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RUNGE-KUTTA METHODS APPLIED TO FULLY IMPLICIT
DIFFERENTIAL-ALGEBRAIC EQUATIONS OF INDEX 1

ANNE KVAERN0

Abstract. In this paper we study the order of Runge-Kutta methods applied to

differential-algebraic equations of index one. We derive general order conditions

for the local order kL , and give a convergence result, which shows that the order

kG of the global error satisfies kc > kL- 1 . We also describe some numerical

experiments, which are in agreement with our results.

1. INTRODUCTION

A general differential-algebraic equation (DAE) has the form

(1.1) F{v,v',x) = 0

with initial values

v(x0) = v0,       v'(x0) = v'0,

where v : R -» Rm~ ' and F : Rm~ ' x Rm~ ' x R -» Rm~x is a function for which

we assume sufficient differentiability. We also assume df/dv' to be singular

with constant rank, ( 1.1 ) to be of index 1 over the whole interval of integration

[x0, xend], and the initial values to be consistent, i.e.,

F(v0,v'o,x0) = 0.

The index of a DAE is the number of times the algebraic part of the system has

to be differentiated to obtain an ODE. The index 1 system (1.1) is supposed

to be solvable in the sense that for each set of consistent initial values there

exists a unique solution of the system. For more precise definitions of index

and solvability, see [8].

According to Petzold [13], an s-stage Runge-Kutta method applied to (1.1)

is defined by

(1.2) f   «„tAÇ^'^'.^+c,/!    =0,        í=l.*,

(1.3) Vi-«. + *¿VÍ.
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and the stage vectors Vi are given by

(1.4) Vi = % + hj^aijV'j,       /=!,...,,.
7=1

An 5-stage Runge-Kutta method is described by its Butcher tableau

axx ax2

a2x a22

asl   as2

*2s

*.     b2

or by

T   '

where c; = Yl]=\ au> i = I, ... , s. The matrix j/ has to be nonsingular, and

we define

9 = {diJ)=j/-1.

The local truncation error is given by

dn+l=vn+l-v(xn + h),

where vn+x is the solution of (1.3) when vn = v(xn). The local order of the

method is kL if

C = K

The global error is defined by

en = vn-v(xn),

and the order of the method is kG if

e„ =

The stability constant r is given by

r= 1-¿V   'e
.V '

where es = [1, ... , if G Rs.

Recently, the behavior of Runge-Kutta methods applied to differential-alge-

braic problems has received considerable attention. In [13], Petzold derived a

complete set of order conditions for linear constant-coefficient index-1 equa-

tions, assuming that |t-| < 1. Under the same assumption, she also derived

a sufficient set of order conditions for nonlinear problems (1.1) linear in v .

Later, Burrage and Petzold [2] extended these results to also include the classes

of methods with \r\ - 1. Kvaerno [9] derived a complete set of order condi-

tions for the local truncation error for this class of problems by comparing the
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Taylor expansion of the exact and numerical solution of the equation. Roche

[14, 15] derived general order conditions for Runge-Kutta methods applied to

semiexplicit index-1 problems, using the theory of Butcher series and rooted

trees. Very recently, this theory has been extended to the Hessenberg form

index-2 DAE's by Hairer et al. [7].

The DAE (1.1) can (at least in theory) be transformed to an autonomous,

partitioned system, by using the following arguments. The system can be written

as an autonomous system with no loss of generality. This is done by adding the

differential equation

v'm = 1>       v(x0)=x0,

with the solution v (x) = x, to the system. We then have

(1.5) F(v,v) = 0

with v : R -* R and F : Rm x Rm -+ R . Equation (1.5) can be split into a dif-

ferential and an algebraic part. Gear [6] uses the following argument: Suppose

that

rankiy = r < m.

Then there exists a nonsingular r x r submatrix of Fy,. Suppose that the

equations have been numbered so that rankdf/dv = r over the whole interval

of integration, where / represents the first r equations in F. Let g be the

last m-r equations in F . Suppose that the variables are numbered such that

df        df df

where v — [v! v2]   :

dv' ~

eRr,

dv\ dv'2

v2 G R , and df/dv'x  is nonsingular.

(1.6)

Then, by the implicit function theorem, / = 0 can be solved for v'x, that is,

v'x = fx(vx, v2, v2). This can be substituted into the last m-r equations to get

an implicit relationship between vx and v2. The vector v'2 cannot be involved,

or we would be able to solve (1.5) for additional components of d', contrary

to the assumption about the rank of Fv,. Thus, (1.5) can be written as

f(v,v') = 0,

g(v) = 0.

The system (1.6) has index 1 if and only if

is nonsingular. In this paper, we are only concerned with solvable index-1

DAE's of the form (1.6). However, the results obtained are valid also for the

more general form (1.1), as long as the rank of dF/dv is constant over the

whole interval of integration.

We have used a model equation for the derivation of the local order condi-

tions.



586 ANNE KVAERN0

Theorem 1.1. The set of order conditions derived for the model equation

f(y,z') = 0,        z = g(y)

is equivalent to the set of order conditions for the fully implicit problem (1.6).

Proof. The fully implicit index-1 DAE is given by (1.6). By the definition of

the index, we know that

df/dv"
dg/dv

is nonsingular.    Then,   rankg^   =  m-r, and there exists a nonsingular

(m-r)x(m-r) submatrix of gv . Suppose that the variables are now numbered

such that gv can be written as

dg_d£

ßydz\ '

where v = \y , z ] , and gz is nonsingular. Then g can be solved for z,

and (1.6) can be written as

f(y, z,y', z') = 0,        z = g(y)

or, by inserting the expression for z into the differential equation, as

(1.7) f2(y,y',z') = 0,        z = g(y).

The numerical solution defined by (1.2) and (1.3), applied to (1.6), is given by

(1.8) /(^.,iv') = 0,        *(K,) = 0.

The equation (1.8) is the same as (1.6) with v replaced by V¡ and v' by V- .

Using the same arguments as above, (1.8) can be written as

(1-9) f2(Yi,Y'¡,Z'l) = 0,        Zi = g(Yi),

where Vi — [yJ , z[]T. Note that the choice of y and z so that gz is

nonsingular is not necessarily unique, neither will gz necessarily be constant

over the whole interval of integration. But, at least in some neighborhood of the

solution at xn , gz will be nonsingular, and we assume h to be small enough

to keep gz nonsingular over the whole step. For the first step, (1.4) and (1.3)

can be written as
S S

(1.10)       Y^y^h^^Y],    Z^zn + h^a¡JZ],        i=l,...,s,

7=1 7=1

and
S S

(i.ii)        yn+i=yn + hEbiYï>     zn+x = zn + hJ2blz'¡.
i=i í=i

By using (1.10) together with the algebraic part of (1.9) we have

Zn + hÍ2aüZj = ehn + hJ2a¡JY'j\ ,
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or, by solving for Z\ and using the Taylor expansion around (yn , zn),

1
h

^iE^[»[y^h^jX)-^

= 0.

i    h     s

=   ~8yYi   +   2       5Z      dijajkajlèyy(Yk ,  Y,) + ■ ■ ■  .
j,k,l=\

Inserting this into the differential part of (1.9), we obtain

f2(Yt, Y[, Z\) = f2 i Y,, Y¡, gj; + \   ¿   dua]ka]l~gyv(Yl, Y¡) + ■
V J.k.M J

The term Z'i  involves g Y', so the term Y¡  in (1.9) will give no additional

order conditions. We then have that the equation

f(Yi,Z',) = 0,    Zi = g(Yl),        i=l,...,s,

together with (1.11) and (1.10), will give all the necessary order conditions.   D

In §2.1 we develop a general scheme for the Taylor expansion of the exact

solution of the model equation. In §2.2 we give a complete set of order condi-

tions for the local truncation error when a Runge-Kutta method is applied to

the model equation. These order conditions take on a simple form, with the

help of the "tree model" derived in §2.1. Convergence results are given in §3,

while numerical experiments are described in §4.

2. The order of the local truncation error

The aim of this section is to derive a set of necessary and sufficient order

conditions for the local truncation error. In §2.1, we expand the solution of

the model equation into a Taylor series. This series is expressed in terms of

rooted trees. In §2.2, we derive the Taylor expansion of the numerical solution

of the model equation. The coefficients of the Taylor series are obtained directly

from the trees derived in §2.1. By comparing the Taylor series of the exact and

numerical solution, the order conditions are obtained. The main result in this

section is given in Theorem 2.2.

Some of the trees derived in §2.1 will correspond to identical order conditions.

In §2.3, a reduced set of trees is introduced, so that each of the order conditions

is given by one, and only one, tree. In Figure 2, all the order conditions up to

order 4 are exhibited, together with their related trees.

2.1. Taylor expansion of the exact solution of a model equation. Consider the

index-1 equation

(2.1) f(y,z') = 0,        z = g(y)

with consistent initial values y(x0) = y0 and z(x0) - z0, where y: R —► Rr,

z: R -> Rm~r, f:Rr x Rm~r -> Rr, and g: Rr - Rm~r. The functions / and
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g are assumed to be sufficiently differentiable. Repeated differentiation of the

algebraic part of (2.1 ) yields

(2.2)

z = gyy .

