLE l.  Modified method

k,h     CPU Time (sec)    L2 Error (xlO9)    Order

1/50_22_L19_

1/60 30 .525 4.49

1/70 38 .266 4.42

1/80 48 .148 4.37

1/90 59 .0889 4.33

1/100 72 .0565 4.30

Now let (1.39) be identified as the modified method, and an analogue based

on (1.33) as the classical method. In addition, let a hybrid method be given by

(1.39), but with Dl replaced by Tl in (1.28).   These three methods were tested
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on a SUN 3/180 with FPA. Defining E(h, k) = \\Uf - un' ||, the L2 errors E(k) =
E(k, k) are reported in Tables 1-3, together with estimates of the convergence order

obtained according to the formula log(P(A;2)/P(fci))/log(fc2/A;i).

With regard to time consumption, recall that the computational burden for the

classical method is in forming q new stiffness matrices at each time step. On the

other hand, with the constants {^m)o<m<u.-i giyen by (1.30), the burden for the

modified method is in forming the terms fa of (4.5), for the right side of (4.7).

Also, the initial step is relatively expensive, but the effect of this diminishes as

the number of time steps increases. Note that among the three methods tested,

numbers for the modified method were obtained with greater speed and accuracy,

as well as with fourth-order convergence. On the other hand, the others suffer from

suboptimal convergence as explained in the Introduction. However, no rigorous

explanation can be offered for the identical accuracy obtained by the classical and

hybrid methods. Further, this author is unaware of any proof of the better than

second-order convergence seen in Tables 2 and 3. In this connection, note that the

TABLE 2.   Classical method

k,h     CPU Time (sec)    L2 Error (xlO9)    Order

1/50 22 28.5

1/60_31_16^0_3A6_

1/70 41 9.80 3.19

1/80_52_6^36_^23_

1/90 65 4.35 3.24

1/100 77 3.09 3.24

TABLE 3.  Hybrid method

k,h     CPU Time (sec)    L2 Error(xl09)    Order

1/50_23_28JÎ_

1/60_30_15JS_zjn_

1/70 38 9.61 3.21

1/80 49 6.25 3.22

1/90 59 4.28 3.22

1/100 71 3.04 3.23
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above solution has no time derivatives which are even in the domain of L(t)2, a

condition considered necessary to escape order reduction in a general way. Never-

theless, only second-order convergence is demonstrated, for example in Experiment

7.5.1 of Dekker and Verwer [8], where a stiff ordinary differential equation is con-

sidered. Further, the modified method has been applied to this problem to give

not only fourth-order convergence, but accuracy exceeding that reported for any

method discussed in the Experiment.
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