
mathematics of computation
volume 54, number 190
april 1990, pages 839-854

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM

PETER L. MONTGOMERY AND ROBERT D. SILVERMAN

Abstract. J. M. Pollard, in 1974, presented the P — \ integer factoring al-

gorithm. His paper couched the algorithm in theoretical terms based upon use

of Fast Fourier Transform techniques, but he was unable to say whether the

method could be made practical. We discuss the mathematical basis of the al-

gorithm and show how it can work in practice. The practical implementation

depends, for its success, upon the use of Residue Number Systems. We also

present an open problem as to how the method could be made to work for the

Elliptic Curve factoring algorithm.

1. Introduction

Let A be an odd composite integer whose factorization is sought. A key

problem in one variant of the second phase of the P — \ and Elliptic Curve

(ECM) factoring algorithms [11] is constructing two sequences

x0, xx , ... , xm_x,

over Z/NZ and checking whether GCD(x(-y¡, N)> 1 for some / and j.

For example, in P - 1 the x¡ and y. might represent selected powers of an

element H mod A [11, p. 251]. In ECM the xi and y. might represent the

jc-coordinates of selected points on an elliptic curve [11, p. 256]. A nontriv-

ial GCD will usually yield a factorization of A, and the chance of finding a

nontrivial GCD increases with mn .

Let lg denote logarithm to the base 2 and In denote natural logarithm. Pre-

vious methods required O(mn) operations mod N to do the above tests; this

comes to 0(mn lg (N)) bit operations, using classical algorithms for modular

arithmetic. If instead we select m and n such that m \ n and m is a power of

2, then we can do it in 0((n + m) lg(m) lg(A) [lg(w) + lg(N)]) operations and

0(m [lg(m) + lg(N)]) space by using fast polynomial convolution algorithms.

The time is even less for the P - 1 algorithm if we require that the y-sequence

be a geometric progression mod A. The constants are sufficiently small that

Received March 24, 1989.
1980 Mathematics Subject Classification (1985 Revision). Primary 11Y05; Secondary 11A07,

11T06, 11Y16, 65W05.
Key words and phrases. Convolutions, FFT, residue number systems, smooth groups, factoriza-

tion.

This work was done while the first author was at Unisys.

©1990 American Mathematical Society
0025-5718/90 $1.00+ $.25 per page

839

840 P. L. MONTGOMERY AND R. D. SILVERMAN

the method is practical. For example, if m is 16384, n is 131072, and N is a

100-digit number, then an Alliant FX/8 with four computational elements can

complete the approximately 2-10 tests in 16 minutes. In this way we found

the factors in Table 2 (see §8).

2. Classical P - 1 algorithm

The P- 1 factoring algorithm [14] depends, for its success, upon the concept

of a group of smooth order. An integer is said to be y-smooth if all of its prime

factors are less than y . Suppose that we have an arbitrary composite odd integer

A that we wish to factor, and that p is a prime dividing N. Preselect a limit

Bx (positive, real), and put

(2.1) m= n p°>,

pl prime

so that M is the product of prime powers less than Bx. Then, choose any

small integer a^ ±\ which is coprime to N, and compute

(2.2) H = aM mod N.

If p | A and p - 1 \ M, then Fermât's Little Theorem implies that for some

integer k,

aM mod N = ak{p~u mod N and ak{p~X) - 1 = 0 (modp).

Hence,

(2.3) p | GCV(aM -\,N) = GCD(H - 1, N).

Relation (2.3) will be true whenever p - 1 has all of its prime power divisors

less than Bx , that is to say, the order \(Z/pZ)*\ of the multiplicative group

(Z/pZ)* is B{ -smooth. It is a possible but rare occurrence for large N that A*

has additional factors q of the same form as p. In that case all will appear

in the GCD of (2.3). To rectify this problem, one reduces the value of M.

Otherwise, p will equal the GCD, and not just divide it, in (2.3).

A second stage of the algorithm succeeds whenever \(Z/pZ)*\ is smooth up

to Bx and has a single prime factor between Bx and B2, where B2 » Bx .

This part of the algorithm proceeds as follows. Precompute the quantities

(2.4) H2,h\...,HR mod N,

where the maximum exponent R equals or exceeds the largest gap between

successive primes in the interval (Bx, B2]. It seems not to exceed In (B2) [3,

17]. For B{ <s <B2, define

Qs = Hs mod N = a s mod A.

If pj is the ;'th prime in the interval (Bx, B2], then

(2.5) Qp=Hp'modN and Qp = Hp»l~">Q (mod AT),

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 841

where Hp,+'~Pj mod A is found by table look-up. Accumulate the product

n{B2)-n(Bx)

(2.6) P= [] «2,-1) mod A,

7=1

and periodically compute GCD(P, N). Step 2 succeeds if p - 1 | Ms for

some prime 5 with Bx < s < B2. When the algorithm is implemented in

this fashion, each prime in the interval (5,, B2] requires one multiplication

mod A from (2.5) and one from (2.6). Add the setup cost in (2.4) to get a

total of 2(ti(B2) - it(Bx)) + 0(\n (B2)) modular multiplications. Montgomery

[11] suggests methods for reducing the number of multiplications.