«       ,ii.       h

z = gyy(y ,y) + gyy ,

m        ,iii.       , h   i.       , i   a.       . i   h.       m
z   = gyyy(y ,y,y) + gyy(y ,y) + gyy(y ,y ) + gyy(y ,y ) + gyy  ,

These expressions can be written in terms of trees as follows:

i

V3

*&

4 4 3

3' V
1

By inserting z' from (2.2) into the differential part of (2.1) we have

(2.3) f(y,gyy') = o.

Since (2.1) is an index 1 equation, (2.3) can be solved for y , and f¿g   is

nonsingular. Repeated differentiation of the differential part of (2.1) gives

fyy +fz,z  =0,

fyyiy ,y) + fyAy >z ) + fyy + fz'y(z >y) + fz'Az ,z)+fz.z = o,

By replacing the highest derivative of z with the expression given in (2.2), we
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find

(2.4)

y =y ,

y"  =  (-fz'gy)~\fz'gyy{y   , /) + fyj) ,
III .        - .-1 .   - ,    I I I. - ,11 I.

y      = (~fz'gv)       (fz'gyyy(y   > J>   . ? ) + fz'gyyty    » ? )
j, ,    I        II. - ,    I        It.

+ fz'gyy(y    ,y    )+fz'gyy(y    ̂     )

+ fvv(y, y') + LAy> z")

<z °y>

Jyy

fy

>yz

-n        -     ,   n       i.        -      ,n       it..
+ fvy  +fz'v(z ,y)+f<Az , z )),'z y

These expressions can also be written in terms of trees:

o

V3
*
0

1

/

t'

V' V! iO     P2     lO    Qi

These graphs motivate us to introduce a set of special monotonically labelled

trees, ts, given by the following definitions.

Definition 2.1. The set of special trees, SDA1T, is the set of directed graphs,

consisting of light and heavy vertices, with one single root, such that:

(1) ts G SDA1T if the root is light, only the root has ramifications, and

each of the branches consist of only light, or only heavy vertices. If the

root has no ramification, then the tree consists of only light vertices.

(2) ts G SDA1T if the root is light without ramifications, but followed

by a heavy vertex. The heavy vertex has at least two branches with no

ramifications, and the branches all consist of only light vertices.
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(3) ts G SDA1T, if the root is heavy, only the root has ramifications, and

the branches consist of only light vertices.

(4) SDA1Ty = SDA1 Tyy U SDA1 Tyz.
(5) SDA1T = SDA1TVUSDA1TZ.'"

Let co(ts) be the number of vertices in a tree.

Definition 2.2. Let ts G SDA1T. We say that ts is monotonically labelled if

every vertex is associated with an integer i satisfying

0<i<co(ts)-l   if ts € SDAlTj,,

l<i<(o(ts)   if^eSDAlT,,

and if, following each branch of ts, the labels are monotonically increasing.

Definition 2.3. SLDA1T, SLDA1T , and SLDA1TZ are the sets of mono-

tonically labelled trees satisfying conditions (l)-(3), respectively, in Definition

2.1, and

SLDA1TV, = SLDAlTvv U SLDA1TV,,

SLDA1T = SLDA1T(, U SLDA1T,.

The set of trees, SLDA1T, corresponds to the SLDAT-trees defined by Roche

[14]. The differences between the two sets of trees derives from the fact that

the trees of Roche are constructed for a semiexplicit index 1 equation, while

the trees used in this paper are constructed for the model equation (2.1). Also,

in the rest of this paper, we will use similar notations as used by Roche. To

distinguish between the two kind of trees, we use the notation DAlT-trees in

place of the DAT-trees used by Roche.

Let com(ts) be the number of light vertices, and let ojf(ts) be the number of

heavy vertices in ts G SLDA1T.

Definition 2.4. The order p(ts) of a tree ts G SLDA1T is defined by

(1) p(ts) = com(ts) + œf(ts) if ts G SLDAlTyv,

(2) P(ts) = ojJts) -HitsG SLDAlTyz,
(3) p(f,) = CBM(/,)if/,€SLDAlTr.

Then ts is the tree representation for one of the terms in y(p('s)) if ts G

SLDAlTy , and one of the terms in z{p{t')] if ts G SLDA1TZ. Let

xy = •       rz = ç/*

Definition 2.5. For every tree ts G SDA1T we define a function Fs(ts): Rr x

Rm~r -> Rr, and for every tree us G SDA IT, we define a function Gs(us):Rr x
Rm-r ^ Rm-r ^ by

(1)   Fs(r )(y, z)=y' and Gs(rz)(y, z) = gyy' = z ,
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(2) Fs(ts)(y, z) = (-f,gvTxfkvlAy{Pl),...,y{Pk),z{<l<),..., zw) if tse

SDAIT^,

(3) Fs(ts)(y, z) = {-fz,gy)-ifz,gky(y^\ ... ,yw) if ts g SDAlTyz,

(4) Gs(us)(y, z) = gky(y^],..., y^]) if us G SDA1TZ,

where the tree ts or us has k light branches with respectively px, ... ,pk

vertices, and / heavy branches with respectively qx- I, ... , q¡- I vertices.

Example 2.1. The tree

corresponds to (-fz>gy)  X fyyz'(y", y , z").

There is a one-to-one correspondence between the trees t. G SLDA1T ,
s y

p(ts) - p, and the terms of y , and between the trees u G SLDA1TZ,

p(us) = p, and the terms in z(p). The following arguments will show this.

The trees corresponding to the terms in y , y", y", z , z" , and z" are already

given. Suppose that all the trees corresponding to y', ... , y(p) and z , ... , z

are given. Let us G SLDA1TZ, with p(ts) — p . Attach a light vertex once to

each of the terminal vertices of the tree, and once to the root. Associate with

the new vertex the number (o(us) +1. Do this with all the trees us G SLDA1TZ,

p(us) = p . Now we have the set of trees corresponding to zlp+X). To find the

trees corresponding to y , we first have to differentiate J^p). Let T be the

monotonically labelled tree with a light root followed by one single branch with

p heavy vertices.   This tree corresponds to the term (-fzig )~ fz'Z(p).  The

derivative y is composed of terms obtained by premultiplying the deriva-

tives corresponding to the trees ts G SLDA1TVV U T   of order p(ts) = p with

(~fz'gy) ■ To find the trees corresponding to (-fz>gv)~x f{p+]), attach a light

vertex once to each terminal light vertex and once to the root. This corresponds

to differentiation of (-fz>gy)~ f(p) with respect to y. Then attach a heavy

vertex once to each heavy terminal vertex, and once to the root. This corre-

sponds to differentiating (-fz'gy)~X^p) with respect to z . Associate with the

new vertex the integer co(ts) + 1.  We now have all the trees in SLDA1T

with p(ts) = p + 1, and the tree Tp+X corresponding to \-fz<gy)~Xfz'Z(p+X).

Replace the heavy branch in T x with the trees corresponding to z(p+1). This

will give the trees ts G SLDA1TJ)Z u Up+X with p(ts) = p+l. The tree Up+X

consists of a light root followed by one branch with one heavy vertex, followed

by p+1 light vertices. This tree corresponds to -y(p+{), for which the equation

(-//c?J"1/(''+1)=0 is solved.



592 ANNE KVAERN0

The number of ways to label a tree ts G SDA IT is the number of times the

corresponding derivative appears in the Taylor expansion of the exact solution.

We call this number ß(ts). We can now state the following lemma.

Lemma 2.1. For the exact solution of (2.1) we have

y{p)=   E   %)=   E  M,)W.
^eSLDAlT,. /^SDAIT,.

P('S)=P P(ts)=P

zip)=   E   Gs^s)=  E w<w-
I^GSLDAIT. «seSDAlT.

P(US)=P P(KS)=P

We now know how to express y and z(p' in terms of partial derivatives

of / and g , and of lower derivatives of y and z . What we want is to express

y(p) and z(p) in terms of partial derivatives of / and g, and of y . Such an

expression is already given for y" in (2.4). By inserting this into the expression

for z" in (2.2) we obtain

z" = gyy(y', y) + gy(-fz<gy)~xfyy + gy(-fz>gy)~xfz'gyy(y', y) ■

The expressions for y" and z" can be inserted into the expression for y",

and then for z" , etc. We now find a new set of trees corresponding to these

expressions. This set is defined as follows.

Definition 2.6. We denote by DA1T, DAlTy, and DA IT.. the set of trees

defined recursively by

1. T^eDAlT^ and t. e DAlTzy .

2. (a) If r,,... , tk £ DAIT^ and k > 1, then [tx, ... , tk]z G DA1TZZ.

(b) If r,, ... , tk E DAlTy , ux,...,u,G DA1Tz\{tz} , k> 0 or "'

k = 0, and / > 1 , then [tx, ...tk, ux, ... , u,]y G DAlTpv.

(c) If u G DA1TZ, then [u]y G DA1T>>Z.

(d) If t G DAlTy"then [t]z G DAlTzy .

3. DAlTy = DAIT^ U DAlTyz , DA1T. = DA1T,J; U DA1T,..
4. DA1T = DA1TV U DA1TZ.

Here, t = [tx, ... , tk, u{, ... ,u¡] is the tree obtained by connecting the roots

oï t{, ... , tk, ux, ... ,u¡ by k + I arcs to a new light vertex which becomes

the new root of t. Similarly, u = [tl,..., tk]z is the tree obtained in the same

manner, but with a new heavy root.

Definition 2.7. The order p(t) of a tree / e DA IT is given by

(1) p(t) = cojt)-ojf(t) if reDAlT,,,

(2) p(t) = œjt)-œf(t) + l if ¿eDÁlTz,

where com(t) and cOj-(t) are the number of light, resp. heavy, vertices in the

tree.
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There is a one-to-one correspondence between these trees and the terms ap-

pearing in the Taylor expansion of the exact solution. This correspondence is

given in the following definition.

Definition 2.8. For every tree t G DAlTy we define a function F(t)(y, z):Rr x

Rm~r -> Rr, and for every tree u G DA1TZ we define a function G(u)(y, z) :

Rr x Rm~r —► Rm_r recursively by:

(1) F(Ty)(y,z)=y', G(Tz)(y,z) = z' = gyy',

(2) F(t)(y, z) = (-fz,gy)-Xfkylz,(F(tx),..., F(tk), G(ux),..., G(u,)) if

' — Ux,...,tk,ux,..., u¡\y,

(3) G(u)(y, z) = gky(F(tx ),..., F(tk)) if u = [tx, ..., tk]z,

where tx,...,tk G DA1T and ux,...,u¡ G DA1TZ. The expressions

F(t)(y, z) and G(u)(y, z) are called the elementary differentials associated

with the tree t, respectively u.

y' p{t) = 1 Tv •

9vy' />(") = ! r* /

(-/^y)-Vyy' />(<) = 2 fa], f

{-f*'9vYXh>9v*{y', y') Pit) = 2 [[rv, rv],],

9yv(y',y') /»(«) = 2 [ry,rv], \f

9Á-fr'9v)-'fvy' />(") = 2 [[rv]J.

>

9A-f*9*)-xf*9Mrf) P(") =2 IKt,],],],

Figure 1. Elementary differentials and corresponding

trees
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Figure 1 shows the elementary differentials and the corresponding trees for
i     i    n       ,    u

y , z ,y , and z  .

There exists a relation between the trees of SDA IT and those of DA1T.

Let ts G SDAlTyv and

Fs(ts) = (-fz>gy)~lfkyw(y{Pl)> -. *w. *(f,). ••'..z(q,))

with p(ts) = p. Suppose that all the trees t G DA1T, p(t) < p, are given.

Replace each branch with pi light vertices once with each of the trees t G

DA1T , p(t) = p¡, and each of the branches with q. - 1 heavy vertices once

with each of the trees u G DA IT., p(u) = qi. Then we have the set of trees

/ G DA IT, p(t) = p . See Example 2.2.

Example 2.2. Let ts G SDAIT^ , p(ts) = 4, be the tree

with corresponding derivative (—fz>gy) fz'y(z", y") ■ Replace the light branch

with each of the trees corresponding to y" , that is all the trees given in Figure

1 with a light root and p(t) = 2. We then obtain all the trees of DA IT

corresponding to ts :

Then replace the heavy branch with each of the trees corresponding to z" , that

is all the trees given in Figure 1 with a heavy root and p(u) = 2 :

Similar transformations can be carried out with all the trees in SDA1T.

For each ts G SDA IT there is a corresponding set of trees t G DA IT. Let

/ G DA IT be one of the trees obtained from a tree ts G SDA IT as described

above. Then we call t the special tree corresponding to t, and denote it by

S(t). This is illustrated in the following example.
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Example 2.3. Let tx G SDA IT    and t2 G SDA1    . The corresponding special

trees are given by

.- y.

ti= S(t2) =

Let a(t) be the number of times the elementary differential corresponding

to t G DA IT appears in the exact solution of the model equation (2.1). We

can then state the following result.

Theorem 2.1. For the exact solution of (2.1) we have

y(P\x0)=    £   ot(t)F(t)(y0,z0),

(2.5)

and

(2.6)

/6DA1T,,

P(t)=p

JP) (x0)=    E    a(u)G(u)(y0, z0)
ueDAlT.

p(u)=p~

y(x0 + h)=y0+   E   <*(t)F(t)(y0, z0)
Í6DA1T

h^
p(ty. '

,/>(")
z(x0 + h) = z0+    Yl   aiu)Giu)iyo. zo)^y

U6DA1T.

Lemma 2.2.  a(t) is given recursively by

(I)   a(ry) = a(xz) = l.

p(u)\

(2) Ift = [tx,...,tk,ux,..., u,]y, then a(t) = ß(S(t))a(tx)■■■ a(tk)a(ux)

■ ■ ■ a(u,), and if u = [tx, ... , tk]z, then a(u) = ß(S(u))a(tx )■■■ a(tk).
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Proof. From Lemma 2.1, Definitions 2.5 and 2.8, and Theorem 2.1 we have

y(P)=     E    ßits)Fs(ts)(y, z)
;s6SDAlTf.

P(ts)=P

=  E /»(a-/^rV^'"^W'z(,,).z(,,))
^eSDAl^.

p(ts)=p

(2-7) =        E       ß(ts)i-f;>gy)~lfky,z'
ÍS6SDA1T,

P(ts)=p

( \

J2    a(tx)F(tx)(y,z),...,     Y,    a(Ui)G(u,)(y, z)
i^DAlT,. U/eDAlT.

V />(',)=/>, P(u,)=q, J

Let S(t) G SDAlTy, t = [tx, ... , tk, ux, ... , u¡] , and p(t) = p be one of

the trees in (2.7). The value of a(t) is given directly by comparing (2.7) with

(2.5). A similar procedure can be used to prove the lemma for a(u).   D

2.2. Taylor expansion of the numerical solution of the model equation. To be

able to find the order conditions for Runge-Kutta methods applied to the model

equation (2.1), we have to find the Taylor expansion of the numerical solution.

To do this, we introduce the concept of DAI-series. Similar series are given by

Roche [ 14] for semiexplicit index-1 problems.

Definition 2.9. Let a: DA1TV, —► R and b: DA1TZ —► R be any mappings. The

series

hm
DAlv(a,y0,z0)=y0+    £   a(t)a(t)F(t)—-r

teDr\\ry tJyi>-

hp(u)
DAlz(b,y0, z0) = z0+    Y,    Hu)a(u)G(u)-—y

«€DA1T. PyU)-

are called DAI   , respectively DA17, series.

A Runge-Kutta method applied to (2.1) is given by

/ [yo+hEaijY'j>z¡ =0'

(2.8) ,   ;=1 / , x 1=1,...,*,

zo+hÎ2auzj = g{y0 + hÈaiJY'J\ •

5 S

(2-9) y, =% + *£*/*?.        zx=z0 + hYbiZ'¡.
i= 1 i= 1
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The stage values are given by

IWo + AÉVÍ'
(2.10) '-' i=l.5.

zi = zo + h¿2auZj>
7 = 1

Now Y¡, y{, respectively Z¡ and z,, i - I, ... , s, can be written as DAI  ,

respectively DA1T, series as follows:

Y,(x0 + h)=y0+    Y   »iCWWO^.
i€DAlT P{ ''

(2-U) hPW '-I.-.'.
Z,.(x0 + A) = z0 +    ^    w.(M)a(M)(?(M)-— ,

«eDAlT. ^   ''

■hP(t)
ylix0 + h) = y0+   Y   y.W^W^W-TTTT,

/GDAIT, ^ '"

(2.12)

z,(x0 + A) = z0+    Y   zi(m)q(m)g(")tt-tí-
wëDAlT. ^   '"

The stage derivatives are written as

*/(*<> + *) =      E     »/('WO^W-TT^,
/€DA1T,, ^W-

;(x0+a)= £ M«w«)ffw^.
«6DA1T. ^   ''

/€DA1T„

Z,"

By inserting (2.13) into (2.10) we get

y,.(x0 + A)=y0 + A^^y;/=y0+    £      E^iOUW)^,

7=1 /eDAlT,,  \y=l y Py ''

z,(x0 + h) = z0 + hY"uzj = zo+ E  [¿«wM"))^»)^»)^-
7=1 «€DA1T.   \j=\ J yK    ''

Comparing this with (2.11), we have

5 S

(2.14) v,(?) = ¿flyi/o,    *,(0 = Efl/A-(")-
7=1 7=1

Similarly, by inserting (2.13) into (2.9) and comparing with (2.12), we have

s s

(2.15) y,M = EW),     z,(K) = EW")-
i= 1 i'= 1
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The Taylor expansion of the numerical solution can be written as