3. Convolution Theorem

Our algorithms require considerable manipulation of polynomials over

Z/AZ, esp. multiplication and evaluation. One may use Fast Fourier Trans-

forms (FFT) to perform the polynomial multiplications via the Convolution

Theorem [1, Chapter 7].

Theorem 1 (Convolution theorem). Let f(x) = J2"lo f,x and S(x) =

¿Z"~q gjX1 be polynomials of degree at most n - 1. Let

n-\

s(x) = f(x)g(x) mod (xn - 1) = J2six'

(so that s¡ = zZj+k=i (mod «) fjSk) ■ Form the following vectors of length n :

J I/o ' ' i ' • • • ' J n — 11 '

6 — loo » o 1 ' ■■• ' o«—lJ•

Then the circular convolution f ® g is

s = [s0,sx,...,sn_x] = FFT-'(FFT(/) *FFT(|)),

where * indicates a pointwise product. The quantity FFT(x) is the Fast Fourier

Transform of the vector x, and FFT~ is the inverse transform.

The FFT in Theorem 1 is performed over the ring Z/NZ and is exactly

analogous to the more familiar FFT's over C. If a) is a primitive root of order

n [1], then the FFT of the vector x of length n is

n-\

FFT(x) = [y0,yl,...y„_x] where y. = J] x}ofJ'.

7=0

By choosing n larger than the degree of the product and by padding / and g

with leading zeros, one can compute an exact polynomial product via a circular

convolution.

Assume n > 1 is a power of 2 and A^ is odd. If we know a primitive «th

root of unity mod A, then a convolution algorithm based upon straightforward

842 P. L. MONTGOMERY AND R. D. SILVERMAN

implementation of the Fast Fourier Transform will take 0(n lg(«)) arithmetic

operations mod A. Such a primitive root will not exist unless all prime fac-

tors of AT are congruent to 1 mod n ; however the factorization of A^ is un-

known. Nussbaumer's convolution algorithm [13; 8, Exercise 4.6.4-59] avoids

this requirement, and can perform a circular convolution of length n in time

0(nlg(n)) multiplications and 0(lg («)) additions mod N. We do not use,

and hence do not describe, Nussbaumer's method in detail. The convolutions

can be performed more efficiently with the use of Residue Number Systems,

because multiplication mod A^ is expensive.

4. Polynomial convolutions by residue numbers

One can multiply two polynomials in Z/NZ[x] together mod N by multi-

plying them together over Z and then reducing the coefficients mod N. If the

original coefficients are in the interval [0, N-1], and both original polynomials

have degree at most n - 1, then the coefficients of the polynomial product will

be in the interval [0, «(A - 1)]. By reducing the original coefficients mod-

ulo enough primes p¡, performing separate convolutions over the finite fields

Z/p¡Z, and then using the Chinese Remainder Theorem (henceforth abbrevi-

ated as CRT), the coefficients of the product mod N can be reconstructed. The

key to the usefulness of this approach is that all of the computations may now

be performed in single-precision arithmetic if the p: 's are chosen properly.

To compute a polynomial product f(x)g(x) mod N mod (xn - 1), where /

and g have degree at most n - 1 with coefficients in the interval [0, Af - 1],

select K distinct primes pi for 0 < i < K- 1 with p¡ = 1 (mod n), such that

K-\

(4.1) F= Y[p, >nN2/(l-e), e > 0.
/=0

Try to select the primes p¡ as large as possible while remaining single precision,

in order to minimize K. If the machine has too small a word size, then there

may not be enough primes available, forcing the use of double precision. If

all pi are in an interval [pmaJ2, />max], then the Prime Number Theorem says

(approximately)

v- <•- "max "max' _ _"max_

- mWPmJ - 2<p(n)\n(pmJ-

But (4.1) requires K ln(pmax) > ln(«) + 21n(A'). Consequently,

^ax>20(«)[ln(«) + 21n(AO].

For example, if n = 65536 and A % io1000 , then

pmax > 2 • 32768 • 4620 » 1.1 • 228,

requiring the use of 29-bit primes. If one uses 32-bit primes, then

(42) lg(n) + 2lg(N)^lg(N)
{*-Z) 32 ~ 16 "

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 843

One now performs K single-precision convolutions mod pi, rather than one

convolution mod A. This construction provides an additional advantage in

that the individual convolutions are independent of one another and may be

performed in parallel or in vector mode. The congruence restrictions on pi

ensure that appropriate primitive roots of order n , required to do the FFT's,

exist.

Let Sjj, 0 < i < K - 1, 0 < j < n - 1 be the coefficients obtained from the

individual convolutions taken mod p{. We use the CRT to reconstruct the coef-

ficients of the product f(x)g(x) mod (x" - 1) mod A from those convolutions.