(2.16)      i?-E^}V' z;=e^wV'
p=i   ^'      p=i   ^-

OO i p oo in

(2.17) Ïi=y0 + E^. Zi-'o + E^F«
p=\       y' p=\       y'

OO 10 OO i p

(2.18) yi-yo + E^F-     'i-*o + E*wf-
p=i    ^' p=i    y'

Comparing (2.13) with (2.16), (2.11) with (2.17), and (2.12) with (2.18), we
have

(2.19) ¥f>=    Y   hit)a(t)F(t), zf =    Y    Kiu)°iu)G(u),
reDAlTv «gDAlT.

p(t)=p P(u)=p

(2.20) Y(p=    Y   *iitMt)F(t), Z(p=    Y    *i(u)a(u)G(u),
/6DA1TV W€DA1T_

p(t)=P pM=P

(2.21) y{p)=    Y   yi(tMt)F{t), z(p)=    Y    ^iu)a(u)G(u).
Í6DA1T,, KëDAlT.

p(t)=p P{u)=P

We use the notation Y¡Pk\tk) for the term a(tk)\¡(tk)F{tk), and z\q,)(u,) for

the term a(u¡)'ki(u¡)G{u¡), where pk = p(tk) and q¡ = p(u¡). Similar notations

are used for the terms in Y¡   , Z/° , y(p), and z(p).  Equation (2.8) can be

written as

oo ,p      oo uP~l   \

(2.22) /(j-. + E^.E^'^rl-o,

00 up I °° lP

(2.23) «i+E^F-'U+E^irl-

The nth derivative of (2.23), evaluated at A = 0, is

z!n)=    E    ^(^W,....^^)).
5(«)eSLDAlT.

K=[i,,...,/t]z
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By use of (2.20), Lemma 2.2, and Definition 2.8 we have

If =       Y      ßiSiu))a(tx)- • • a(í,)v,(í,) • • -v,^)
S(w)eSDAlT.
«=[<,,•...<*].-

p(u)=n

■gky(F(tx),...,F(tk))

(2.24) =       Y      «(«)▼,(«!)• ••▼,(**)<?(«)•
S(«)€SDA1T_

«=[/,,. ..,tk]':

p(u)=n

Comparing this with the expression for Z"   in (2.20), we obtain

(2.25) yy,(u) = yi(tx)---\i(tk),      i = i,...,s,

for all u = [tx, ... , tk]z G DA1TZ. Multiplying the (n - l)st derivative of /

(given by (2.22)), evaluated at A = 0, by (-fz>gy)~   gives

\Jz'gvl     J \n=0

E i~fz'gy)      fkylz1
S(/)€SLDA1TVV

(2.26) P{')=n

(7r(tx),...,Yf\tk),^\ux),...,^\ul))
i ai

1 f   1 %(n)

y'+i-fz>gy) fz>-z:

= 0.

From (2.10), (2.16), and (2.17) we have

if  =±di?Ï)  -td, Y gky(Y^(tx),...,Y^(tk)).
7=1 7=1 S(M)eSLDAlT_

«=[/,,...,/,]/
p(u)=n

Thus, from (2.24),

(-f'gyV'fAT =   ÍX E i-fZ>gy)~lfZ'gky(Y{P,),...,Y1 r viPk)

j
7=1 5(i)eSLDAlT1,_

'=[[',.<*Uv
p{t)=n

7 = 1

Substituting this into (2.26), and using (2.19), (2.20), Lemma 2.2, and Défini-



600 ANNE KVAERN0

tion 2.8, we obtain

yT= E */(o*(wo
Í€DA1TV

p(t)=n

s

= nÍZaU       E       a(t)yj(tx)---yj(tk)-kJ(ux)----kj(ul)F(t)
7=1 S(i)€SDAlT ql■>■■■

'=['.,",],

p(t)=n

+       Y      «(0v/(^)---v/(rfe)F(í).
5(í)eSDAlT,,_

«-0«,.«*],],
p(l)=n

S 1 1

v.(?) = n Y* a,¡iAu)- ■ ■ v,(t. )——-k.(M.)-—rk,(«,),
(2.27) ' ^rí   7 J ■'      Piu\) J P{u¡) ]   '

We then have

7 = 1 ^

l = 1, ... , S,

if t = [t{,..., tk, m, ,..., w,]v € DAIT^ , p(t) = tí , and

(2.28) vi(t) = y¡(tx)--yi(tk),      i = l,..., 5,

if r = [[í1,...,íJz]yeDAlTyz. By using (2.14), (2.15), (2.25), (2.27), and
(2.28) we can state the following lemma.

Lemma 2.3. The quantities Ynyx, respectively Z( and z,, j = 1,..., s, are

DAI  , respectively DAIz, series given by (2.11) and (2.12).  The coefficients

of these series, and the series of Y[ and Z\, in (2.13), are given recursively by

h(t) = p(t)yi(tl).-.Vi(tk)^i(u1),...,-^ki(ul),

(2.29)
ki(«o = EWi>-?A>

7 = 1

for t = [tx, ... ,tk,ux, ... , u,]y G DAlTy, and u = [tx, ... , tk]z G DA1TZ,

and by

s s

(2.30) v,« = Eû,AW'    w((") = Efl.-A-(")
7=1 7=1

and
S S

(2.31) y,W = EW),     «,(«) = EW«),
i=i i=i

wAere 1,(0) = 0, k((0) = 0,and

(2.32) 1,(0=1,        k;(rz)=l.
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Note that the coefficients l¡(t) and k((w) can be written as

(2.33) 1'W^WA---A„|,¿=1u'V--%

for t = [tx,...,tk,ux,..., u,]y G DA1TV, and

S S

(2.34)       ^(u) = Ydu  E  ajnr-ainSyi)--\ih)

for « = [íj ,..., ijz. Equation (2.32) can be proved by inserting (2.16) into

(2.8) and using the Taylor expansions of / and g. We can then express (2.8) as

power series in A . The first terms in these expressions will give us f(y, gyY.) =

0 and Z\ = g Y'¡ , so that

(2.35) Y[=y    and   z\ = z'.

Comparing this with (2.19), we have that

Y'¡=li(ry)F(Ty) = y'^li(zy) = l.

Therefore, k;(tz) is given by (2.29) and (2.30).

We observe that y,(i) and z,(i) can be written as y(t)<S>(t), where y(t) isa

rational number and <P(i) is some combination of the method coefficients. The

number y(t) is given by the definition below, and <P(i) can be read directly

from the tree, by the following procedure. Let / G DA1T. To the root of

the tree, attach the label i if the root is light and j if the root is heavy. To

the other vertices, attach other labels, say k, I, m, ... . For each arc write

down the factor avw if the succeeding vertex (labelled w) is light, v , w being

the labels at the end of the arc. Similarly, write down the factor dvw if the

succeeding vertex is a heavy vertex. Insert a further factor bi if t G DA IT ,

and bjdjj if t g DA1Tz , and sum over each index i, j, ... , k in the range

from l to s. The sum is d>(t) and is called the elementary weight for the tree

t. To each tree we also associate the following rational number:

Definition 2.10. Let y(t) : DA IT —► Q, where Q is the set of rational numbers,

be defined recursively by

y(^)=l,       y(rz)=l,

y^ = pii^)---^)-^---yih)yiul)'--yiul)

for t = [t{.tk, M,,..., u¡]y G DAlTy , and

y(u) = y(tx)---y(tk)

for u = [r,,..., iJzeDAlTz.
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Example 2.4. Let t G DA1TV and u G DA1T.. Their elementary weights and

rational numbers are given by
P n

kino

O(0 =       ¿2      b,d,ja,kaildimamnamo *(«)=        Y       bidijajkajlalodhnamnamp
ijklmno-1 ijkimnop= 1

7(0=1 7(") = I

The order conditions for Runge-Kutta methods applied to DAE problems are

given by the following theorem.

Theorem 2.2. If the method (1.2), (1.3) is applied to the problem (2.1), then

the order of the local truncation error is p + 1 if and only if

for all t G DA1T with p(t) < p .

Proof. The Taylor expansion of the exact solution of (2.1 ) can be written as the

DAI series

(2.36)      y(x0 + h) = DAly(py,y0,z0),        z(x0 + h) = DAl2(pz, y0, z0)

with pv, pT = 1 for all t G DA1T. By comparing (2.36) term by term with the

DAI series (2.12) for the numerical solution, and by using (2.33), (2.34), and

Lemma 2.3, we have proved Theorem 2.2 for the model equation (2.1). Theo-

rem 1.1 shows that this result is also valid for the general index-1 problem.   G

2.3. Simplification of Theorem 2.2. Let t G DA1TF ; then t can be associated

with a simplified tree 7 as follows: If a heavy vertex has no ramifications, and

is followed by a light vertex, then the tree can be simplified by removing these

two vertices. Similarly, if a light vertex (except the root) with no ramifications

is followed by a heavy vertex, the tree can be simplified by removing these two

vertices. The simplified tree 7 corresponding to / is the tree which is simplified

as much as possible.

Example 2.5. The figure shows a tree t and its corresponding simplified tree 7.

t t
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The set of simplified trees 7 is defined recursively by

Definition 2.11. The sets DAlTy c DAIT^ and DA1TZ c DA1TZ of simpli-

fied trees 7 are defined recursively as follows:

i. seDA1V
2. (a) If 7,,... , \ € DAITyy and k > 1, then [7,, ... , 7jz G DA1TZ.

(b) If 7,, ... , lk € DAIT^ , Hx, ... ,H,G DA1TZ, k > 0 or k = 0,

/ > 1, then [lx,...,lk,üx,... , û,]y G DAIT^ .

(c) If ÜG DÄTT7, then [Û]y G DAlTyz.

3. DA1t; = DÄIT^uDÄTT^.

Theorem 2.3. To each tree t G DA IT there is a corresponding simplified tree

7 G DA1TV such that <P(/) = 0(7) and y(t) = y(l).

Before we prove this theorem, we will give an example.

Example 2.6. Consider the tree t and the corresponding simplified tree 7 given

by Example 2.5. Their elementary weights are given by

«KO =    ¿    b^jCjaj^,       <D(7) = ¿ b^jCj .
i,j,k,l=l i,j=l

By using the fact that

Ea7^/=¿77={
k=l K

we have that <P(i) = <P(7). In addition, we have

y(/) = 3-(Hl.2.(Hl.l)))) = l,       y(7) = 3.(i.(l.l-l))=l,

in agreement with the statement of the theorem.

Proof of Theorem 2.3. Let

t = [7,, ... , lk , tp, ÏÏ,, ... , ÏÏ,, uq]y G DAlTy ,

where

1    if; = /,

0   otherwise,

tp = [üp]y = [[lp,x,...,lp,k]z]yGDí\lTyz,

uq = ftq]z = [[lqA ,...,lqk,üqX,..., üqJUz € DAlTzy :

tx, ... , tk, tg, tp ,, ... , tPtk¡j, tq¡x , ••• , tqk¡¡ e DAlTvy,

ïï,, ... ,ü¡,üp, ûq ,, ... ,ûq j G DA1TZ.

From (2.33), (2.34), and Definition 2.7 we have

(2.37)
= Y,djm        E        amNfamNklNlitp,l)---lNkitp,kp)>

m=\ N.N.  =1 " "
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s i

j=\        m=\

(2.38) =p^p(ûqJ)l-p(ûqJJ

s

M,,...,A/A? = 1

By using the fact that p(u ) = p(l ) we have

(2.39) l.(i) = HO       ¿      aini ■ ■ ■ a,nkaiNi ■ ■ ■ aiNk aiM¡ ■ ■ ■ «^ ^(r)^(O,

«,....,«t=i
N.Nk=\

M.Mk=\

where

/ n    1 1 1 1r(o = /j(0-

^W = Kih)--\ßk)\(ip,i)--\(iP,k)\Ctq^--\(iq,k)^

and

^(0 = kj.(ïï,)---k/(ïï/)k.(ïï(?il)---k(.(ïï?/i).

Therefore,

(2.40) 1,(0=1/(2),
where

* = l*i , • • • , h ' fp, 1 ' • • • ' tp,k„ ' t9,1 ' • • • > '«,k '

ux,...,ul,uq x,...,uq ¡]yGDAlTyy.

It is obvious that this result is valid even if the tree t consists of more (or

less) than one subtree t G DA1T>,Z and more (or less) than one u G DA IT .

Similarly, if u = [I,,..., lk, tp]z, where tp = [üp]y = [[ip ,, ... , tPtk]x]y €

DÂÏT^ and 7,, ..., lk, lp ,,... , 7,;^ eDÄTf^, then

(2.41) k,.(u) = k/.(«),

where

ü = [tl,...,tl,tpl,...,tpl]zeDMTz.

If t = [u]y G DAlTyz, then 7 = [ïï]yz. By repeated use of (2.38) and (2.41)

we can show that for all t G DAlTy and for all u G DA1TZ there exist corre-

sponding simplified trees 7 € DA1T and ïï 6 DA1TZ such that 1;(0 = 1,(7)

and k;(«) = k;(ïï). From (2.37) we have

1,(7) = k,.(ïï) = k,.(«)   if / = [«] e DAlTyz.
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Inserting this into (2.31), we get y,(0 = y^O and z,(w) = y,(0, where t =

[ïï]  G DA IT    . Theorem 2.3 is proved.   D

In Figure 2 we give the order condition related to the trees up to order 4.

p(t) t *(i) =
7(0

i . E^1

2

EWocH1

■y

«J

V ç^-i
2

E k<*<i»<3 = 3

EMij^tJk^ = -
¿ifc ó

\ E6'°«ici = g

EM,i4 = i

E bidijCjOjkCk = -
ijk

<¡f £><H
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p(t) t

'   -y

•   xy

*> - »

X>cidOc; = 2

E bidijCjdikclduc] = 2

E biWijCj = g

E hiddijc* = -

E biddijCjdjkCk = -

E 6,0^0^4 = t
¿it *

¿j* z

E bidijCjdikCkakiCi = -
ijki 4
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Pit) *(0 =
fit)

EM =12

E kaijCjdjkcl = -
ijk

¿Zhiaijdjk^djt^ - -
ijkl

Y hiüijajkCk = —■
ijk ¿*

EM.'iC; = i
u

EMi<£*J**s4
0*

E kdijCjdjkcl = -
ijk ó

YbidijCjajkckdki<?i = -
ijkl ó
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*> ' •(') = W)

Y kdijCjajkdkicfdkmclt = -
ijklm ó

E bidijCjajka.kic¡ = -
ijkt 6

E bidijüjkCkakM = -
ijkl 4

Figure 2. Order conditions related to trees.

3. Convergence results

This section deals with the convergence of a Runge-Kutta method applied to

the differential-algebraic equation (1.6). The system is assumed to be a uniform

index-1 problem. We first give some preliminary results about the existence of

a solution of the Runge-Kutta equations, and the influence of perturbations to

the solution of these equations. The convergence results are given in §3.2.

3.1. Preliminary results. The results of the next two theorems are essentially

the same as those given by Hairer et al. [7] for the index-1 component of a

Hessenberg form DAE of size 2.

3.1.1. The existence of a Runge-Kutta solution.

Theorem 3.1. Let (v, Q satisfy

f(u,Q = cf(h),        g(y) =

Let the coefficients of the method satisfy

2,

(3.1) f(vt,Q=cf(h),     g(U,)=tf(h2),        i=l,...,s,
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where vt = u + c(A£ and ct = Y?J=\ ai¡ ■ Suppose that

'fA~
gv\

<MX   and   \\fv\\<M2

in an h-independent neighborhood of (v, Ç). If the coefficient matrix sé of the

method is invertible, then there exists a solution of (1.2), (1.4) which satisfies

(3.2) V¡ = C + cf(h),        Vt = v+Lf(h).

Proof. Consider the homotopy

/ y+h¿Zai}v'j>v¡ =(i-t)M,í),

g(v + hYauv¡) =(1-T)*(0,),(3.3)
7=1

v^v + hY^'r
7=1

For t = 0, this system has the solution V- — £, V¡ = vi. For t = 1 it is

equivalent to (1.2), (1.4). We consider V. as functions of t, and differentiate

(3.3) with respect to this parameter:

/„-(*,. vl)v¡ + fv{vit ^>E«^' = -M>0,
i - I , ... , s .

^•)AE^'= -*(*.)>
7=1

Dividing the second equation by A , the system can be written in matrix form

as follows:

(3.4) V' =
-ñu, o

L -tew
{fv>} + h{fv}(ss®imy

Here, {fv>}, {fv} , and {gv} are block-diagonal matrices:

{/„,} = blockdiagl/^F, ,V'X),..., fv,(Vs, V's)],

etc.  Furthermore,  V = [V{  , ... , V ]   , /m is the mxm identity matrix,

and f(v, 0 and g(v, Q are

[/>„i)./(ís,í)f   and   [gT(vx ),..., gT(vs)]T,

resp. We have gv(Vi)alJ = aijgv(Vj) + tf(d), provided that ||^. - Vj\\ <d,d

independent of A . Then the coefficient matrix of (3.4) can be written as

Uv>}+&(h)       '
(J/®/„){*„}+<?(<*). '
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and (3.4) becomes

(3.5)
ifv>}+*ih)
{gv} + ^id)

V ' =
-ñ",Q
'®L)~lgM

The matrix here has a bounded inverse, provided that d and A are sufficiently

small. Using the assumption (3.1), we have V = tf (A) and

(3.6) v; = c+ íf¡it)dt=c+(f(h).
Jo

This shows that all P/(t) remain in a small, A-independent neighborhood of Ç

for all |t| < 1 and for sufficiently small A. Hence, the differential equation (3.4)

with initial values V'(0) = es ® Ç possesses a solution at least for 0 < t < 1.