Precompute the quantities

vi = P/pj and r = v~ modpt, 0 < i < K - 1.

For each j, 0 < j < n - 1, compute

(4.3) yiJ = risu mod pn 0<i<K-l,

and

K-\

(4.4) S =y^ v y - k P where k =v ' J ¿~d I-' U J 7

i=0

Let the jth coefficient of f(x)g(x) mod (x" - 1) be s¡. Then

Sj = su = {vffcj = vtyi} = Sj (mod P¡)

for all /, implying sf = A (mod P). The choice of P in (4.1) ensures 0 <

s, < n(N - 1) < P, and the choice of k- in (4.4) ensures 0 < S < P.

Consequently s¡ = A , implying s. mod A = A mod A.

When evaluating A mod A, one can use precomputed values of v¡ mod A

and P mod A in (4.4).

The value of k¡ can be estimated by floating-point arithmetic if one selects

£ in (4.1) and (4.4) so the accumulated error (due to round-off) in the second

sum of (4.4) will not exceed e/2 . Indeed,

Hf + *l2 = lZJTL^l2
i=0 y' (=0

= {Sj + kJP)/P + e/2

e [kj + e/2, kj + e/2 + n(N - 1)2/P]

ç[kj + e/2,kj + e/2 + (l-e)]

= [kj + e/2,kj + l-e/2]

differs by at least e/2 from the nearest integer.

The usual FFT algorithm divides by n at the end of each convolution mod

pi. These divisions may be incorporated into (4.3) by replacing r by n~ r

modp¡.

K-\
y>i

VJ^+£/2
(=0 y'

844 P. L. MONTGOMERY AND R. D. SILVERMAN

5. FFT IMPLEMENTATION OF STEP 2

Select 6 sa sjB~2 and compute the coefficients a/ of

<t>(6)

(5.1) f(x) = J2aix'= n (x-/7")mod7V,
1=0 O<»<0

GCD(«,0)=1

where 0 denotes the Euler totient function. After computing the powers Hu ,

the coefficients a¡ can be computed by writing the product in (5.1) as a product

of polynomials of equal degree, and recursively multiplying them together in

pairs, using the methods of §4.

Next, evaluate f(x) along the geometric progression

(5.2) Hvl>, l<v<B2/6.

The reason is that if p \ GCD(HS - 1, A) where s = v6 - u, then

(5.3) p | GCD(//"0 - H", N),

so that

(5.4) p | GCD(f(Hve), A).

These points of evaluation form a geometric progression mod A. A polyno-

mial of degree n may be evaluated along m points of a geometric progression

with a circular convolution of length n + m, followed by some simple post-

multiplications. Given / defined by (5.1), suppose we wish to evaluate it at

x = e, er, er2, ... , er'"~ ' . Set L = n + m-l , where n = <f>(6), and form the

vectors (all taken mod A)

-k(k+l)/2 n . , ^
yk = akr , 0 < k < n;

(5.5) n=0' n + l<k<L;

Zk=eL-kr(L-k)(L-k + m^ 0<^<L.

Compute the circular convolution, y ® z, of the vectors y and z, yielding

another vector u of length L + 1 . We then apply the following result.

Theorem 2 (Polynomial evaluation). If the vectors y and z are given as in (5.5),

and u = y ® z, then

(5.6) f(erk)=e~k r~k{k+l)/2uL_k, 0<k<m-l.

Proof. By the definition of a circular convolution, the elements of y ® z are

the coefficients of a polynomial u which is the product mod (x +l - 1) of two

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 845

polynomials whose coefficients are given by y. and zk . If i > n, then

«/= E y,zk= E yjzk
j+k=i (mod L+\) j+k=i (mod L+\)

0<j<L 0<j<n
0<k<L 0<k<L

E-7(7+l)/2 L-k (L-k)(L-k+l)/2

j+k=i
0<j<n
0<k<L

Let i = L- s, where 0 < s < m - I. This implies that k = L- s - j, and

E-j(j+l)/2 s+j (s+j)(s+j+\)/2

7=0

n
S S(S+l)/2 V^ j Sj S 5(5+1)72/., 5, _

= er 2_^aje r =e r f(er). u

7=0

As with the coefficient evaluation, these convolutions may be performed modulo

a fixed set of primes and the CRT used to reassemble the results mod N. The

CRT need be used only for those coefficients required by (5.6).

Our application uses (5.5) and (5.6) with r = H mod A, while e varies.

Since GCD(r e , N) = 1, we can ignore the multiplications from (5.6)

and take greatest common divisors directly from the final convolution vector in

(5.4). The vector y is fixed, so it and its forward transforms mod p¡ need to be

computed only once. The powers of r and l/r in (5.5) may be precomputed,

so that computation of zk requires only computing the relevant powers of e

and multiplying them by the appropriate power of r.