This proves the existence of a solution Vi of (1.2) and also the first estimate

of (3.2). The estimate for Vi follows directly from (1.4).   d

3.1.2. The influence of perturbations.

Theorem 3.2. Let V[, Vi be given by (1.2), (1.4) and consider perturbed values

V. , Vi satisfying

(3.7)

fiv^v^+s^o,
g(^) + e, = o,

v^û+hY^v;,
7=!

1 = 1, ,S.

In addition to the hypotheses of Theorem 3.1, assume that

(3.8) ù-u=cf(h2),       Si = (f{h),       6t^(f(h2).

Then, for A < A0, we have the estimate

UV,' - VlW^ < C(\\\gv(v). (Û - i,)«,,, + \\fv(v, C). (v - u)^

(3-9) + ll¿> - "lloo + Halloo + ¿Halloo) =

where 6 = [ôx , ... , ôs]    and 6 = [6X , ...

Proof. Consider the homotopy

f(Vi,v;) + {l-x)Si = 0,

£(K,) + (1-T)0, = O,

eW.

(3.10) i = 1,... , s.

V^u + h^jVJ + il-r^Û-u),
7 = 1

For t = 1, this system is equivalent to (1.2), (1.4); for t = 0, it is equivalent to

the perturbed system (3.7). As before, Vi and V* are considered as functions
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of T, and (3.10) is differentiated with respect to this parameter. We then obtain

V^hYa^-^-v),
7=1

i=l, ... ,S.

Inserting the last equation into the other two and using as before

gviVi)aij = aijgvirj) + <?id),

we have

(3.11)
{gv}+*id)

V' =
{fv}(es®(û-v)) + ô

,-i
Jii^®Imr i{gv)ies^ii>-v)) + e)

As in the proof of Theorem 3.1, the matrix is nonsingular for A and d suffi-

ciently small, and we have

(3.12)
IK'L < Cx(\\fv(v - u)^ + Hál^ + h\\(v - u)\\J

+ ^i\\gv{t-v)\\oo + \\noo + h\\(ù-v)\\oo)

The term A||(i> - i/)^ comes from the cf(h) term in the matrix of (3.11).

Now, by (3.6), the assertion of the theorem is proved.   D

For the special case where 3 = 6 = 0 and v — v = cf(h) we have

(3.13) \V't-V'i\\oo<^.

3.2.   The convergence of the methods. We now give a result concerning the

growth of a perturbation in the solution computed in a single step of the method.

Lemma 3.1. Let the assumptions of Theorem  3.1   be satisfied.   Suppose that

vn = v(xn) + en, where \\en\\ = cf(h G). Let vn+x be the solution of

\
= 0,

(3.14)

/k+*EV?»*?
i= i

7 = 1

Vn+l=Vn + hT,btf

Then

-«+i

(=i

= Um-{bT*-\)
fv>

L °v  J

-1
0

sv
en + Í + dn+\>
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where
■ cf(hk*+x)   ifkG>2,

f¡ = l (f(hk°+x)   ifkG = 1 and f is linear in v',

. if (h) ifkG = 1 and f is nonlinear in v',

and ¿xl  is the local truncation error.
n+l

Proof. Let V[ = V¡ + AV. , where V¡ is the solution of (3.14) if vn = v(xn)

The equation (3.14) can be written as

\
= 0,

(3.15) ) x J i=l,...,s,

7=1

where Vi = v(xn) + A Yfj=] aljV,j . Theorem 3.1 shows that Vi = v(xn) + cf(h)

and v! = v\xn) + cf(h). We assume that (3.14) is solved exactly. From

Theorem 3.2 with v — v = en we have that ||A^'|| < CA for kG > 2, while

\\AV¡\\ < C3 if kG = 1 (see (3.13)). Let ||A^'|| < Ô and \\en\\ < e. In the
following, if nothing else is said, all functions and their derivatives are evaluated

in (xn,v(xn)). By expanding (3.15) in a Taylor series around (V^ V') we have

(3.16) f(Vt, Vf) + fv.{Vt, v;)AV; + nf = 0,

where n, is the sum of higher-order terms, composed of terms of the form

fv-U+hYauAv;y

/„V.(A^',A^).

Thus, we find that

nf = cf(e + hô) + (f(eô + hô2) + cf(ô2).

Using that fv,{Vi, V[) = f, +cf(h), we have from (3.16)

(3.17) fv,AV¡ = cf(e + hô + eô + hô2 + ô2).

Similarly,

g(V,) + (gv+&(h))[en + hYauAv\ +ng = 0,
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where the higher-order term n   is composed of terms of the form

so that

Thus, we find that

gvv-[en + hYa,jAv;\

n=cf(e2 + hôe + h2ô2).

(3-18) gM = -\\^di\gven+cf^

Equations (3.17) and (3.18) can be solved for AV'

(3.19)

£ 2
e + hô + -r + ôe + hô

A

av: =
•1 r 0

L      T¡ 2-r;=l d¡jgv
en+c?le + hô + eô + hô2 + j+ô2\.

To find a lower bound for AV[, we use the same strategy as in [1 and 10]. We

have

\\AV¡\\ < K U + e + hô + eS + hô2 + j + ô2\ .

Let ô be the solution of the equation

(3.20) S = K [j + e + hô + tzô + hô2 + j + ô2

Let e = (f(h G), where kG>2, and solve (3.7) by functional iteration ô = G(ô)

with the initial value ô{0) = kxhk(1~x . Then Ô{X) = G(ô(0)) = cf(hk°~x) and

\dG/dô\ = if (h) < 1 for A sufficiently small. We can now use the Banach

Fixed Point Theorem to conclude that the iteration converges to a solution

satisfying

ô=cf(hk°~x)

for kG>2. Inserting this into (3.19), we have

(3.21) AV' = fv>
-1

0

-T¡2Zj=idjjgv¡

,k,:
en+cf(h'')   forÂ:G>2.

If kG = 1, then ô = (f(l),so that

(3.22) AV =
-1  r 0

L-jJlj^dijgy
en+cf(l)   iovkG=l.

The term cf ( 1 ) comes from terms of the form

fviv,(AV;,AV¡).
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These terms do not appear in problems linear in v'. We conclude that (3.21)

is valid for such problems, even for kG = 1. Inserting (3.21) or (3.22) into

(3.14), we have

i=i
s s

= v(x„) + h'£biV; + en-J2bidL
i=i i, 7=1

1  r 0
en + >¡>

where f¡ = tf(h G+ ) for kG > 2, or if kG = 1 and / is linear in v'. If kG = 1

and / is nonlinear in «', then fj = tf(h). From

vn+\=vixn+h) + d„+x + [lm-ibT* 'e,)
*U  -

1-1  r 0
en + fl

we thus have

^+i=\L-(bT^-les) fv>
-1 r 0

<5 ¡}
en + >) + dn+l-     D

We now consider the global error resulting from repeated use of the method.

Theorem 3.3. Suppose the index 1 problem (1.6) is solved numerically by an

s-stage Runge-Kutta method. Assume that

1. f, g are sufficiently differentiable.

2. The initial values satisfy ||u0 - t>(x0)|| < cf(h '■) and f(v0, v'Q) = cf(h).

3. (a) kG>2 for problems nonlinear in v ;

(b) kG > 1 for problems linear in v , provided that f(vn, v'n) = (f(h)

and g(vn) = cf(h2).

4. The local truncation error satisfies

WPndn+i=^kG+x),Sndn+x-

(b) P„dn+x
where

i-i

*°) if\l-bTsé~\ I < 1;

/Cc+1). Sndn+X =cf(hkG+x) if\l-bTJ es\ = I,

fv'iVn>Vn)

8viVn)

0

L*„(«B)
P =1   -S

n m n

Then the global error is at least of order kG.

Before we prove this theorem, we comment on assumptions 2 and 3(b). The

relations

(3.23) f(vn,v'n)=(f(h)   and   g(vn)=cf(h2)

have to be satisfied to ensure a solution of the system (1.2). The relations (3.23)

hold for the initial step by assumption 2. For kG > 2, (3.23) is satisfied if

v'n = v'(x) + ff(h), which is easily obtained, for example by using v'n+x = V's .
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For kG = 1 we have to make these assumptions explicitly. All Runge-Kutta

methods with b¡ = asi satisfy assumption (3.23).

Proof of Theorem 3.3. The interval of integration, [x0, xend], can be split in tV

subintervals, Hk = [Xk , Xk+X], k = 0.N- 1, X0 = x0 , and XN = xend.

We assume each Xk to coincide with some xn. In each subinterval, there

exists a constant permutation matrix Q(x), Q(x)v = \y , z ] ensuring gz

to be nonsingular over each subinterval. The subintervals are chosen so that

Q(x) has to be changed over two adjacent subintervals. First, we will prove

the theorem over the first subinterval, H0 , and we assume the variables to be

numbered such that Q(x) = Im in H0 . Thus, we have

. Oy

1-1 -1

f> /'J y J Z

8V 67

\Jy Jz  67      Oyl
-1 -1

-(fy'-fZ'gZlgy)       XfZ'gZ    '
-1

~gZ       gy(fy'-fZ'gZ        gy) gZ       gy(L-fZ'gZ        gy) fZ> g Z +g;

Inserting this into the expression for the global error in Lemma 3.1, we have

(3.24)

where

en+i = (7m - ib *   es)S(y, z))en + ijn+x + d n+l '

S(y,z) =
-Fpf>gz   g

and Fp = (f,- f.g.  g

y     ■     0Z       Oy 0Z       Oy* PJZ'

. Thus, (3.24) can be written as

PJi<=z   ¿y -xpJz'

g'z ' gjpfz' gZ  ' gv + g'Z ' gv      g'z ' gvFpfz' + K•iy* pjz   o

\-l

(3.25) en+\=Pnen+rS»en+dn+\

where P = Im - S, Sn = S(yn, z„), Pn = P(yn, zn), dn+x =dn+x + f,n+x, and
T" _  1

r = 1 - b sé    es. For each subinterval, Sn and Pn are projection operators
2 2

satisfying Sn = Sn and Pn = P„. In fact, P(y, z) represents a projection into

the tangent space of the surface given by g(y, z) = 0, because [gv, gz]P = 0.

The components of P and S are smooth, so that

Sn+iSn=Sn+cf(h),      Pn+xPn=Pn+rf(h),

Sn+iPn=^),    Pn+xSn=cf(h).

Multiplying (3.25) once by Pn+] and once by Sn+X, we obtain

(3.26)
\Pn+\en+l\

-ll^n+ie«+ll
<

1 +

cf(h)

cf(h)

\r\(l+cf(h))

\P„e„
+

IIP    d    I

WSn+ldn+l\

Suppose that \\Pn+xdn+x\\ < Dp and ||S„+1d„+1|

written as

IIVJIJ
< D..  Then (3.26) can be

(3.27) KO
Il VJ

<A"(h)
\P e Iiroto\

LUV,on J
YA"~'w
1=1

dp

D.



616 ANNE KVAERN0

where

A(h)
l+(f(h) cf(h)

|r|(l +

The matrix A(h) can be diagonalized by a matrix T(h) such that

T(h)A(h)T~X(h) =
1 +

0

0
|r|(l +

where

7(A)
l+(f(h)      cf(h)

cf(h)      l+(f(h)

The inequality (3.27) can be written as

WP.e.

LiivjJ
,-i,<7  '(A)

+ T~\h)Y

7(A)
l+^A)" 0

0 |r|"(l+>y2A)".

1+^A)""' 0

0 \r\n~'(l+K2h)

JVol
UV.ocoi

i=i

7(A)
Dp

D

By direct computation we have for \r\ < 1
'IIV.

LllVJU
and for \r\ = 1

WP.e.

Cx\\Poe0\\+cf(h)\\S0eo\\

cf(h)\\P0e0\\ + C2(\r\n + h)\\S0e0\
+ }¡C3Dp + C4Ds

CiDp + C,DS j

IIVJ
< + [iW + CA

\.T¡C5Dp + C6Ds

■Cx\\P0e0\\+(f(h)\\S0e0\

_cf(h)\\P0e0\\ + C2\\S0eQ\\

By using the fact that \\en\\ < \\Pnen\\ + \\Snen\\ we obtain

nw       ii   ll,iC(IIVoll + (l''l" + ̂ )IIVoll + H + ̂ )   for|r|<l,
(3.28)        el < <

for |r| = 1.c(IM+ *(*>„+ *>,))

Thus, if é>0 = ¿?(A G),  Ds =
k,.+ l

), and Ds = &(hG)  for \r\ < 1, or

Ds = cf(hka+l) for |r| = 1, we have that the global error at the end of the first

subinterval is given by

(3.29) Ex=en=cf(hkG).

In that case, the global error after k + 1 subintervals is bounded by

\\Ek+x\\<G\\Ek\\+DhkG,

and the error at the end of the interval of integration is bounded by

\\EN\\<CN\\e0\\+ [YCN-'D   AV D

w=l

Theorem 3.4. Let assumptions I, 2, and 3 of Theorem 3.3 be satisfied. Then,

if\l-bTsé~xe\< I, and

m-± wJ______5' p{t)-kG>
7(0 lDAlTyz,    p(t)<kG-l,

the order of the global error is kG.
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Proof. We first prove this theorem for the model equation (2.1). The local

truncation error for a method with local order kL applied to this problem is

given by

dn =

Y   (y(tmt)-l)a(t)F(t)
(6DA1T,,

P(t)=kL

Mt)

pity.

:,/>(")
Y   (y(uMu)-l)a(u)G(u) —

+ cf(hkL+x)

weDAlT
p(u)=kL

The first term in this expression is called the principal error term. The principal

error term can also be written as

i-fz'gvy•Z   Oyl

■>y\     Jz'Syl

-i-fz'gy)     fz>

[gyi-fz'gy) -gyi-f'gy) f'+K-r\
~     hp{,)

Y   (7(0<í>(0-iM07(0-77ü
reDAiT,.,, ^ ''

p(t)=kL

Y    (y(umu)-l)a(u)G(u)^Q-_
weDAlT.. ^   ''

p(u)=kL

where F(t) = fkylz>(F(tx), ... , F(tk), G(ux), ... , G(u,)) for t G [tx, ... , tk,

ux, ... , u¡] , and 7(0 and G(u) are given by Definition 2.8. For the model

problem, S(y, z) and P(y, z) are given by

S = -i-fz'gy)     XfZ>

Lo im_r-gy(-fz>gy)-lfz.

Multiplying dn by Pn, we obtain

P =
0 i-fZ'gyYl_fZ>

0 gyi-fZ>gy)~lfZ     J

(3.30)
PA =

gy       0

Y    (7(t)^(t)-l)a(t)F(t)
/€DAlTn,

p(t)=kL

'.PU)

pw

Y    (y(umu)-l)a(u)G(u)^
DA1T.. ^   '"u6DA

-   p(u)=kL

+ cf(hki+x).

Let <D(0 = l/y(0 for all t G DAIT^, p(t) = kL, and O(0 f 1/7(0 for at

least one t g DA1Tzz , p(t) = kL. By (3.30) we have that Pndn = <f(hkL+x),

while Sndn = cf(h L). From Theorem 3.3 we then know that the global order

of the method is kL . Now, the assertion of the theorem follows directly from
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the fact that the set of simplified trees associated to DA IT   , resp.  DA ITyy ■ zz '

is DAlTyy , resp. DAlTyz.

This result can be extended also to include the more general equation (1.6).

For this equation, the principal error is composed of terms of the form

J y J Z

gy

,(P)

z

8z

fäkytzky'iz'iy

gkylziy

(P.)

■ ■ ,y

y^Pk+k' , z (9,

>)

z-+<>) A

Mwhere y     and z     are derivatives of y and z of order less than kL . We can

show that
i-i

Jy J z

8» o7

ify>-fZ>gZlgy)        ' 0

-g7igyify'-fZ'g7lgy)~i       0

The projection operator P suppresses all the contributions to the local trunca-

tion error coming from derivatives of the algebraic equation. Since the algebraic

equation in (1.6) and the model problem are equivalent, assuming g7 nonsin-

gular in ( 1.6), the conclusion for the model equation is also valid for the general

problem,   o

4. Numerical experiments

In this section we present the results of some numerical experiments on var-

ious index 1 systems. The experiments confirm that the local order predicted

in §2 occurs in practice, and in no case is the observed global order less than

the lower bound given in Theorems 3.3 and 3.4. The experiments below were

performed in single precision on a Cray X-MP computer. The test problems

are:

PI: A linear constant-coefficient system of the form Av + Bv = g(x).

P2: A linear system with time-dependent coefficients, A(x)v'+B(x)v =

g(x).

P3: A nonlinear system, linear in v', A(v, x)v = f(v , x).

P4: A system nonlinear also in v , f(v, v', x) = 0.

The problems are described in Appendix A. The test problems were solved by

the following Runge-Kutta methods:

Ml: 2-stage, 3rd-order, ^-stable SDIRK method (Nersett [11]).

M2: 3-stage, 3rd-order, 5-stable SDIRK method (Norsett and Thomsen

[12]).
M3: 5-stage, 4th-order, strongly 5-stable SDIRK method (Cash [4]).

M4: 7-stage, 3rd-order, extrapolation method, based on fully implicit

backward Euler, written as a DIRK method.

M5: 2-stage, 2nd-order, Lobatto IIIC method (Chipman [5]).

M6: 3-stage, 4th-order, Lobatto IIIC method (Chipman [5]).

M7: 3-stage, 5th-order, Radau IA method (Butcher [3, p. 228]).

M8:   2-stage, 4th-order, Kuntzmann-Butcher method (Butcher [3, p.

219]).
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M9:   3-stage, 6th-order, Kuntzmann-Butcher method (Butcher [3, p.

220]).