If (p - 1) | Ms, then the algorithm will succeed from (5.6) at k = [^J. In

essence, evaluating f(r') tests all possible primes s in the range [d(k-l), Ok].

The reason we need powers of e in (5.5) and (5.6) is because we need to evaluate

f(rx), x = 0, ... , B2/9 and we evaluate it at only m points at a time. The

first progression runs from 1 to rm~l , the second from r'n to r2m~[, etc. We

thus set e successively to I, r'" , r '" , ... and perform multiple convolutions

of length (j>(6) + m .

It is not necessary to compute a GCD for every k in (5.6). Instead, one can

compute nr=io ut-k mo<^ ̂ anc* tnen take a single GCD. If multiple factors

appear, then one can go back and compute the GCD's individually.

6. Complexity

In this section we compare the complexity of performing the convolutions

mod A, using Nussbaumer's algorithm, versus using the method in §4. We

also suggest how to select the algorithm parameters to yield good performance.

We take, as our fundamental unit of work, a single-precision modular multipli-

cation.

846 P. L. MONTGOMERY AND R. D. SILVERMAN

Consider the cost of a circular convolution of length n with coefficients

in Z/AZ. Nussbaumer's algorithm uses 0(nlg(n)) multiplications mod A

and 0(nlg (n)) additions mod A. If one assumes classical algorithms for

arithmetic, then the cost of a modular multiplication mod A is 0(lg (N)) and

the cost of a modular addition is 0(lg(N)), for a total cost of

(6.1) 0(«lg(«)lg(A) [lg(«) + lg(A0]) units (Nussbaumer's algorithm).

Using the CRT requires 0(n lg(n)K) units to do a convolution of length n

mod all ps, plus 0(n lg(N)K) to reduce the original coefficients mod p¡, and

0(nlg(N)K) more to perform the CRT. Upon substituting K from (4.2), we

find that the work per convolution is

(6.2) 0(n lg(N) [lg(n) + lg(A)]) units (CRT).

A. Computation of coefficients. Let d = (f>(6). To compute the polynomial of

degree d , we perform one convolution of length d , two of length d/2, four

of length d/8, The total work by Nussbaumer's algorithm sums to

(6.3) 0(dlg2(d) lg(N) [lg(d) + lg(A)]) units.

If we use the CRT, then the total work is

(6.4) 0(d lg(d) lg(A) [lg(fiO + lg(A)]) units.

We observe that (6.4) is a factor of 0(lg(d)) faster than (6.3). We also note

that the factor of 1/16, from (4.2), does not affect the asymptotic complexity,

but has great practical value. A naive computation of the coefficients, by direct

long multiplication, would take

(6.5) 0(¿2lg2(A))units.

B. Evaluation of the Polynomial. Performing a convolution of length L + 1 to

evaluate the polynomial mod A via Nussbaumer's method will take

(6.6) 0((L + 1) lg(L + l)lg(JV) [lg(L + 1) + lg(A)]) units.

Performing the convolutions via the CRT will take

(6.7) 0((L+\) lg(A) [lg(L + 1) + lg(A)]) units.

We observe that (6.7) is a factor of 0(lg(L + 1)) faster than (6.6).

C. Example. To illustrate how much of a typical speedup is obtained by using

convolutions over (2.5) and (2.3), let us take B2 = 10 . Consider using Nuss-

baumer's algorithm and select 6 = 72930 = 2-3-5-ll-13-17«105.We
then have d = (f)(6) = 15360. The advantage of selecting 8 in this fashion is

twofold. The first is that (f)(6) is small, relative to 6 , and hence the degree of

the polynomial is small. The second is that it allows the sizes of the convolutions

to be very close to powers of 2, simplifying computation of the FFT's.

Nussbaumer's algorithm takes exactly 3 - 2"— '+ 'e " ' multiplications mod A

for a convolution of length 2" [8, Exercise 4.6.4-59], so with Nussbaumer's

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 847

algorithm, for our chosen 6, computation of the coefficients in (5.1) will take

Ells 214-" • 3 • 2"-1 + rig(,,)1 = 3 • 220 « 3.1 • 106 multiplications mod A. The
time to perform the necessary additions mod N will be small relative to this

lift
quantity. To evaluate the polynomial, we will need to compute f(H) for

v = I, ... , (1010/72930) k 138000. This will be done in eight convolutions

of length 32768, each convolution computing 32768-15360 = 17408 points.

The convolutions will then take 8-3-2 «6.3-10 multiplications mod A,

and the total work will be about 9.4-10 modular multiplications. Since there
8 10

are approximately 4.5 • 10 primes less than 10 , performance of step 2 via

convolutions will be about 95 times better than the original method using (2.5).