The results of the experiments are given in Tables 4.1-4.4. The following nota-

tions have been used:

kd : The order of the method when applied to an ODE.

kp : The order of the global error, predicted by Burrage and Petzold in

[2, Theorem 1].

kL : Predicted order of the local error.

kf : Observed order of the local error.

kG : Predicted order of the global error.

k : Observed order of the global error.

Table 4.1. Predicted/Observed Orders for PI.

Method

Ml
M2
M3
M4
M5
M6
M7
M8
M9

Table 4.2. Predicted/Observed Orders for P2.

Method

Ml
M2
M3
M4
M5

M6
M7
M8
M9

Table 4.3. Predicted/Observed Orders for P3.

Method

Ml
M2
M3
M4
M5
M6
M7
M8
M9
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Table 4.4. Predicted/Observed Orders for P4.

Method

Ml

M2

M3
M4

M5

M6
M7

M8
M9

3
3
4

3
2

4

5
4

6

K
2

2
3
4

3

5

3
3
4

2

2

3
4

3
5

3

3
4

2
2

2

3
2

4

3
2

3

a Theorem 1 in [2] gives no lower bound for problems nonlinear in v .

In no case is the observed local and global order lower than the predicted

one. However, for PI, the order observed is higher than expected for several

methods. The reason is the simplicity of the problem. For linear, constant-

coefficients systems, the only order conditions which have to be satisfied, in

addition to the classical ODE-conditions, are

bTsé~ V = i, 7 = 1 q,

where q = kG - 1 if \r\ < 1, or q = kG if |r| = 1. The Cash method M3

solves problem P2 with a higher than expected order for similar reasons. The

elementary differentials causing the method to be reduced to an order-2 method

are not present in this problem.

For the rest of the problems, there is agreement between the observed and

predicted local order. There is also agreement between the observed and pre-

dicted global order, with one exception, the Kuntzmann-Butcher method M9. In

this case, the stability constant r = l-b sé es = -1. The contribution to the

global error from the local error of two adjacent steps is dn+x +rdn = cf(h L+ ),

that is, the local errors from two adjacent steps cancel each other. See [2] for

a better explanation of this phenomenon. M9 is also the only method where

the order predicted by Burrage and Petzold is better than the order predicted

by our theory.

5. Discussion

In this paper we have derived a set of necessary and sufficient order conditions

for the local truncation error when a Runge-Kutta method is applied to a fully

implicit differential-algebraic equation of index-1. The numerical experiments,

described in §4, confirm our results.

In Appendix B, the results given in this paper are compared with the re-

sults given by Burrage and Petzold [2, 13]. We observe that there is no con-

flict between the two theories.  Let Q(x) be a permutation matrix, ensuring
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gz to be nonsingular. The algebraic part of the equation is g(v) = 0, and

v = Q (x)[y , z ] . The order conditions derived in §2 are only valid if

Q(x) does not change over the step. The theory of Petzold does not have this

restriction.

If Q(x) does not vary too frequently, it is possible to use embedding for

the control of the local error. In practice, one should be careful when choosing

a method for solving general classes of index-1 equations. Some methods will

attain a higher order for some classes of equations, like semiexplicit equations

and linear constant-coefficient equations. This is observed in §4, Table 4.1.

For the linear constant-coefficient problem, the two variables were solved with

different accuracy. For the methods with r = 0, vx was solved with order kd ,

while v2 was solved exactly. When choosing a method for solving DAE's, such

aspects have to be considered.
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Appendix A. Test problems

PI: Linear constant-coefficient problem.

1 2

2 4
v + v =

0
sinx

with x G [0, 1 ] and initial values

1
v(0) =

0
and   v (0) =

1

The exact solution is

vx(x) = e~x - 2sinx,        i>2(x) = sinx.

The local order was derived at x = 0.5 .

P2: Linear problem with time-dependent coefficients.

(x + l)v'x +(x+ l)v2 + xvx -0.5w2 = e~y

(x - 1.3 )vx + (x 0.3 )v2 = (x - 1.3 )xe x + (x - 0.3 )VxTT

with x G [0, 1 ] and initial values

t;(0) = and   v (0) =
1

0.5

The exact solution is

vx(x) = xe v2(x) = vGcTT

The local order was derived at x = 0.28.
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P3: Nonlinear problem, linear in v .

v\ + v3v'2 - (v2 + l)v'3 = -vx + 1 + sinx,

(v3+ l)vx +vxv2 = -e    ,

0 = vxv2v3-0.5e xsin(2x)

with xe[0, l] and initial values

-1

v(0) and   v (0) = 1

0

The exact solution is

vx(x) = e~x,        i>2(x) = sinx,        v3(x) = cosx.

The local order was derived at x = 0.5 .

P4: Problem nonlinear in v .

(sin v\ + cos v2)(v'2)  - (x - 6) (x - 2) vxe~x = 0,1   '  ^«"   l/2Aly2

72   ,   „,

with x € [0.5, 1]. The exact solution is

(4-x)(v2 + vx)  -64xe xv{v2 = 0

4   -x
vx = x e

3   -x
v2 = x e    (4 - x).

The local order was derived at x = 0.75 .

Appendix B. Comparison between our results

AND THE ORDER RESULTS GIVEN BY PETZOLD

Here we want to explain why there is no contradiction between the order

results given by Petzold et al. [2, 13] and the results given in this paper. In

fact, we can prove that kG > kp, kp is the order predicted by Petzold in the

theorem cited below, for all methods with r ^ -1. The following relations are

defined in [2]:

A(w):   EWÍ-1.
'.7=1

i=\ y

C(u0:EvT = f>
7=1 ^

P= I, ... ,W,

P= I, ... ,W,

i=l, ... ,s,p= I, ... ,w.

Theorem 1 in [2] is as follows.
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Theorem 1. Suppose that (1.1) is uniform index 1 and linear in v , theRunge-

Kutta method satisfies the stability condition \r\ < 1, the errors in the initial

conditions are cf(h p), and the errors in terminating the Newton iterations are

ff(h p+ ) where ô = 1 if \r\ = 1 and ô = 0 otherwise, and kp > 2. Then the

global errors satisfy \\en\\ =cf(h p), where

Íq ifC(q)andB(q),
q+l    ifC(q),B(q+ I), and - 1 <r< 1,

q+l    ifC(q),B(q+l),A(q + l),  and r = I.

This, together with the following lemma and Theorem 3.3 or Theorem 3.4

shows that kG> kp, for all methods with r ^ -1.

Lemma B.l. If C(q), B(q), then

m = W) Ví€SATr¡X')<«.

IfC(q), B(q+l), then

1       (WeDAlTyy,p(t)<q+l,

7it)     \ VÍ6DA1T    ,p(t)<q.y-

IfC(q), B(q+l), A(q+l), then

1
<P(0 = ^   VtGDAny,p(t)<q + l

Proof. In the following, we use the notation / e DA IT for the bushy trees,

that is, the trees where all the vertices are directly connected to the root. For

such trees we have

(B.l) \l(t) = p(t)cf-x,        i=l,...,s.

Also, t is a bushy tree. Similarly, we use the notation û for trees composed

by only bushy trees, that is,

û = [tx,...,tk]z.

Now from (2.34) and (B.l) we have

Ki«) = £dU      Y      PihK/^-l---Pih^jnk<kk)~l-
7=1        nt,...,nk=i

If C(q), where q + 1 > p(u), this equation can be written as

(B.2)       Mû)=Evf)---^)=Evr'
7=1 7=1

where the fact has been used that p(u) = p(tx ) H-h p(tk) .\iq> p(u), then

(B.3) k((u) = /7(ö)cf(")-1.
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Now leí t = [tx,... ,tk,ûx, ... , û,]y G DA1T>)V. Then, from (2.33) and (B.3),

we have

hit) = p(t) y ^)%<f,M • • ■ pi^v^-'c^-1 • • • c^-x.
nt,...,nk = l

If C(q), where q + 1 > p(t), then

(B.4) 1,(0 = P(t)cf'] ■ ..cf^cf^x ■ ■■cp(ü')-x = p(t)cp(,)-X,

since p(t) = p(ix)-\-lrp(tk)+p(ùx)Ji-hp(ût)-l+l. By repeated use of (B.2)

and (B.4) we know that if C(q), then for all t e DAlTyy with p(t) < q + I

we have 1((0 = l,-(i), where t is a bushy tree, and p(t) = p(t). Inserting this

into (2.31), we have

S S

y.it) = EW*) = pi1)Ebicfl)~l w€d^1^'pi1)^a + l-
i=i (=i

Similarly, for all / 6 DA1T   , p(t) < q + 1, there exists a û such that 1;(0 =

k^ü) and p(t) = p(u). From (B.2), (B.3), and (2.31) we have

y,(0 = Ë Wfl) = E¥,/f   W e DA1TVZ, p(t) <q + l,ui    If

i=\ i=\

and

y,(0 = Pit)YbiCi W € DA1Tyv > />(') ̂  9 + ! •
i=l

If C(^f), all the order conditions up to order q+l are reduced to A(q + 1)

and B(q + 1). Thus, the lemma is proved.   D
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