Use of the CRT will result in an even greater speedup over Nussbaumer's

method. For a 300-bit A represented in radix 2 it takes 210 single-precision

multiplication instructions to multiply two numbers mod A. It also takes

twenty 31-bit primes from (4.1) for the CRT. A convolution of length 2" will

therefore take 210-3-2""1+r'ê(")1 = 315-2n+r'g('!)1 operations using Nussbaumer's

algorithm. Assuming that the necessary powers of the primitive roots of unity

have been precomputed, careful counting of the total operations involved in the

CRT reveals a total of (60« + 670)2" multiplications/divisions to perform the

convolutions and reconstruct the coefficients. For n - 15, the CRT is there-

fore 3.4 times as fast. This will increase asymptotically to n times as fast as

A —> oo .

7. ALGORITHMIC DESCRIPTION AND CODING CONSIDERATIONS

For the example given above we have (f)(6) = 15360 = 210 • 3 • 5 . In practice,

before beginning the convolutions, it is convenient to break the product in (5.1)

into smaller products, each a polynomial of degree equal to the odd part of

(f)(6). Our code therefore starts by forming 1024 polynomials mod A of degree

15. Multiply these in pairs to get 512 polynomials of degree 30, then 256 of

degree 60, ... , 1 of degree 15360. At each stage, all convolution lengths are

equal, so it suffices to select the pi and do the precomputations for the CRT

only once per stage. Each polynomial mod A is converted to K polynomials

mod Pj, the convolutions are performed, and the polynomials mod p¡ are then

converted back to a single polynomial mod A. The full algorithm is as follows:

(1) Select Bx and perform step 1 of the P - 1 algorithm. Let H be the

output.

(2) Verify GCD(H - 1, A) = 1 .

(3) Given H from step 1, compute Hu for 1 < u < 6, GCD(w, 6) = 1.

(4) Form, via long multiplication, <p(d)/q polynomials mod A of degree

q, where q is the odd part of (f)(6). Let conlen be the least power of

2 exceeding 2q.

(5) Repeat the following procedure until one has a single polynomial f(x)

of degree (f)(6), as in (5.1).

5a. Select an appropriate set of primes. These primes must be congruent

848 P. L. MONTGOMERY AND R. D. SILVERMAN

to 1 (mod conlen). Find appropriate primitive roots of these primes

for the FFT's. The primes and their roots can be precomputed and

placed in a table.

5b. Reduce the polynomials mod each of these primes.

5c. Multiply the reduced polynomials in pairs, via the Convolution

Theorem, yielding <f>(d)/(2q) polynomials of degree 2q for each p;.

Replace q by 2q and conlen by 2conlen.

5d. Reconstruct products mod A from the separate polynomials mod pt

via the CRT.

(6) Compute or look up in a table the necessary primes for (5.5) and (5.6).

(7) Reduce f(x) modulo these primes and perform the convolutions to

evaluate f(x) mod pt.

(8) Reconstruct f(x) mod N via the CRT and compute the GCD's in

(5.4).

Remark 1. One can effectively find a primitive root of order r mod p by

successively trying a for a = 2, 3, If r is a power of 2, it suffices

to make a a quadratic nonresidue mod p .

Remark 2. There are variations to our scheme for the calculation of the coef-

ficients. Rather than treat the coefficients as integers in [0, A - 1], they can

instead be treated as in the interval [(1 - A)/2, (A - l)/2]. In this case the

bound in (4.1) for P can be halved and the computation of Ác. in (4.4) should

round to the nearest integer. However, this scheme will usually not reduce K,

and it requires signed arithmetic during the conversion to and from residue

numbers. It is easier, when doing multiple-precision arithmetic, to use only

unsigned quantities.

Remark 3. The vectors in (5.5) can be computed without modular exponenti-

ations (which are expensive). To compute rk - r (c+1)' for successive values

of k , it suffices to do the following:

(1) Set r0 = 1 and let R0 = r.

(2) For i = I, ... , n , compute ri = rj_xRj_x and R¡ = R0R¡_1 ■

This replaces each modular exponentiation with just two modular multiplica-

tions (but does not parallelize well). Likewise, one can replace the last line of

(5.5) by

(1) Set zL = 1 and let ZL = e.

(2) For i = L- I, ... , 0, compute Z¡ = rZj+x and z¡ = zj+xZ¡.

Remark 4. Instead of using 0 < u < 6 and GCD(w, 0) = 1 in (5.1), one can

use arbitrary representatives of (Z/0Z)* for u provided each \u\ < B1. The

advantage is that one can use the multiplicative relations amongst the H" to

shorten the computation of / by a factor of 0(lg(4>(6))). We illustrate the

procedure assuming 0 = 2qxq2q} for distinct odd primes qt, with each q{ = 1

(mod 2"').

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 849

(1) Initialize

F(x ,y)= (x- Hjy) mod N
\<j<6
j odd

l<7'modí,<(í,-l)/2"'Ví

(homogeneous of degree (qx - l){q2 - l)(q3 - l)/2f"'+"2+"3 = (f>(6)/T'+'h-+'h).

(2) For 1 < / < 3 and 1 < k < a¡, replace

F(x,y) +- F(x,y)F(x, Hmy) mod N where { m s {q> ~ 1)/2" (m°d q-]

\m = 0 (mod 0/#,).

The iterations over j and k can occur in any convenient order. Each iteration

doubles the degree of F, and uses approximately 2\g(m) + 2deg(F) multi-

plications mod A to compute the coefficients of F(x, Hmy) from those of

F(x, y), plus one convolution of length at least 2deg(F) + 1 to do the poly-

nomial multiplication.

(3) Set f(x) = F(x, 1).

Remark 5. Our implementation uses 42 Mbytes of data storage and can ac-

commodate A « 250 decimal digits. Storage requirements grow linearly with

lg A. We did not optimize the program for space and can cut storage at least

in half by using some statically defined arrays for different things in different

places. For example, we declared separate arrays for the coefficient and polyno-

mial evaluation calculations. A minimal storage implementation should be able

to handle 100-digit composites in 6-8 megabytes of storage without difficulty.

8. Results

In this section we present timing information for various stages of the algo-

rithm on an Alliant FX/8 computer with four computational elements (CE's).

Each one has vector instructions which make performing FFT's and dot prod-

ucts as in (4.4) very efficient. The Alliant computer is a tightly coupled parallel

processor with shared memory. Many stages of our algorithm can be com-

puted in parallel with 100% efficiency. For example, the convolutions mod each

of the separate primes from (4.1), the reconstruction of the coefficients from

A mod A, and the GCD's from (5.4) may all be conducted in parallel. Fur-

thermore, since there are K primes from (4.1), T processors (T < K) will

run approximately T times as fast as one processor. The step-2 parts of the

computations that are not parallelizable form only a small percentage of the

total work. Table 1 gives timing information in seconds for a step-2 limit of

101 for 25-, 50- and 100-digit composite integers. The times given that are

relevant to (5.5) and (5.6) are those for one iteration only, using the parameters

given in §6.C. Eight separate iterations of (5.5) and (5.6) are required to cover

the entire interval from Bx to B1. The time given to set up the vectors in (5.5)

is split into two parts. The first number is the time to compute the powers of r,

850 P. L. MONTGOMERY AND R. D. SILVERMAN

Table 1. Algorithm performance in seconds (4 computational elements)

Computation 25 Digits 50 Digits 100 Digits

Compute roots of (5.1)

Form 1024 polynomials

of degree 15

Convolution time for (5.1)

Coefficient reduction &

CRT time for (5.1)

Construct vectors for (5.5)

Convolutions for (5.5)

CRT time for (5.5)

12

27

105

96

28/5

83

13

48

110

212

253

105/11

165

50

195

440

425

700

380/70

330

200

and occurs only once. The second number is the time to multiply by the powers

of e for zk , and occurs at each iteration.

Using naive modular multiplication, step 1 takes 0(BX lg (N)) time. It does

not parallelize at all, short of programming the underlying modular multipli-

cation in parallel. A single computational element of the Alliant takes 5500

seconds to perform step 1 for Bx = 3 • 10 and A « 10

A step-2 implementation based upon (2.5) and (2.6) takes approximately

55000 seconds for B2 = 10 and N = 10
10(1

on a single CE. It takes about

8500 seconds when speeded by the methods of [11]. We have not taken step

2 to 1010 by the older methods, but since 7r(10l0)/7r(108) « 79, we project

that for B2 = 1010 step 2 will take about 4,300,000 seconds using (2.5) and

(2.6) directly, and 660,000 seconds by the methods of [11] for a single CE.

Furthermore, computation of step 2 via (2.5) and (2.6) does not parallelize

well. The newer methods presented herein take 30700 seconds for a single CE;

a factor of 139 over (2.5) and (2.6) and a factor of 22 over the methods of [11].

We observe that these factors will increase as A increases.

Table 2 lists some new factorizations found by the method described herein,

using a step-1 limit of 3 • 106 and a step-2 limit of 101 . With the exception of

U575 they are all taken from the 'Cunningham Project' [6]. The designations

y, xxx± indicate a cofactor of yxxx ± 1 respectively. The number U575 was

a cofactor of the 575th Fibonacci number and its 34-digit factor is the largest

factor yet found by P - 1 . We note that on average the Elliptic Curve algorithm

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 851

will still be more effective than the P - 1 algorithm, even with our enhance-

ments. While step 1 of ECM runs about 8 times slower than step 1 of P - 1,

step 2 takes about the same time for both, using non-FFT techniques. A com-

parison of the run times and effectiveness of the two methods was presented in

[5]. It is difficult to directly compare the run time of the two algorithms since

ECM is a random method while P - 1 is deterministic. Many factors which

would have otherwise been found by our method had already been found by

ECM.

Table 2. Factorizations

N Factor (P)

2,584+

2,656+

2,664+

2,784+

2,1008+

2,1032+

2,535+

2,591 +
2,661 +

2,733+

2,813+

2,873+

2,895+

2,1017+

U575

32871186029052837857

591100350038949953

3508428556083287152033

66308056470365249

494077391563970390335488001

242193739165634585377

10155021917057853331411

8588408897489780521
36640709883877569115302731

6032100214690846655623731769

897186516077633497

921446320166308603

5070463106922154841

28876407885213594067

7146831801094929757704917464134401

2-13-73- 163-209333-31722973

26 - 41 -71 -5737-553036999

25-3-71 -83- 151 -2007359- 15751691

25 - 32 • 43 • 1861 -24371 -431203469

2 • 35 • 5 • 107 • 5347 • 17093 • 427328971

23 • 32 • 5 • 7 • 167 • 197 • 367 • 282269147
2-5-457-661 • 131543- 163337-564538939

23 • 3 • 72 - 172 • 67 - 173-733- 1634681-
•1277925359

23 -3- 11 • 13-271 -3559564581

2-32-29-97-309107-58873379

23-5- 19- 179-5737-6496749983

2-32-41 • 113- 1092173-317042093

28-52- ll2-232-821 -3371 -39209-
•3394739-47358559

9. Application to P + 1 algorithm

For an integer n , the «th Lucas (Chebyshev) polynomial, Vn, is defined by

the formal identity Vn(x + x~) - x" + x~" . If n > 0, then Vn is a monic

polynomial of degree n over Z. It satisfies

W = 2. Vmn(x) = Vm(VR(x)),

(9.1) Vl(x)=x, VJx)Vn(x) = Vm+n(x) + Vm_n(x),

V2(x) = x2-2, V2n(x) = Vn(xf-2.

The P+ 1 factoring algorithm [16] starts with an integer a , chooses Bx and

M as in (2.1), and computes

(9.2) H=VM(a)modN

instead of (2.2). Suppose p \ N, (p + 1) | M, and a" - 4 is a quadratic

nonresidue mod p. Choose a € GF(p) satisfying a = a + a~ . Then a =

852 P. L. MONTGOMERY AND R. D. SILVERMAN

ap = ap + a p, which implies that ap = a or ap = a . The former is

impossible since a - 4 is a quadratic nonresidue. Hence ap+ = 1 and

(9.3) VM(a) = aM +a~M = 2 {modp).

This implies that p \ GCD{H-2, N) (cf. (2.3)). The P+l algorithm operates

in the multiplicative subgroup of elements of GF(p)* having norm 1 (i.e.,

algebraic conjugate equal to multiplicative inverse).

As in P - 1, if the first step of P + 1 is unsuccessful, we can still succeed

(providing a - 4 and hence H - 4 is a quadratic nonresidue) if P + 1 is

smooth up to Bx and has only one prime factor between 5, and B7. Assume

that 0 = 2 (mod 4). Set a = (H + \/H2 - 4)/2 mod A so that H = a + a-1

(mod A) (in the machine, a would have real and imaginary parts mod N).

An FFT version of step 2 can replace (5.1) by

(9.4) /(*)= T] (x-a2u)= n (x2-Vlu(H)x+l).

|u|<0/4 O<u<0/4
GCD(w,0/2)=l GCD(«,0/2)=1

Instead of (5.2), evaluate / along the geometric progression

(9.5) a0'2 where 1 < v < 2B2/6, v = 1 (mod 2).

As in (5.3) and (5.4), if s = v8/2 - 2« and p | a - 1 | VS(H) - 2, then

i , «0/2 2«, . r, «0/2,
p\{a -a)\f(a).

The degree of / is 0(0/2) = <p(6), as in the P - 1 algorithm. Since this /

is a reciprocal polynomial (i.e., f(x) = x eg(]f(l/x)), it needs only half the

storage. This / will be evaluated at about B2/8 points, as in P - 1, but

the points of evaluation (though not the coefficients of /) have both real and

imaginary parts when expressed mod A. This means that the methods of §5

cannot be directly applied to (5.6). The problem is easily circumvented by

doing four convolutions: one with the real parts of both sequences, one with

both imaginary parts (result multiplied pointwise by H~ - 4), and two with a

real part and an imaginary part. This can be reduced to three convolutions (and

one multiplication by H - 4) by emulating the trick

(a + b\¡H2 -4)(c + d\¡H2 - 4)

= ac + bd{H2 - 4) + ({a + b)(c + d) - ac - bd)\JH2 - 4.

Since H2 - 4 is assumed to be a quadratic nonresidue mod p, we can do even

better. If p | f(a"), then both the real and imaginary parts of f(av) must

be divisible by p . It suffices to compute only one of these parts before taking

GCD's; that can be done with two convolutions mod A.

10. Relationship to elliptic curves

An elliptic curve E over a finite field whose characteristic is not 2 or 3

consists of the solutions (x, y) of a cubic equation y = x + Ax + B where

AN FFT EXTENSION TO THE P - 1 FACTORING ALGORITHM 853

4/43 + 21B2 t¿ 0. These solutions, together with a point at infinity, form an

additive, commutative group known as the Mordell-Weil group. When defined

over a field of order p, the order of the Mordell-Weil group is bounded by

[p - 2y/p + 1, p + 2y/p + 1], by a theorem of Hasse [15, p. 131]. By changing

the pair (A, B), one changes curves and can obtain groups of different orders.

Whereas the P - 1 algorithm provides only one group whose order must be

smooth for success, the elliptic curve algorithm (ECM) [9, 11] provides many

such groups, only one of which must be smooth. In order to implement an

FFT version of ECM via the methods of §5, it is necessary to construct a ring

R[E, p] whose group of units R* has a subgroup isomorphic to the additive

Mordell-Weil group. One can do this by decomposing the Mordell-Weil group

into its cyclic subgroups, but the decomposition requires one to know the group

order in the first place! We would like to be able to find an explicit injection

which takes the result, H, from step 1 of ECM and maps it into the ring R.

If we could do this, the algorithm could be made much more effective.

Another approach uses Brent's birthday paradox algorithm [4]. This vari-

ant of step 2 of ECM generates many random points (x, y) on the curve,

all of which are multiples of the point generated by step 1. If two of these

points happen to be equal or to be negatives of each other, then they will

have identical x-coordinates. Construct a polynomial like (5.1) with several

of these x-coordinates as roots, and evaluate that polynomial at the remaining

x-coordinates. The methods of §5 do not apply, since the points of evaluation

will not lie in a geometric progression, but [1, §8.5] gives a way for evaluating

a polynomial of degree at most m - I at m points using convolutions of to-

tal length 0(mlg(m)). By repeating this n/m times, we can evaluate it at n

points in time 0(nlg(m)lg(N) [lg(m) + lg(A)]). This is 0(lg(m)) worse than

the P - 1 extension in §5, and may not be practical.

Acknowledgments

The authors are grateful to Mr. Tony Davis for providing programming sup-

port for this project and to the MITRE Corporation for having provided the

computer time for this project.

Bibliography

1. A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer algorithms,

Addison-Wesley, Reading, MA, 1974.

2. A. Borodin and I. Munro, The computational complexity of algebraic and numeric problems,

American Elsevier, New York, 1975.

3. R. P. Brent, The first occurrence of certain large prime gaps. Math. Comp. 35 (1980), 1435—

1436.

4. R. P. Brent. Some integer factorization algorithms using elliptic curves, Research Report
CMA-

R32-85, The Center for Mathematical Analysis, The Australian National University, 1985.

5. J. Brillhart, P. L. Montgomery, and R. D. Silverman, Tables of Fibonacci and Lucas factor-
izations. Math. Comp. 50 (1988), 251-259.

854 P. L. MONTGOMERY AND R. D. SILVERMAN

6. J. Brillhart, D. H. Lehmer, J. L. Selfridge, B. Tuckerman, and S. S. Wagstaff, Jr., Factoriza-

tions of b" ±\ , ¿» = 2,3,5,6,7, 10, 11, 12 up to high powers, (2nd ed.) Contemporary
Mathematics, vol. 22, Amer. Math. Soc, Providence, Rl, 1988.

7. A. M. Despain, A. M. Peterson, O. S. Rothaus, and E. H. Wold, Fast Fourier transform

processors using Gaussian residue arithmetic, J. Parallel & Distributed Comp. 2 (1985),

219-237.

8. D. E. Knuth, The art of computer programming, Vol. II, Seminumerical algorithms, Addi-

son-Wesley, Reading, MA, 1981.

9. H. W. Lenstra, Jr., Factoring integers with elliptic curves, Ann. of Math. 126 (1987), 649-673.

10. J. H. McClellan and C. M. Rader, Number theory in digital signal processing, Prentice-Hall,

Englewood Cliffs, NJ, 1979.

11. P. L. Montgomery, Speeding the Pollard and elliptic curve methods of factorization. Math.

Comp. 48(1987), 243-264.

12. A. Norton and A. J. Silberger, Parallelization and performance analysis of the Cooley-Tukey

FFT algorithm for shared memory architectures, IEEE Trans. Comp. C-36 (1987), 581-591.

13. H. J. Nussbaumer, Fast Fourier transforms and convolution algorithms. Springer-Verlag.

New York, 1982.

14. J. M. Pollard, Theorems on factorization and primality testing, Proc. Cambridge Philos.

Soc. 5(1974), 521-528.

15. J. H. Silverman, The arithmetic of elliptic curves. Graduate Texts in Mathematics, vol. 106,

Springer-Verlag, New York, 1986.

16. H. C. Williams, A p + 1 method of factoring, Math. Comp. 39 (1982), 225-234.

17. J. Young and A. Potier, First occurrence prime gaps, Math. Comp. 52 (1989), 221-224.

Department of Mathematics, University of California, Los Angeles, California 90024.

E-mail: pmontgom@math.ucla.edu

The MITRE Corporation, Burlington Road, Bedford, Massachusetts 01730. E-mail:

bs@mitre.org

